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ABSTRACT 

The paper deals with Hall effect on MHD heat transfer slip-flow of an ionized gas between two parallel porous walls 
in a rotating system, treating the transport properties of the fluid as constant when the bounding side walls are 
maintained at constant and equal temperatures. The governing equation of heat transfer is solved by using the slip 
conditions in two cases, that is when the side walls are made up (i) insulating (non-conducting) and (ii) conducting 
porous materials. The solutions to temperature distribution, mean temperature and rate of heat transfer coefficients at 
the side walls are obtained analytically. Also, the temperature profiles are plotted in support of different sets of values 
of the governing parameters involved. The heat transfer characteristic is discussed by analyzing the parameters namely 
Hartmann number and Taylor number (rotation); Hall, porous and slip parameters. The solutions to the temperature 
distribution are found to be the independent of the ratio of electron pressure to the total pressure in case of non-
conducting porous side walls and are depending on this parameter for conducting porous side walls. For the case of 
non-conducting porous side walls, it is noticed that an increase in Hall parameter and Taylor number are to diminish 
the temperature distribution. An increase in slip parameter enhances the temperature distribution. Also, it is seen that 
an increase in porous parameter is to increase the temperature distribution everywhere except at near to the lower 
wall. 
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LIST OF SYMBOLS 
 

1 2, 3, ,...a a a
                                 

Functions/real constants involved in the equations and solutions 

1 2 1 2, ,..., , ,...b b d d
       

           Functions/real constants involved in the equations and solutions 

1C , 2C                               Functions/real constants involved in the equations and solutions 

pc                                       Specific heat at constant pressure 
Ex , Ez,                                Applied electric fields in x- and z- components respectively. 

aH             Hartmann number 

0H                                      Applied uniform transverse magnetic field 
h  Channel width 
Ix , Iz                                   Non-dimensionalized current densities 
Jx , Jz                                   Current densities in x- and z- components respectively. 
k1, k2                                   Functions/real constants 
m  Hall parameter 

1 2 3,, , ...m m m                   Functions/real constants involved in the equations and solutions 
mx , mz                                Non-dimensionalized  electric fields 
Nu                                      Nusselt number 
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Pr                                        Prandtl number 
p Pressure 
pe  Electron pressure 
( )q y                                                      Solutions of the velocity distributions in complex form 

Q                                        Complex conjugate of  Q 
s                                          Ratio of electron pressure to the total pressure 
T                                         Taylor number ( Rotation parameter) 

FT   Temperature 

wT          Constant temperature 

u                                          x- component of velocity distributions in the fluid, known as Primary velocity distribution 

pu                                       =
2dp h

dx ρν
 − 
 

  the characteristic velocity 

0v                                        Constant suction velocity 
w                                        z- component of velocity distributions in the fluid, known as Secondary velocity distribution 
(x, y, z)                                                Space co-ordinates in rectangular Cartesian co-ordinate system 
B   Magnetic flux density vector 
E   Electric field vector 
J           Current density vector 

V                                        Fluid velocity vector 
µ   Constant magnetic permeability 
dp
dx

                                       Constant pressure gradient 

ωe                                        Gyration frequency of electron 
τ                                          Mean collision time between electron and ion 
τe                                         Mean collision time between electron and neutral particles 
β                                        Slip parameter 
λ                                        Porous parameter (suction number) 

0σ  Electrical conductivity 
ρ  Density 

1 2,σ σ  Modified electrical conductivities of parallel and normal to the direction of electric field 
θ                                         Non-dimensional form of temperature distribution 

mθ                                       Mean temperature 
ω  Frequency of oscillation 
Ω                                       Angular velocity, where (0, 0, )Ω = Ω  

 
1. INTRODUCTION 
 
The study of magnetohydrodynamic flows through channels in a rotating frame reference has drawn the attention on 
many researchers namely, Agarwal (1961), Vidyanidhi (1969), Nanda and Mahanty (1970), Soundalgekar (1974), Jana 
et al. (1977), Jana and Datta (1980) and Seth et al. (1982), Sheng and Leong (2012) and many more in view of its wide 
applications in cosmically studies such as in the study of stars, planets and in geophysical fluid dynamics. Also it is 
well known in literature that when a system consisting of electrically conducting fluid masses of low density is 
subjected to the action of a very strong magnetic field, the Hall currents enter into the system. And these Hall currents 
tend to modify the mechanical behavior of the fluid flow to a considerable extent. Hence, the resulting effects due to 
Hall currents in hydromagnetic fluid flow has gained considerable impetus and have been studied during several 
decades by many investigators under varied conditions and in different geometrical configurations (Nayyar et al. 
(1956), Cowling (1957), Sato (1961), Tani (1962), Sutton (1965), Pop (1998), Debnath (1979), Rao (1981), Bharali 
(1982), Niranjan (1990)). It is also observed in the literature that the MHD flow behavior in the channel flows with 
porous boundaries has been influenced significantly by the presence of Coriolis force, hydromagnetic force and Hall 
currents. Several investigations have been appeared in the literature due to their applications for many engineering's and 
technological fields, in which the works of Raju and Rao (1993), Takhar et al. (2002), Ghosh et al. (2009), Hazem 
(2009), Gupta et al. (2011), Das et al. (2013), Khaled (2015) and many more  are of worth mentioning. 
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The heat transfer flow problems of the slip-flow regime have also been attracted by several investigators in view of 
their rich potential applications for engineering and many industrial manufacturing processes (Matthews (2008), Hazem 
(2006), Zaman (2013)). Since in many of the practical problems, the particle adjacent to a solid surface no longer takes 
the velocity of the surface but there is a stagnant layer of fluid close to the wall allowing the fluid to slip (sees Navier 
(1827)). The slip velocity is proportional to the shear stress, the normal velocity remains zero and the fluid still behave 
the Navier-Stokes equation. For no-slip conditions, the fluid will have zero velocity relative to the boundary. The 
existence of slip phenomenon at the boundaries and the interface has been observed in the problems related to the flows 
of rarefied gasses (low density), hypersonic flows of a chemically reacting binary mixture, rough surfaces and many 
such types (see Street (1963) and Eduard-Paloka (2001)). Partial slips also occur to fluids with particulate such as 
emulsions, suspensions, polymer solutions etc. A lot of research contributions to the problems of this type have been 
reported on the literature by many authors, namely Schaaf and Chambre (1961), Lance and Rogers (1962), Street 
(1963), Sastry and Bhadram (1972), Tamada and Miura (1978), Bhatt and Sacheti (1979), Michel and Stephen (1994), 
Makinde and Osalusi (2006), Raju (2007), Matthews and James (2008), Mostafa (2012), Ghara et al. (2013), Faiza 
(2013), Raju and Neela (2016) and others. The effects of Hall currents in an MHD flow of an ionized gas under varied 
conditions and of different geometrical considerations in slip flow regime represent an area of rapid growth in the 
contemporary research, but still, there is a few problems which are yet to be investigated in different conditions.  So, in 
this paper an attempt is made to study the temperature distribution due to magnetohydrodynamic (MHD) slip-flow of 
an ionized gas between two parallel porous walls in a rotating frame of reference, taking into account the effects of Hall 
currents, Hartmann number, rotation and porous parameters. The governing equations of flow and heat transfer are 
formulated and simplified. The resulting linear differential equations are solved and obtained the solutions to 
temperature distribution of two cases of study - when the side walls are made up (i) insulating (non-conducting) and (ii) 
conducting porous materials. The mean temperature and the rate of heat transfers coefficients at the side walls are also 
determined. The temperature profiles are plotted and the behavior of heat transport is discussed by analyzing the 
governing parameters. This paper is arranged as follows. Section 1 gives the brief introduction.  In section-2, the basic 
equations of flow and energy with boundary conditions are given. Section 3 presents the solutions to the problem of 
two cases of study.  Section 4 deals with the results and discussion of temperature distribution based on the profiles, 
which are displayed in figures 2 to 16; while section 5 presents the conclusion. This theoretical study may bear several 
practical applications of many engineering's and industrial manufacturing processes, such as in aerodynamic heating 
and in the problems of engineering applications, for example in rotating MHD generators, Hall accelerators and 
thermo-nuclear power reactors and polymer solutions etc. 
 
2. FORMULATION OF THE PROBLEM 
 
A steady flow of an ionized gas (electrically conducting gas) between two parallel porous walls infinite in extent along 
x- and z– directions is considered, when both the fluid and side walls are in a state of rigid rotation with uniform 
angular velocity Ω  about y-axis normal to the side walls. Fig.1 shows the co-ordinate system and flow model. The x-
axis is taken in the direction of hydrodynamic pressure gradient in the plane parallel to the channel walls, but not in the 
direction of flow and y- axis is at right angles to it. The fluid is subjected to a constant suction v0 applied normal to the 
side walls. A parallel uniform magnetic field H0 is applied in the y – direction by taking the Hall currents in to account. 
The height of the channel is denoted by 2h (that is, y = ± h) and the width is assumed to be very large in comparison 
with the channel height 2h. Since, the side walls are infinitely large in extent along x- and z- directions, so all physical 
quantities except pressure will depend on y only. It is also assumed that, the induced magnetic field is negligible in 
comparison with the applied field under the assumption that the magnetic Reynolds number is small. The fluid velocity 

,V magnetic field ,B electric field E  and the current density J  may reasonably be assumed as ( )0 ,u , v , wV =

00, HB = ( , 0) , x z, 0 = (E , EE ) , x z, 0 = (J , )JJ  and 0, 0( , )Ω = Ω  in the equations of momentum and current.
  

 
3. BASIC EQUATIONS OF FLOW WITH BOUNDARY CONDITIONS AND MATHEMATICAL ANALYSIS 
OF THE PROBLEM   
 
The fundamental equations to be solved are the equations of motion and current for the steady flow of neutral fully 
ionized gas valid under the above assumptions on par with Spitzer [38] and Sato [33] are expressed as  

1

0
0

2

0 1 0 2 02  21 1 { ,( ) ( )}z x
dus
dy

v wdp d u H E uH E wH
dx dy

ρσ ρ
σ

ρν σ σ
   − − +  
  

Ω


=− + + − + + −            (1) 

1

0
0

2

0 1 0 2 021 (1 )} {  2 ,{ ( ) ( )}z x
dus
dy

v wdp d u H E uH E wH
dx dy

ρ ρσ
σ

ρν σ σ =− + Ω−− + + − + + −                (2) 

in the above  equations, Ω represents the angular velocity with which the whole system is rotated about y-axis and s = 
pe/p is the ratio of the electron pressure to the total pressure. ρ  is the density, ν  the kinematic viscosity, 0H  is the 

applied uniform transverse magnetic field, 0v  is constant suction velocity, 0σ is the conductivity which is defined as a  
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coefficient of proportionality between current density and the collision term in the equation of motion of charged 
particles. 0 1,σ σ are the modified conductivities parallel and normal to the direction of electric field. The value of s is 
1/2 for neutral  fully–ionized  plasma  and approximately zero for a weakly–ionized gas.  u, w and Ex and Ez are x- and 
z- components of velocity V  and electric field E respectively.  Also, 

0 0
1 22 2

1 !, and /
1 1 e

e

m m
m m

σ σσ σ ω
τ τ
 

= = = + + +  
,                                                                                             (3) 

where  ωe is the gyration frequency of electron, τ and τe are the mean collision time between electron and ion, electron 
and neutral particles respectively.  The expression for 'm' as given above in eq(3) is valid in the case of partially–
ionized gas agrees with that of fully–ionized gas when τe approaches infinity.   
  
Then the two equations (1) and (2) have been non-dimensionalised, using the characteristic length h and velocity     

2h p
dpu
dx ρν

  = −   
   

.  Using the notations u, w for u/up , w/uP and y for y/h, we obtain the non–dimensional 

equations as 

( )
2 22

2a a
12 2 2

H H ( ) 2 ,
1 1z x

md u du m u m w k T w
dy dy m m

λ+ − + + − + =
+ +

                                                                 (4) 

2 22
2a a

22 2 2
H mH( ) ( ) 2 ,

1 1x z
d w dw m w m u k T u
dy dy m m

λ+ + − + + + = −
+ +

                                                            (5) 

where,  k1 = 1 – s 
2

1

1
1

m+

 − 
 

 ,  k2 =  - s 
2

m

1 m+

 
 
 

,   mx  =  Ex/(H0uP),     mZ = Ez/(H0uP), Hartmann number aH is 

defined as 2
aH = 

2 2

0 0H h σ

ρν
, T2 (Taylor number)=

ν

2h Ω and λ (Suction number) = (hv0)/ν)                                         (6) 

Writing  q = u+iw,  k = k1+ik2,  E = mx+imz ;  equations (4) and (5) can be written in complex form as:   
2

2
2

2 2 2 2

2 2 2 22 - - --
1 1 1 1

a a a aq qd dq i iT k i E E
dy dy

H mH H mH
m m m m

λ
 
  
 

+ + + + =
+ + + +

                                       (7) 

and which is to be solved subject to the slip boundary conditions as given by

 dqq
dy

β=     at   y = +

where β is the first order velocity slip parameter.  

 1,                                                                                                        (8) 

 
Also, Ix and Iz defined by  Jx/( 0σ H0up) and  Jz/( 0σ H0up) respectively, are given in complex notation as  

 
2 2 21x z a

a a
I I iI m i s isq iH

m H H
  = + =   

  

+ − − +
+

                                                                                             (9) 

 
The non-dimensional electric field mx and mz are to be determined by boundary conditions at large x and z. The 
solutions are obtained in two cases of study, that is when the side walls are made up of non-conducting (insulating) and 
conducting porous materials, in turn which are used to determine the temperature distribution using the energy equation 
as described below. 
 

4. FORMULATION OF BASIC ENERGY EQUATION WITH BOUNDARY CONDITIONS 
 
In many engineering problems, one can be interested in the quantity of heat flow as well as the pattern of temperature 
to which the heat flow generates under steady or unsteady conditions. For this purpose, we need to combine the 
physical law for the rate of heat transfer with the energy conservation equation. Using the fully developed steady flow 
as already obtained from the equation (9), the effect of flow parameters on the fluid’s temperature and the heat 
transferred between the fluid and the porous walls is discussed. It is assumed that the thermal boundary conditions 
apply everywhere on the infinite channel walls and neglected the thermal conduction in the flow direction. The 
governing energy equation is simplified as: 

2 22
2 2

2  0,  1  a
r

d d du dw H I
P dy dy dy dy

θ θλ
     
    
    

=


+ + + +
                               (10) 

I2 = Ix
2 + Iz

2.                                                                                          (11) 
 

In addition to the dimensionless quantities as already defined in (6), we use  
2( / )

w

p p

FT T

u c
θ

−
=   and  Ix+iIz = 

0 0

x z

p

J iJ

H uσ

+ ,  
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where cp is the specific heat at constant pressure and Pr is the Prandtl number. Moreover, the wall temperature wT  is 

constant everywhere and the temperature FT  is finite everywhere in the fluid and is a function of y only.   
 
The boundary conditions are  
 at 1 and 0.0 at d dy

dy dy
yθ θθ β = ±= ==

                                  (12) 

 
Solving the eq. (10) with the help of (11) and (12), we determine the temperature distribution, mean temperature and 
the rate of heat transfer in the fluid flow when both the side walls are made up of non-conducting and conducting  
porous materials by  using the expressions for velocity fields of the eqs. (4 - 5).  
 
5. SOLUTION OF THE PROBLEM  
 
The solutions of the governing energy equation (10) are carried out separately as in the following two cases of study.  
 
Non-Conducting (insulating) porous plates: 
 
When the side walls are kept at large distance in z-direction and are made up of the non-conducting porous material, 
then the induced electric current does not go out of the channel but circulates in the fluid. So, an additional condition 
for the current defined in non-dimensional form is obtained by 1

0
0.zI dy =∫ If the insulation at large x is also 

assumed, another relation is obtained as 1

0
0.xI dy =∫ Constants in the solution are determined by the above two 

conditions and solutions for velocity distributions are obtained, which in turn are used to determine the temperature 
distributions from the following simplified equation: 

( )( )
22

2 2

1 1 1 0
1

a

r

Hd d dQ dQ Q Q
p dy dy dy dy m

θ θλ+ + + − − =
+

                                                                           (13) 

where mQ q q= , ,m m mq u iw= +  Q  is the complex conjugate of Q . q  is the solution of the velocity distributions 
in complex form, which is given by  

( ) ( ) ( )q y u y iw y= + 1 2 2
1 2

1

m y m y ac e c e
a

= + + ,  where  ( )
2

q qu y +
= and

 
( )

2
q qw y

i
−

=
              

(14)         

 
The mean velocity distributions in complex notation are  

m m mq u iw= + 2
1 26 2 27

1

,
a

c a c a
a

= + + where
2

m m
m

q q
u

+
=  and 

2
m m

m

q q
w

i
−

=     .                                               (15)  

Solving the equation (13) for temperature distribution θ  by using the boundary conditions (12), the expressions for 
temperature distributions and the rate of heat transfer coefficients at the side walls are obtained as: 

13 15 16 1314

15 1614 1 1 2 2

1 2 1 2

36 37 38 39 40 41 42

43 44 45 46 47 48 49
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The mean temperature is given by   
1

0
m dyθ θ= ∫  
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2

m
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m
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The rate of heat transfer coefficient  (Nusselt number) at the upper  side  wall is give by 

1
u

y

d
N

dy
θ

=

= −
 
 
 

37 38d e dλλ −= −  .                                                                                                                         (18) 
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The rate of heat transfer coefficient at the lower wall is give by 

1
u

y

N
d
dy
θ

=−

=
 
 
 

  37 39d e dλλ −= − +                                                                                                               (19)        

 
Conducting porous plates     
When the side walls are made up of conducting porous materials and short–circuited by an external conductor, the 
induced electric current flows out of the channel.  In this case no electric potential exists between the side walls.  If we 
assume zero electric field  in the x– and z– directions, then we have mx = 0, mz = 0. Constants in the solution are 
determined by these two conditions. Solutions for velocity distributions are obtained, which in turn are used to 
determine the temperature distributions from the following simplified equation: 

2

2

2 4 2 2

2
2

2
1( ) 1

1
1 1

1 1
1 0

m ma am m
a

r

Q QQQ
m q q

s is m
m H H mq q

d d dQ dQ H
p dy dy dydy

θ θλ
   + + − −   +    

+ +
+ +

+ =  

                         (20) 
where mQ q q= , ,m m mq u iw= +  Q  is the complex conjugate of Q . q  is the solution of the velocity distributions 
in complex form, which is given by  

1 2 2
1 2

1

( ) ( ) ( ) ,m y m y aq y u y iw y c e c e
a

= + = + + where ( )
2

q qu y +
= and ( ) .

2
q qw y

i
−

=                   (21)                      

 
The mean velocity distributions in complex notation are given by 

 2
1 7 2 8

1

, where, and .
2 2

m m m m
m m m

q q q qaq c b c b u w
a i

+ −
= + + = =

                                                      
(22)                                                                   

 
Solving the equation (20) for temperature distribution θ  with the help of the boundary conditions (12), the expressions 
for temperature distributions and the rate of heat transfer coefficients at the walls are obtained as: 

( ) 19 20 21 22 1

2 1 2 2

1 2 51 52 53 54 55

56 57 58 48 59

b y b y b y b y m yy

m y b y b y m y
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The mean temperature is given by    

1

0
m dyθ θ= ∫  
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λ

λ
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The rate of heat transfer coefficient at the upper side wall is 

1
u

y

d
N

dy
θ

=

= −
 
 
 

2 40d e dλλ −= −                                                                                                                   (25) 

 and the Nusselt number at lower  wall is given by  

1
u

y

N
d
dy
θ

=−

=
 
 
 

  = 2 41d e dλλ −− +                                                                                                                 (26) 

 
6. RESULTS AND DISCUSSION 
 
The heat transferred aspects of slip-flow of an ionized gas in a horizontal channel bound by two parallel porous walls 
under the influence of an applied transverse magnetic field, taking Hall currents in to account are investigated 
analytically. This problem is considered in two cases, one for non-conducting porous side walls and other for 
conducting porous side walls.  It is assumed that the magnetic Reynolds number is small.  The transport properties of 
the fluid are taken to be constant and the bounding walls are maintained at constant and equal temperatures. The 
resulting differential equations are solved using the prescribed boundary conditions. Exact solutions are obtained for 
the temperature distributions, the rate of heat transferred coefficients in two cases of the study, by making use of the 
already obtained solutions for velocity distributions. The computational values of the distributions are determined to 
represent them graphically for various sets of values of the governing parameters involved and the profiles are shown in   
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figures 2 to 16. Further the effect of flow parameters (such as the Hartmann number 

aH , Hall parameter m, Taylor 
number T, porous parameter ,λ and slip parameter β on heat transfer is discussed in the following sub-sections. It is 
noted that the expressions of the temperature distribution are found to be independent of the ratio of electron pressure to 
the total pressure in case of non-conducting  porous side walls and depending on it for conducting porous side walls. It 
is also found that, the analysis of this paper is in good agreement with that of Raju and Rao (1993), when the side walls 
are non-porous with no-slip boundary conditions. Also, we recover the results of Raju and Neela (2016) when 0λ =  
that is for non-porous walls.

 
 
Non–Conducting (insulating) porous plates 
In this case, the profiles of the temperature distributions are shown in figs.2 to 6. Fig. 2 shows the effect of varying 
Hartmann number aH on temperature distribution. It is observed, as aH increases the temperature distribution is 
found to decrease except at near to the upper wall, where it increases when all other parameters are fixed, that is for 
fixed values of the Hall parameter m, Taylor number T, Porous parameter λ and slip parameter β . Fig. 3 exhibits the 
effect of varying the Hall parameter 'm' on temperature distribution. It is observed that, the temperature distribution 
decreases as the Hall parameter increases. Fig. 4 shows the effect of varying the Taylor number (Rotation parameter) 'T' 
on temperature distribution. It is found that, the temperature distribution decreases as T increases. The effect of slip 
parameter β  is exhibited in Fig. 5. It is seen that, an increase in β  increases the temperature distribution. The effect 
of porous parameter λ  is shown in Fig. 6. As λ  increases the temperature distribution is found to decrease, but 
when 5λ =  it increases at near to the lower wall. 
 
Conducting porous plates  
The graphs for temperature distributions are shown in Figs.7 to 16 for both cases, that is, when the ratio of electron 
pressure to the total pressure (ionization parameter), s =0 from figs. 7 to 11 and s = 0.5 from figs.12 to 16. 
 
A)  For the ionization parameter, s = 0.   
The effect of varying Hartmann number aH on temperature distribution is shown in Fig. 7. It is observed that an 
increase in aH increases the temperature distribution when the remaining parameters are fixed. Fig. 8 exhibits the 
effect of varying the Hall parameter 'm' on temperature distribution. It is observed that the temperature distribution 
decreases as the Hall parameter increases. Fig. 9 shows the effect of varying the Taylor number (Rotation parameter) 'T' 
on temperature distribution. It is found that the temperature distribution decreases as 'T' increases. The effect of slip 
parameter β  is exhibited in Fig. 10. It is seen that, as β  increases the temperature distribution is found to increase 
except at nearer to the upper wall, where it decreases. The effect of porous parameter λ is shown in Fig. 11. As λ  
increases the temperature distribution is found to decrease. 
 
B)  For the ionization parameter s = 0.5. 
Fig. 12 shows the effect of varying Hartmann number aH on temperature distribution. It is found that, as aH increases 
the temperature distribution increases. Fig. 13 exhibits the effect of varying the Hall parameter 'm' on temperature 
distribution. It is observed that, the temperature distribution decreases as the Hall parameter increases. Fig. 14 shows 
the effect of varying the Taylor number 'T' on temperature distribution. It is found that, the temperature distribution 
increases as 'T' increases. The effect of slip parameter β  is exhibited in Fig. 15. It is seen that, as β  increases the 
temperature distribution decreases. The effect of porous parameter λ  is shown in Fig. 16. It is observed that the 
temperature distribution decreases at the center of the channel as λ  increases. But the same is increasing at the lower 
wall.    
                                                                
7. CONCLUSION 
 
Magnetohydrodynamic heat transfer slip-flow of an ionized gas in a horizontal channel bounded by two parallel porous 
side walls under the action of an applied transverse magnetic field with Hall effect in a rotating frame of reference is 
studied theoretically. The transport properties of the fluid are taken to be constant and the bounding walls are 
maintained at constant and equal temperatures. The fundamental equation of energy is written down and the resulting 
differential equation is solved analytically to obtain the closed form solutions for temperature distribution, the mean 
temperature and the rate of heat transfer at the side walls.  This problem is studied in two cases, that is when the two 
side walls are made up of non-conducting (insulating) and conducting porous materials. Profiles for the temperature 
distributions are plotted and discussed the effect of flow parameters, like the Hartmann number, Hall parameter, Taylor 
number, porous parameter and the slip parameter on the temperature fields. The expressions of the temperature 
distribution are found to be independent of the ratio of electron pressure to the total pressure in case of non-conducting 
porous side walls and depending on it for conducting porous side walls. 
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In case of non-conducting porous side walls, it is noticed that, an increase in Hartmann number diminishes the 
temperature distribution in the fluid region except at near to the upper wall, where it is found to increase, when all other 
parameters are fixed (that is for fixed values of the Hall parameter, Taylor number, Porous parameter and slip 
parameter).  Also, an increase in Hall parameter and Taylor number are tend to diminish the temperature distribution. 
But, an increase in slip parameter is to enhance the temperature distribution.  
 
In case of conducting porous side walls and when the ratio of electron pressure to the total pressure is zero, it is found 
that, an increase in Hartmann number is to raise the temperature distribution, when all other parameters are fixed. But 
an increase in Hall parameter and Taylor number are to diminish the temperature distribution. An increase in the slip 
parameter is to enhance the temperature distribution except at nearer to the upper wall, where it diminishes. It is also 
observed that, an increase in the values of porous parameter is to diminish the temperature. 
 
In case of conducting porous side walls and when the ratio of electron pressure to the total pressure is half, it is seen 
that, an increase in Hartmann number raises the temperature distribution. The effect of raising the Hall parameter, 
Taylor number and slip parameter is to diminish the temperature distribution. Also, is found that, an increase in the 
values of porous parameter diminishes the temperature distribution at the center of the channel, but enhances the same 
at the lower wall. Although the validity of the obtained results is not verified practically, the fact is that the solutions 
satisfy all boundary and interface conditions and hence it is hoped that this theoretical study bears some conformity as 
is evident from the figures. 
 
FIGURES: 

 
Fig.-1: Co-ordinate system and physical model 
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APPENDIX 
 
Constants/functions: 
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