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ABSTRACT 

In this paper, we persent fixed point results for generalization on spaces with two metrics. The focus in on continuation 

results for such type of mappings. 
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INTRODUCTION 

 

The study of common fixed point of mapping contractive type condition has been a very active field of research activity 

during the last three decades. The most general of the common fixed point pertain to two or three mapping of a metric space 
��� �� and use either a Banach type contractive condition or other contractive condition. Many, Hardy [1], Rajput [2], 

Yadav [3], Sengupta [4] and so many authors work in this field and prove more interesting result. Throughout this section 

��� ��� denotes a complete metric space and d be an metric on X. if �� � 	� and  
 � �  denote by ���� 
	� � �� � � �
����� �� � 
	�	 and by	����� ���� 
���the d’-closer of	���� 
�. 

 

Fixed point results for Banach Generalized contractions 

 

Theorem: 1  Let ��� ��� be a complete metric space,  d another metric on X, 		�� � �� 
 � �  and  T be the mapping from,  

����� ���� 
���into  X, satisfying the following conditions; 

 

    ����� ��� � �� ��	�� ��	                         (1.1)

  

Where non negative �, such that,  � � � � � 

 

In addition assume the following three properties hold: 

 

    ����� ���� � �� � ��	
                            (1.2) 

 

If  � � 	��  then T is uniformaly continuous from �	���� 
�� ��	 !"�		��� ���                                    (1.3) 

 

if  � # �� then T is continuous from $����� ���� 
��� � ��%  into  ��� ���                                                  (1.4) 

 

then T has fixed point, that is there exists � � 	����� ���� 
���  with  �� � �. 
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Proof: Let  �& � ���  then from (1.2), we have 

 

   ����� �&� � ����� ���� � 	 �� � ��	
	 � 
  

So, that,  �& � ���� 
�	 
 

Next let  �' � 	��&  then we note that, 

 

   ���&� �'� � ������ ��&�  

From (1.1) 

   ������ ��&� � �	����� �&�		 
  

   ������ ��&� � �	�� � ��	
	  
Now  

   ����� �'� � ����� �&� ( ���&� �'�  

   ����� �'� � �� � ��	
 ( �	�� � ��	
			  
   ����� �'� � �� � ��	
		�� ( ��  

   ����� �'� � �� � ��	
	�� ( � (	�' ( �) ( * + + � � �  

   ����� �'� � �� � ��	
		�� � �	�,&  

   ����� �'� � 
		  
So that,  �' � ���� 
�	 
 

Proceeding inductively we obtain 

 

   ��	�-.&� �-� � �-	����� �&�		   
   ����� �-.&� � �� � ��-	
		�� � �	�,&  

 

It follows ����� �-.&� � 	
		 and  �-.& � ���� 
�  

 

In this way we construct a sequence	��-� of elements of X, such that  ��-�  is a Cauchy sequence with respect to,  d , which  

converges  to  �� 
 

We claim that ��-�  is a Cauchy sequence with respect to d’. 

 

If  � / �� then this is trivial. 

 

Next we suppose that, � � 	�� 
 

Let  0	 � �  be given. Now from (1.3) that there exists  1	 � �  such that, 

 

������ ��� � 0  Whenever  �� � � ���	� 
�	2!�		���� �� � 1                                                                 (1.5) 

  

From the above the sequence ��-�  is a Cauchy sequence with respect to d, so we know that there exists N with 

  

  ���-� �3� � 1		4�
		2��		!� 5 / 		6                                       (1.6) 

 

Now from (1.5) and (1.6) implies 

   

 ����-.&� �3.&� � 	 �����-� ��3� � 	0		789!9:9
			!� 5		 / 		6 

  

Which proves that ��-� is a Cauchy sequence with respect to d’ 

 

Now since ��� ���  is complete there exists �	 � ����� ���� 
��� with  

 

 ����-� �� ; �		2!�		! ; �. 

 

We claim that,  	�	 � 	��                                           (1.7) 

 

First consider the case, when � # ��.  
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����� ��� � ���� �-� 	( 	���-� ��� � 	���� �-� ( ����-,&� ���	 
   

Let ! ; �  and using (1.4), we obtain 

   

 ����� ��� � ���� �� ( ����� ���  

 

 ����� ��� � �	 
  

And thus (8.7) is true, 

 

Next we suppose that  � � ��  then 

   

����� ��� � ���� �-� ( ����-,&� ���  

 

From (1.1), 

   ����� ��� � ���� �-� ( ���	�-,&� ��� 

  

As ; �,  ��- � � � �� and above inequality can be written as, 

 

   �� � ������ ��� � �  

 

So that,  ���� ��� � �  and (1.7) holds. 

 

 This the proof of the theorem. 

 

Theorem: 2 Let ��� ��� be a complete metric space, d another metric on X, 		�� � ��		 
 � �  and   T  be the mapping from, 

����� ���� 
���into X, satisfying the  following conditions; 

 

       ����� ��� � �� ��	�� �� ( <=���� ��� ( ���� ���> 	( ?=���� ��� ( ���� ���>                                                   (2.1)

  

Where non negative  �� <� ?	 ,  such that,  � � 	� ( < ( ? � 	� 

 

In addition assume the following three properties hold: 

 

    ����� ���� � $� � @	.	A
&,A,B% 	
                           (2.2) 

 

If  �	 � ��  
  

then T is uniformaly continuous from �	���� 
�� ��	 !"�		��� ���                                                   (2.3) 

 

if  � # �� then T is continuous from $����� ���� 
��� � ��%  into  ��� ���                                                  (2.4) 

then T  has  fixed  point, that  is  there  exists � � 	����� ���� 
���  with  �� � �. 

 

Proof: Let  �& � ��� then from (2.2), we have 

 

   ����� �&� � ����� ���� � $� � @	.	A
&,A,B% 
	 � 	
  

 

So that,  �& � ���� 
�	 
 

Next let  �' � ��&  then we note that, 

 

   ���&� �'� � ������ ��&� 

  

From (2.1) 

   ������ ��&� � �	����� �&� ( 	<=����� �&� ( ���&� �'�> ( ?	����	� �'�	     
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   ������ ��&� � $ @	.	A
&,A,B%	$� � @	.	A

&,A,B% 	
	   
Now  

   ����� �'� � ����� �&� ( ���&� �'�  

   ����� �'� � $� � @	.	A
&,A,B% 	
 ( $ @	.	A

&,A,B%	$� � @	.	A
&,A,B% 	
			  

   ����� �'� � $� � @	.	A
&,A,B% 	
		 $� ( @	.	A

&,A,B%  

   ����� �'� � $� � @	.	A
&,A,B% 	
		 C� ( D @	.	A

&,A,BE ( D @	.	A
&,A,BE' ( D @	.	A

&,A,BE) ( * + + � � F  

   ����� �'� � $� � D @	.	A
&,A,BE% 	
		 $� � D @	.	A

&,A,BE	%,&
  

   ����� �'� � 
		  
 

So that,  �' � ���� 
�	 
 

Proceeding inductively we obtain 

   ��	�-.&� �-� � D @	.	A
&,A,BE- ����� �&�		   

   ����� �-.&� � $� � D @	.	A
&,A,BE%- 
	 $� � D @	.	A

&,A,BE	%,&
  

 

It follows ����� �-.&� � 
		  and    �-.& � ���� 
�  

 

In this way we construct a sequence	��-� of elements of X, such that  ��-�  is a Cauchy sequence with respect to, d, which 

converges to �� 
 

We claim that ��-� is a Cauchy sequence with respect to d’. 

 

If   � / �� then this is trivial. 

 

Next we suppose that,  � �	# 	�� 
 

Let  0 � � be given Now from (1.3) that there exists 1	 � �  such that, 

 

������ ��� � 0  whenever �� � � ���	� 
�	2!�		���� �� � 1                                                                 (2.5) 

  

From the above the sequence ��-� is a Cauchy sequence with respect to d, so we know that there exists N with 

  

  ���-� �3� � 1		4�
		2��		!� 5 / 6                                       (2.6) 

 

Now from (2.5) and (2.6) implies 

  

 ����-.&� �3.&� � 	 �����-� ��3� � 	0		789!9:9
			!� 5	 / 6  

 

Which proves that��-�  is a Cauchy sequence with respect to  d’. 

 

Now since ��� ���  is complete there exists �	 � ����� ���� 
���  with 

  

����-� �� ; �		2!�		! ; �. 

 

We claim that,  	� � 	��            

                                                                                                                                                                                               (2.7) 

First consider the case, when � # �� 
 

����� ��� � ���� �-� ( ���-� ��� � ���� �-� ( ����-,&� ���	  
  

Let ! ; �  and using (2.4), we obtain 

   

����� ��� � ���� �� ( ����� ���  



Rajesh Shrivastava*, Animesh Gupta* and R. N. Yadav**"
FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS  

IN COMPLETE METRIC SPACE "
�����
�����
�����������
#�$�%
� !��� ! 


&
�����
�����
�		
'�$��(
'�(����)











































































































































































� ! 
�

����� ��� � �	  
 

And thus (2.7) is true, 

 

Next we suppose that � � ��  then 

   

����� ��� � ���� �-� ( ����-,&� ���  

 

From (2.1), 

 

 ����� ��� � ���� �-� ( ���	�-,&� ��� ( 	<=��	�-,&� ��-,&� ( ���� ���> ( ?=��	�-,&� ��� ( ���� ��-,&�> 
   

As  ; � ,  ��- � � � 	��  and above inequality can be written as, 

 

   $� � D @	.	A
&,A,BE% ���� ��� � � 

  

So that, ���� ��� � �  and (2.7) holds. 

 

This complete proof of the  theorem 

. 
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