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ABSTRACT 
In this article, we derived mathematical expression for nutrient uptake by spherical bulb surface of aquatic plant, 
which is the advection diffusion equation in the spherical radial form. We assume Michal Menten boundary condition 
as boundary condition for advection diffusion equation, which is nonlinear surface boundary condition. We obtained 
the solution for advection diffusion equation reducing it into the Bessel's equation by the method of separation variable 
using the boundary and initial conditions by re-scaling the variables and using extreme parameters. 
 
Key words and Phrases: uptake of nutrient, complete solution of advection diffusion equation, spherical, bulb surface, 
re-scaling variable. 
 
 
1. INTRODUCTION 
 
The primary physiological function of root is uptaking the water as well as nutrients and transport to leaves for 
photosynthesis. Investigations and observation of the uptake of water and nutrient in plant root and stem was traced 
back to many years ago, such bulb help to clean the dam or river. In recent years, a number of researchers from various 
fields, such as physics, applied mathematics and plant physiology, paid more attention to develop mathematical model 
for water and nutrient uptake. The outstanding work in this field is done by T.Roose and proposed a mathematical 
model for uptake of water and nutrient from groundwater. Roose work is development of Nye, Tinker and Barber 
model for water and nutrient uptake assuming that the root is an infinitely long cylinder [9][10], but some aquatic root 
are spherical bulb. To develop Mathematical model, we first derive advection diffusion equation of nutrient transport in 
the water and then try to solve the advection diffusion equation by transforming it into non-dimensional form with 
Michal Menten boundary condition as boundary condition. 
 
2. NUTRIENT CONVECTION EQUATION IN WATER 
 
The root surrounded by water and gas. We indicate ∅𝑙 volume fraction of system occupied by the liquid and ∅𝑠  volume 
fraction of system occupied by gas.  
 
The conservation of system volume equation is written as [9][10] 

∅𝑔 + ∅𝑙 = 1.                                                                                                                                      (2.1) 
 
Fraction of gas in water is negligible we may assume ∅ = ∅𝑙.  
 
Nutrient comes in contact with the bulb surface by flow of water in which diffusion of nutrient takes place. Then the 
equation for ions in the liquid phase is written as 

𝜕
𝜕𝑡

(∅𝑙𝑐𝑙) + ∇. (𝑐𝑙𝑢) = ∇. (∅𝑙𝐷∇𝑐𝑙),                                                                                                   (2.2) 
where 𝑢 is the Darcy flux of water , 𝑐𝑙  is the nutrient concentration in the liquid, D is the diffusion coefficient in the 
liquid phase  
 
Hence, the equation (2.2) in terms of 𝑐𝑙 becomes, 

∅𝑙
𝜕𝑐
𝜕𝑡

+ ∇. (𝑐𝑙𝑢) = ∇. (∅𝑙𝐷∇𝑐𝑙),                                                                                                         (2.3) 
 

Corresponding Author: Avhale P. S., Department of Mathematics,  
Shivaji Arts, Commerce and Science College Kannad Dist. Aurangabad (M.H.), India. 

 
 

http://www.ijma.info/�


Avhale P. S. / Advection diffusion equation for nutrient uptake by aquatic spherical bulb surface with …/ IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                     177  

 
Noting 𝑐𝑙 = 𝑐 and writing equation (2.3) in spherical radial polar coordinates, we get [4] 

∅𝑙
𝜕𝑐
𝜕𝑡
− 𝑎𝑉

𝑟
𝜕𝐶
𝜕𝑟

= 𝐷∅𝑙
1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑐

𝜕𝑟
�,                                                                                                 (2.4) 

where 𝑎  is the radius of the bulb. The water flux is given by 𝑢 = −𝑎𝑉
𝑟

, which derives from the law of mass 
conservation for water, i.e, ∇.𝑢 = 0. The quantity 𝑉 is the Darcy flux of water into the bulb. [1] 
 
3. BOUNDARY CONDITION AT AQUATIC BULB SURFACE  
 
Bulb surface accept the nutrient up to a certain level even if the nutrient concentration in liquid increases indefinitely. It 
is also verified that the bulb surface accept nutrient up to a critical level (low) of nutrient in liquid phase near the bulb 
surface below which first it stop the uptake of nutrient and then start bleeding in the soil. The experimentally measured, 
heuristic Michaelis-Menten type nutrient uptake boundary condition is therefore given by, see [7] 

∅𝑙𝐷
𝜕𝑐
𝜕𝑟

+ 𝑉𝑐 = 𝐹𝑚𝑐
𝐾𝑚+𝑐

− 𝐸 at r = 𝑎,                                                                                         (3.1) 
where 𝑐 indicate the concentration of nutrient in the liquid phase of the soil, 𝐾𝑚 indicate the Michaelis-Menten constant 
that is equal to the bulb surface nutrient concentration, when the flux of nutrient into the bulb is half of the maximum 
possible , 𝐹𝑚  indicate the maximum flux of nutrient into the bulb, 𝐹𝑚𝑐𝑚𝑖𝑛

𝐾𝑚+𝑐𝑚𝑖𝑛
 where 𝑐𝑚𝑖𝑛  indicate the minimum 

concentration when the nutrient uptake by the bulb stop, and 𝑎 is the radius of the bulb. 
 
4. INITIAL CONDITION AND BOUNDARY CONDITION AWAY FROM BULB SURFACE IN WATER 
 
Initial condition can be write as for 𝑡 =  0 

𝑐 = 𝑐0  at 𝑡 =  0 for 𝑎 <  𝑟 <  ∞,                                                                                                  (4.1) 
for later time 

𝑐 → 𝑐0 as  𝑟 → ∞ for 𝑡 >  0.                                                                                                             (4.2) 
 
5. NON-DIMENSIONALISATION OF NUTRIENT CONVENTION EQUATION 
 
Choosing time, space, and concentration-scale as follows and substitute in (2.4) 

𝑡 = 𝑎2

𝐷
𝑡∗,    𝑟 = 𝑎𝑟∗ , 𝑐 = 𝐾𝑚𝑐∗,                                                                                                        (5.1) 

where 𝑐∗, 𝑡∗ and 𝑟 ∗are dimensionless nutrient concentration, time, and radial variables, respectively, we obtain (after 
dropping * s) the following dimensionless model 

𝜕𝑐
𝜕𝑡
− 𝑃𝑒

1
𝑟
𝜕𝑐
𝜕𝑟

= 1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑐

𝜕𝑟
�,                                                                                                                (5.2) 

 
with boundary conditions 

𝜕𝑐
𝜕𝑟

+ 𝑃𝑒𝑐 = 𝜆 𝑐
1+𝑐

− 𝜖    at  𝑟 = 1,                                                                                                       (5.3) 
𝑐 → 𝑐∞  as 𝑟 → ∞  for 𝑡 > 0,                                                                                                             (5.4) 

 
the dimensionless initial condition is given by 

𝑐 = 𝑐∞ at  𝑡 = 0 , for 1 < 𝑟 < ∞                                                                                                       (5.5) 
 
The dimensionless parameters in above equations are defined as 

𝑃𝑒 = 𝑎𝑉
𝐷∅𝑙

, 𝜆 = 𝐹𝑚𝑎
𝐷𝐾𝑚𝜙𝑙

, 𝜖 = 𝐸𝑎
𝐷𝐾𝑚𝜙𝑙

, 𝑐∞ = 𝑐0
𝐾𝑚

.                                                                                   (5.6) 
 
6. CONCENTRATION OF NUTRIENT ENTERING INTO BULB SURFACE AND TOTAL UPTAKE  
 
The concentration of nutrient entering into bulb surface is obtain by solving equation (5.2) with boundary condition 
(5.3), (5.4) and (5.5) for extreme parameters. Rearranging the equation (5.2), we write as 

𝜕𝑐
𝜕𝑡

= �2+𝑃𝑒
𝑟
� 𝜕𝑐
𝜕𝑟

+ 𝜕2𝑐
𝜕𝑟2

                                                                                                                          (6.1) 
 
Re-scaling independent variable as 𝑟 =  (2 +  𝑃𝑒)𝑅, then 𝜕𝑟 = (2 +  𝑃𝑒)𝜕𝑅. Then equation (6.1) written as 

(2 + 𝑃𝑒) 𝜕𝑐
𝜕𝑡

= 1
𝑅
𝜕𝑐
𝜕𝑅

+ 𝜕2𝑐
𝜕𝑅2

                                                                                                                    (6.2) 
 
Corresponding boundary condition changes into 

𝜕𝑐
𝜕𝑅

+ (2 + 𝑃𝑒)𝑃𝑒𝑐 = 𝜆(2 + 𝑃𝑒) � 𝑐
1+𝑐

− 𝜖�   at  𝑅 = 1
2+𝑃𝑒

,                                                                   (6.3) 
𝑐 → 𝑐∞  as   𝑟 → ∞  for 𝑡 > 0,                                                                                                           (6.4) 
𝑐 = 𝑐∞ at 𝑡 = 0 for  1

2+𝑃𝑒
< 𝑅 < ∞.                                                                                                   (6.5) 

 



Avhale P. S. / Advection diffusion equation for nutrient uptake by aquatic spherical bulb surface with …/ IJMA- 9(2), Feb.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                     178  

 
We consider the extreme of parameter 𝜆. For large value of 𝜙𝑙  with small radius of bulb 𝑎, i.e., for small value of 𝜆 we 
expect the region where 𝑐 is less than order 1 to be larger. Mathematical this problem is similar to the Oseen type of 
problems [5]. Therefore 𝜆 << 1, i.e.,  𝜆 ≈ 0. Then the boundary condition space (6.3) reduces 

𝜕𝑐
𝜕𝑅

+ (2 + 𝑃𝑒)𝑃𝑒𝑐 = 0.                                                                                                                       (6.6) 
 
We separate the variable of equation (6.2) by substitution 𝑐(𝑅, 𝑡)  =  𝑈(𝑅)𝑇(𝑡),  we have [6] 

1
𝑇

(2 + 𝑃𝑒) 𝜕𝑇
𝜕𝑡

= 1
𝑈
�𝜕

2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅
�,                                                                                                          (6.7) 

 
Corresponding boundary condition (6.3) reduces 

𝜕𝑈
𝜕𝑅

+ (2 + 𝑃𝑒)𝑃𝑒𝑈 = 0.                                                                                                                      (6.8) 
 
We equate equation (6.7) with −𝛽2 

1
𝑇

(2 + 𝑃𝑒) 𝜕𝑇
𝜕𝑡

= 1
𝑈
�𝜕

2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅
� = −𝛽2,                                                                                              (6.9) 

 
Then the Bessel's equation with boundary condition at bulb surface is, 

𝜕2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅

+ 𝛽2𝑈 = 0,                                                                                                                    (6.10) 
𝜕𝑈
𝜕𝑅

+ (2 + 𝑃𝑒)𝑃𝑒𝑈 = 0,                                                                                                                    (6.11) 
and 

𝜕𝑇
𝜕𝑡

= − 𝛽2𝑇
(2+𝑃𝑒)

,                                                                                                                                   (6.12) 
 
with boundary conditions 

𝑐 = 𝑐∞ at 𝑡 = 0 for 1
(2+𝑃𝑒)

< 𝑅 < ∞.                                                                                               (6.13) 
 
Then the complete solution is given by 

𝑐(𝑅, 𝑡) = ∫ 𝛽
𝑁(𝛽)

𝑒−
1

(2+𝑃𝑒)𝛽
2𝑡𝑈(𝛽,𝑅)𝑑𝛽 ∫ 𝑅′𝑈(𝛽,𝑅′)𝑐∞

∞
𝑅= 1

(2+𝑃𝑒)

∞
𝛽=0 𝑑𝑅′ ,                                          (6.14) 

where 𝑈(𝛽,𝑅) and  𝑁(𝛽) is given by 

𝑈(𝛽,𝑅) = 𝐽0(𝛽𝑅) �𝛽𝑌1 �𝛽
1

(2 + 𝑃𝑒)� − 𝑃𝑒(2 + 𝑃𝑒)𝑌0 �𝛽
1

(2 + 𝑃𝑒)�� 

−𝑌0(𝛽𝑅) �𝛽𝐽1 �𝛽
1

(2+𝑃𝑒)
� − 𝑃𝑒(2 + 𝑃𝑒)𝐽0 �𝛽

1
(2+𝑃𝑒)

��,                     (6.15) 
Also 

𝑁(𝛽) = �𝛽𝐽1 �𝛽
1

(2 + 𝑃𝑒)� − 𝑃𝑒(2 + 𝑃𝑒)𝐽0 �𝛽
1

(2 + 𝑃𝑒)��
2

 

+ �𝛽𝑌1 �𝛽
1

(2+𝑃𝑒)
� − 𝑃𝑒(2 + 𝑃𝑒)𝑌0 �𝛽

1
(2+𝑃𝑒)

��
2

,                                (6.16) 
 
Replacing 𝑅 by 𝑅 = 𝑟

(2+Pe)
  in equation (6.14) and (6.15), we get concentration entering through bulb surface 

𝑐(𝑟, 𝑡) = ∫ 𝛽
𝑁(𝛽)

𝑒−
1

(2+𝑃𝑒)𝛽
2𝑡𝑈 �𝛽, 𝑟

(2+Pe)
  � 𝑑𝛽 ∫ 𝑟′

(2+Pe)
𝑈 �𝛽, 𝑟′

(2+Pe)
  � 𝑐∞

∞
𝑟=1

∞
𝛽=0 𝑑𝑟′ ,                        (6.17) 

 

𝑈(𝛽, 𝑟) = 𝐽0 �𝛽
𝑟

(2 + Pe)
� �𝛽𝑌1 �𝛽

1
(2 + 𝑃𝑒)� − 𝑃𝑒(2 + 𝑃𝑒)𝑌0 �𝛽

1
(2 + 𝑃𝑒)�� 

−𝑌0 �𝛽
𝑟

(2+Pe)
� �𝛽𝐽1 �𝛽

1
(2+𝑃𝑒)

� − 𝑃𝑒(2 + 𝑃𝑒)𝐽0 �𝛽
1

(2+𝑃𝑒)
��.                (6.18) 

 
Amount of nutrient absorbed by bulb surface of radius r in time is given as, [2][4] 

𝑀 = 4𝜋𝑟𝑡 𝜕𝑐
𝜕𝑟

.                                                                                                                                   (6.19) 
 
7. NUTRIENT CONVENTION EQUATION WITH LIMIT 𝒄∞  << 1 and 𝝐 <  𝑷 𝒆 <<  1 
 
In this section we consider  𝑃 𝑒 , 𝜖 and 𝑐∞  are negligible. If Michaelis-Menten coefficient 𝐾∞ much larger than the far 
field concentration   𝑐0 , i.e, 𝑐∞ <<  1 then the equation (5.2) reduces to the form 

𝜕𝑐
𝜕𝑡

= 1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑐

𝜕𝑟
�.                                                                                                                              (7.1) 

𝜕𝑐
𝜕𝑡

= 𝜕2𝑐
𝜕𝑟2

+ 2
𝑟
𝜕𝑐
𝜕𝑟

.                                                                                                                                  (7.2) 
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Corresponding boundary condition reduces to the form 

𝜕𝑐
𝜕𝑟

= 𝜆
𝑐

1 + 𝑐
  at  𝑟 = 1, 

c → c∞   at 𝑡 > 0 for 𝑟 → ∞, 
𝑐 = 𝑐∞ at 𝑡 = 0 for 1 < 𝑟 < ∞                                                                                                          (7.3) 

 
Re-scaling 𝑐 =  𝑐∞𝐶, then the model in scaled concentration is written as 

𝜕𝐶
𝜕𝑡

= 𝜕2𝐶
𝜕𝑟2

+ 2
𝑟
𝜕𝐶
𝜕𝑟

,                                                                                                                                  (7.4) 
 
Scaled boundary condition are as follows 

𝜕𝐶
𝜕𝑟

= 𝜆
𝐶

1 + 𝑐∞𝐶
  at  𝑟 = 1, 

C → 1  at 𝑡 > 0 for 𝑟 → ∞, 
𝐶 = 1 at 𝑡 = 0 for 1 < 𝑟 < ∞,                                                                                                          (7.5) 

for 𝑐∞ <<  1, we can approximate the root surface boundary condition, using the binomial expansion, at the leading 
order given by 

𝜕𝐶
𝜕𝑟
≈ 𝜆𝐶 at 𝑟 = 1.                                                                                                                              (7.6) 

 
Re-scaling equation (7.4) and its boundary condition by independent variable as  𝑟 = 2𝑅, we can write 

2 𝜕𝐶
𝜕𝑡

= 𝜕2𝐶
𝜕𝑅2

+ 1
𝑅
𝜕𝐶
𝜕𝑅

                                                                                                                               (7.7) 
 
Scaled boundary condition are written as 

𝜕𝐶
𝜕𝑅

= 2𝜆𝐶    at 𝑅 = 1
2
 

𝐶 → 1 at 𝑡 > 0 as 𝑅 → ∞, 
𝐶 = 1 at 𝑡 = 0 for  1

2
< 𝑅 < ∞                                                                                                          (7.8) 

 
We solve the above boundary value problem by separation of the variables. Substituting the substitution  
𝐶(𝑅, 𝑡)  =  𝑇(𝑡)𝑈(𝑅) the value in equation (7.7), separating the variables, we write as 

1
 𝑈

[𝜕
2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅

] = 2
𝑇
�𝜕𝑇
𝜕𝑡
� = −𝛽2                                                                                                          (7.9) 

 
Now consider the boundary value problem 

𝜕2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅

+ 𝛽2𝑈 = 0.                                                                                                                    (7.10) 
 
With the boundary condition 

𝑑𝑈
𝑑𝑅
− 2𝜆𝑈 = 0                                                                                                                                            (7.11) 

 
Then the complete solution is given by, see [10], 

𝐶(𝑅, 𝑡) = ∫ 𝛽
𝑁(𝛽)

𝑒−
𝛽2
2 𝑡𝑈(𝛽,𝑅)𝑑𝛽 ∫ 𝑅′𝑈(𝛽,𝑅′)𝑑𝑅′,∞

𝑅=12

∞
𝛽=0                                                                (7.12) 

where 𝑈(𝛽,𝑅) is eigen value function. 
𝑈(𝛽,𝑅) = 𝐽0(𝛽𝑅)[𝛽𝑌1(𝛽) + 2𝜆𝑌0(𝛽)] − 𝑌0(𝛽𝑅)[𝛽𝐽1(𝛽) + 2𝜆𝐽0(𝛽)].                                         (7.13) 
𝑁(𝛽) = [𝛽𝐽1(𝛽) + 2𝜆𝐽0(𝛽)]2 + [𝛽𝑌1(𝛽) + 2𝜆𝑌0(𝛽)]2.                                                                (7.14) 

 
Substituting 𝑅 = 𝑟

2
 in equation (7.12) to (7.14), we get concentration entering into bulb surface 

𝐶(𝑟, 𝑡) = ∫ 𝛽
𝑁(𝛽)

𝑒−
𝛽2
2 𝑡𝑈 �𝛽, 𝑟

2
� 𝑑𝛽 ∫ 𝑅′𝑈 �𝛽, 𝑟′

2
� 𝑑𝑟′,∞

𝑅=12

∞
𝛽=0                                                               (7.15) 

where 𝑈(𝛽, 𝑟) is eigen value function. 
𝑈(𝛽, 𝑟) = 𝐽0 �𝛽

𝑟
2
� [𝛽𝑌1(𝛽) + 2𝜆𝑌0(𝛽)] − 𝑌0 �𝛽

𝑟
2
� [𝛽𝐽1(𝛽) + 2𝜆𝐽0(𝛽)]                                       (7.16) 

𝑁(𝛽) = [𝛽𝐽1(𝛽) + 2𝜆𝐽0(𝛽)]2 + [𝛽𝑌1(𝛽) + 2𝜆𝑌0(𝛽)]2                                                                 (7.17) 
 
So the general solution of equation (7.1) is given by 

𝑐(𝑟, 𝑡) = 𝑐∞ ∫
𝛽

𝑁(𝛽)
𝑒−

𝛽2
2 𝑡𝑈 �𝛽, 𝑟

2
� 𝑑𝛽 ∫ 𝑅′𝑈 �𝛽, 𝑟′

2
� 𝑑𝑟′∞

𝑟=1
∞
𝛽=0 .                                                          (7.18) 

 
The model with this condition is known as the "root absorbing power" model. 
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8. SITUATION WHEN WILL BE HIGH NUTRIENT UPTAKE FOR 𝝀 >>  1 AND 𝑷𝒆 << 1 
 
If the gradient of nutrient concentration near root surface is high, i.e.,  𝜕𝑐

𝜕𝑟
|𝑟=1 = 𝜆 ≫ 1 for 𝑐 ~𝑂(1).  Then re-scaling 

the independent variables 𝑟 and 𝑡 to stretched variables R and T, i.e.,  𝑟 =  1 + 𝑅
𝜆
   and 𝑡 = 𝑇

2𝜆2
,  the equation  (7.1)  

reduces to [2][8][9] 
𝜕𝑐
𝜕𝑇

= 1
2
𝜕2𝑐
𝜕𝑅2

+ 1
𝑅+𝜆

𝜕𝑐
𝜕𝑅

.                                                                                                                           (8.1) 
Which at the leading order simples to 

 𝜕𝑐
𝜕𝑇

= 1
2
𝜕2𝑐
𝜕𝑅2

,                                                                                                                                         (8.2) 
 
Since  1

𝜆+𝑅
<<  1 for 𝜆 >>  1. The re-scaled boundary condition is 

𝜕𝑐
𝜕𝑅

=  𝑐   at  𝑅 =  0,  and 𝑐 →  1 as  𝑅 → ∞,                                                                                   (8.3) 
and the initial condition is c = 1 at T = 0 for 0 < R < 1. Then the general solution to this leading order problem is given 
by 

𝑐(𝑅,𝑇) = 𝑒𝑟𝑓 � 𝑅
√2𝑇

� + 𝑒𝑅+
𝑇
2𝑒𝑟𝑓𝑐 � 𝑅

√2𝑇
+ �𝑇

2
�,                                                                                (8.4) 

with the flux 𝐹(𝑇) = 𝜕𝑐
𝜕𝑅

𝜕𝑅
𝜕𝑟

|𝑅=0 of nutrient into the root given by 

𝐹(𝑇)  = 𝜆𝑒𝑇𝑒𝑟𝑓𝑐 ��𝑇
2
�.                                                                                                                   (8.5) 

As  𝑇 → ∞, the concentration of nutrient at the surface 𝑐 →  0 and 𝐹 → 0,  since 𝑒
𝑇
2𝑒𝑟𝑓𝑐 ��𝑇

2
� → 0 as 𝑇 → ∞. 

 
9. ZERO-SINK MODEL 
 
For 𝑡 >  𝑡𝑐 _~ 1

𝜆2
 1the root surface nutrient concentration has dropped to a very low level, then we take the boundary 

condition at the root surface at the leading order to be c = 0 at r = 1, i.e., the mathematical model reduces with 
following boundary condition 

𝜕𝑐
𝜕𝑡

+ (−𝑃𝑒)
𝑟

𝜕𝑐
𝜕𝑟

= 1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑐

𝜕𝑟
�,                                                                                                              (9.1) 

𝑐 =  0 at 𝑟 =  1 and 𝑐 →  1 as 𝑟 → ∞.                                                                                           (9.2) 
 
Rearranging the terms of equation (9.1), we can write the equation       

𝜕𝑐
𝜕𝑡

= �2+𝑃𝑒
𝑟
� 𝜕𝑐
𝜕𝑟

+ 𝜕2𝑐
𝜕𝑟2

.                                                                                                                          (9.3) 
 
Re-scaling 𝑟 in the equation (9.3) as  𝑟 =  (2 +  𝑃𝑒)𝑅, we have 

(2 + 𝑃𝑒) 𝜕𝑐
𝜕𝑡

= 1
𝑅
𝜕𝑐
𝜕𝑅

+ 𝜕2𝐶
𝜕𝑅2

.                                                                                                                   (9.4) 
 
Re-scaling the boundary condition 

𝑐 =  0 at  𝑅 = 1
2+𝑃𝑒

 , and 𝑐 → 1  as 𝑅 → ∞.                                                                                      (9.5) 
 

By separating the variable, it can be shown that the time-variable function is given by 𝑒�−
𝛽2

(2+𝑃𝑒)�𝑡 and space variable 
function 𝑈(𝛽,𝑅) is the solution of the following boundary value problem 

𝜕2𝑈
𝜕𝑅2

+ 1
𝑅
𝜕𝑈
𝜕𝑅

+ 𝛽2𝑈 = 0, in  1
2+𝑃𝑒

< 𝑅 < ∞,                                                                                        (9.6) 
with the boundary condition 

𝐶 =  0  at  𝑅 = 1
2+𝑃𝑒

,                                                                                                                        (9.7) 
 
Then the complete solution for 𝑐(𝑅, 𝑡) is constructed as 

𝑐(𝑅, 𝑡) = ∫ 𝐶(𝛽)𝑒−
𝛽2

2+𝑃𝑒
𝑡∞

𝛽=0 𝑈(𝛽,𝑅)𝑑𝛽.                                                                                           (9.8) 
 
The application of the initial condition yields 

1 = ∫ 𝐶(𝛽)𝑈(𝛽,𝑅)𝑑𝛽,∞
𝛽=0  as  𝑅 → ∞                                                                                               (9.9) 

where 
𝐶(𝛽) ≡ 1

𝑁(𝛽)
𝛽 ∫ 𝑅′𝑈(𝛽,𝑅′)𝑑𝑅′.∞

𝑅= 1
2+𝑃𝑒

                                                                                             (9.10) 
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Substituting value (9.10) into the equation (9.8) 

𝑐(𝑅, 𝑡) = ∫ 𝛽
𝑁(𝛽)

𝑒−
𝛽2

2+𝑃𝑒
𝑡𝑈(𝛽,𝑅)𝑑𝛽 ∫ 𝑅′𝑈(𝛽,𝑅)𝑑𝑅′.∞

𝑅= 1
2+𝑃𝑒

∞
𝛽=0                                                         (9.11) 

where 𝑈(𝛽,𝑅) and 𝑁(𝛽) 
𝑈(𝛽,𝑅) = 𝐽0(𝛽𝑅)𝑌0 �

𝛽
2+𝑃𝑒

�−𝑌0(𝛽𝑅)𝐽0 �
𝛽

2+𝑃𝑒
�,                                                                              (9.12) 

𝑁(𝛽) = 𝐽02 �
𝛽

2+𝑃𝑒
� + 𝑌02 �

𝛽
2+𝑃𝑒

�.                                                                                                       (9.13) 
 
Substituting the value of 𝑈(𝛽,𝑅) and 𝑁(𝛽) 

𝑐(𝑅, 𝑡) = ∫ 𝛽

𝐽0
2� 𝛽
2+𝑃𝑒

�+𝑌0
2� 𝛽
2+𝑃𝑒

�
𝑒−  𝛽2

2+𝑃𝑒
𝑡 �𝐽0(𝛽𝑅)𝑌0 �

𝛽
2+𝑃𝑒

�−𝑌0(𝛽𝑅)𝐽0 �
𝛽

2+𝑃𝑒
�� 𝑑𝛽∞

𝛽=0   

                                                   ∫ 𝑅′ �𝐽0(𝛽𝑅′)𝑌0 �
𝛽

2+𝑃𝑒
�−𝑌0(𝛽𝑅′)𝐽0 �

𝛽
2+𝑃𝑒

�� 𝑑𝑅′.∞
𝑅= 1

2+𝑃𝑒
                       (9.14) 

 
Re-substitute 𝑅 =  𝑟

2+𝑃𝑒
   in equation (9.14), we get general solution. 

 𝑐(𝑟, 𝑡) = ∫ 𝛽

𝐽0
2� 𝛽
2+𝑃𝑒

�+𝑌0
2� 𝛽
2+𝑃𝑒

�
𝑒

𝛽2
2+𝑃𝑒

𝑡 �𝐽0 �𝛽
𝑟

2+𝑃𝑒
� 𝑌0 �

𝛽
2+𝑃𝑒

�−𝑌0 �𝛽
𝑟

2+𝑃𝑒
� 𝐽0 �

𝛽
2+𝑃𝑒

�� 𝑑𝛽∞
𝛽=0   

                                                   ∫ 𝑟′
2+𝑃𝑒

�𝐽0 �𝛽
𝑟′

2+𝑃𝑒
� 𝑌0 �

𝛽
2+𝑃𝑒

�−𝑌0 �𝛽
𝑟′

2+𝑃𝑒
� 𝐽0 �

𝛽
2+𝑃𝑒

�� 𝑑𝑟′.∞
𝑟=1               (9.15) 

 
10. Zero-sink model with 𝑷𝒆  <<  1 
 
If 𝑃𝑒  <<  1, then the equation (9.1) is reduced into the form 

𝜕𝑐
𝜕𝑡

= 1
𝑟2

𝜕
𝜕𝑟
�𝑟2 𝜕𝑐

𝜕𝑟
�                                                                                                                             (10.1) 

 
Re-scaling by 𝑟 =  2𝑅,  the equation (10.1) is written as 

2 𝜕𝑐
𝜕𝑡

= 1
𝑅
𝜕𝑐
𝜕𝑅

+ 𝜕2𝐶
𝜕𝑅2

,                                                                                                                             (10.2) 
 
boundary condition are re-scaled as 

𝑐 = 0 at 𝑅 = 1
2
,  and 𝑐 → 1 as 𝑅 → ∞                                                                                              (10.3) 

 
Separating the variables by substituting c = U(R)T(t) 

2
𝑇
𝜕𝑇
𝜕𝑡

= 1
𝑈
�1
𝑈
𝜕𝑈
𝜕𝑅

+ 𝜕2𝑈
𝜕𝑅2

� = −𝛽2,                                                                                                          (10.4) 

solution for time-variable function is given by 𝑒
−𝛽2
2 𝑡and space variable function 𝑈(𝛽, 𝑟) is the solution of the following 

problem 
𝜕2𝑈
𝜕𝑅2

+ 1
𝑅
𝑑𝑈
𝑑𝑅

+ 𝛽2𝑈 = 0   for  1
2

< 𝑅 < ∞                                                                                          (10.5) 
 
with boundary conditions 

𝑐 =  0 at 𝑅 = 1
2
 and 𝑐 → 1 as 𝑅 → ∞                                                                                             (10.6) 

 
Then the complete solution for 𝑐(𝑅, 𝑡) is constructed as 

𝑐(𝑅, 𝑡)  = ∫ 𝐶(𝛽)𝑒−
𝛽2
2 𝑡𝑈(𝛽,𝑅)𝑑𝛽∞

𝛽=0 ,                                                                                            (10.7) 
 
with the application of initial condition we get 

 1 = ∫ 𝐶(𝛽)𝑈(𝛽,𝑅)𝑑𝛽∞
𝛽=0     in  1

2
< 𝑅 < ∞,                                                                                  (10.8) 

 
Using the orthogonality of eigen value functions we have 

𝐶(𝛽) ≡ 1
𝑁(𝛽)

𝛽 ∫ 𝑅′𝑈(∞
𝑅=12

𝛽,𝑅′)𝑑𝑅′ .                                                                                                (10.9) 

 
Substituting equation (10.9)  into equation (10.7) gives 

𝑐(𝑅, 𝑡)  = ∫ 𝛽
𝑁(𝛽)

𝑒−
𝛽2
2 𝑡𝑈(𝛽,𝑅)𝑑𝛽 ∫ 𝑅′𝑈(∞

𝑅=12
𝛽,𝑅′)𝑑𝑅′∞

𝛽=0  .                                                           (10.10) 

Where 
𝑈(𝛽,𝑅) = 𝐽0(𝛽𝑅)𝑌0 �

𝛽
2
� − 𝑌0(𝛽𝑅)𝐽0 �

𝛽
2
�                                                                                     (10.11) 

and                      𝑁(𝛽) = �𝐽02 �
𝛽
2
� + 𝑌02 �

𝛽
2
��.                                                                                                            (10.12) 
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Then complete integral is given by 

𝑐(𝑅, 𝑡)  = �
𝛽

𝐽02 �
𝛽
2� + 𝑌02 �

𝛽
2�

𝑒−
𝛽2
2 𝑡 �𝐽0(𝛽𝑅)𝑌0 �

𝛽
2
� − 𝑌0(𝛽𝑅)𝐽0 �

𝛽
2
�� 𝑑𝛽

∞

𝛽=0

 

∫ 𝑅′ �𝐽0(𝛽𝑅′)𝑌0 �
𝛽
2
� − 𝑌0(𝛽𝑅′)𝐽0 �

𝛽
2
��∞

𝑅=12
𝑑𝑅′                                 (10.13) 

 
Re-substitution of  𝑅 = 𝑟

2
, we get 

𝑐(𝑟, 𝑡)  = �
𝛽

𝐽02 �
𝛽
2� + 𝑌02 �

𝛽
2�

𝑒−
𝛽2
2 𝑡 �𝐽0 �𝛽

𝑟
2
� 𝑌0 �

𝛽
2
� − 𝑌0 �𝛽

𝑟
2
� 𝐽0 �

𝛽
2
�� 𝑑𝛽

∞

𝛽=0

 

.∫ 𝑟′
2
�𝐽0 �𝛽

𝑟′
2
� 𝑌0 �

𝛽
2
� − 𝑌0 �𝛽

𝑟′
2
� 𝐽0 �

𝛽
2
��∞

𝑟=1 𝑑𝑟′                               (10.14) 
 
11. CONCLUSIONS 
 
We developed the mathematical model for nutrient uptake by aquatic spherical surface of bulb which is advection 
diffusion equation in the spherical radial coordinates and obtain solution by re-scaling and reducing into Bessel's 
equation. So the solutions are in the form of Bessel's function. The model is studied by using initial and using different 
surface boundary conditions.  
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