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ABSTRACT

The paper deals with Hall effect on MHD heat transfer slip-flow of an ionized gas between two parallel porous walls
in a rotating system, treating the transport properties of the fluid as constant when the bounding side walls are
maintained at constant and equal temperatures. The governing equation of heat transfer is solved by using the slip
conditions in two cases, that is when the side walls are made up (i) insulating (non-conducting) and (ii) conducting
porous materials. The solutions to temperature distribution, mean temperature and rate of heat transfer coefficients at
the side walls are obtained analytically. Also, the temperature profiles are plotted in support of different sets of values
of the governing parameters involved. The heat transfer characteristic is discussed by analyzing the parameters namely
Hartmann number and Taylor number (rotation); Hall, porous and slip parameters. The solutions to the temperature
distribution are found to be the independent of the ratio of electron pressure to the total pressure in case of non-
conducting porous side walls and are depending on this parameter for conducting porous side walls. For the case of
non-conducting porous side walls, it is noticed that an increase in Hall parameter and Taylor number are to diminish
the temperature distribution. An increase in slip parameter enhances the temperature distribution. Also, it is seen that
an increase in porous parameter is to increase the temperature distribution everywhere except at near to the lower
wall.
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LIST OF SYMBOLS

a,a, ;... Functions/real constants involved in the equations and solutions
bl, bz’---’ dl, d2 . Functions/real constants involved in the equations and solutions
Cy: Cy Functions/real constants involved in the equations and solutions
C, Specific heat at constant pressure

E., E,, Applied electric fields in x- and z- components respectively.

H, Hartmann number

H, Applied uniform transverse magnetic field

h Channel width

I, |, Non-dimensionalized current densities

Jii J; Current densities in x- and z- components respectively.

Ky, Ko Functions/real constants

m Hall parameter

m,, m,,m, ... Functions/real constants involved in the equations and solutions
my , m, Non-dimensionalized electric fields

Nu Nusselt number
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z- component of velocity distributions in the fluid, known as Secondary velocity distribution
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1. INTRODUCTION

The study of magnetohydrodynamic flows through channels in a rotating frame reference has drawn the attention on
many researchers namely, Agarwal (1961), Vidyanidhi (1969), Nanda and Mahanty (1970), Soundalgekar (1974), Jana
et al. (1977), Jana and Datta (1980) and Seth et al. (1982), Sheng and Leong (2012) and many more in view of its wide
applications in cosmically studies such as in the study of stars, planets and in geophysical fluid dynamics. Also it is
well known in literature that when a system consisting of electrically conducting fluid masses of low density is
subjected to the action of a very strong magnetic field, the Hall currents enter into the system. And these Hall currents
tend to modify the mechanical behavior of the fluid flow to a considerable extent. Hence, the resulting effects due to
Hall currents in hydromagnetic fluid flow has gained considerable impetus and have been studied during several
decades by many investigators under varied conditions and in different geometrical configurations (Nayyar et al.
(1956), Cowling (1957), Sato (1961), Tani (1962), Sutton (1965), Pop (1998), Debnath (1979), Rao (1981), Bharali
(1982), Niranjan (1990)). It is also observed in the literature that the MHD flow behavior in the channel flows with
porous boundaries has been influenced significantly by the presence of Coriolis force, hydromagnetic force and Hall
currents. Several investigations have been appeared in the literature due to their applications for many engineering's and
technological fields, in which the works of Raju and Rao (1993), Takhar et al. (2002), Ghosh et al. (2009), Hazem
(2009), Gupta et al. (2011), Das et al. (2013), Khaled (2015) and many more are of worth mentioning.
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The heat transfer flow problems of the slip-flow regime have also been attracted by several investigators in view of
their rich potential applications for engineering and many industrial manufacturing processes (Matthews (2008), Hazem
(2006), Zaman (2013)). Since in many of the practical problems, the particle adjacent to a solid surface no longer takes
the velocity of the surface but there is a stagnant layer of fluid close to the wall allowing the fluid to slip (sees Navier
(1827)). The slip velocity is proportional to the shear stress, the normal velocity remains zero and the fluid still behave
the Navier-Stokes equation. For no-slip conditions, the fluid will have zero velocity relative to the boundary. The
existence of slip phenomenon at the boundaries and the interface has been observed in the problems related to the flows
of rarefied gasses (low density), hypersonic flows of a chemically reacting binary mixture, rough surfaces and many
such types (see Street (1963) and Eduard-Paloka (2001)). Partial slips also occur to fluids with particulate such as
emulsions, suspensions, polymer solutions etc. A lot of research contributions to the problems of this type have been
reported on the literature by many authors, namely Schaaf and Chambre (1961), Lance and Rogers (1962), Street
(1963), Sastry and Bhadram (1972), Tamada and Miura (1978), Bhatt and Sacheti (1979), Michel and Stephen (1994),
Makinde and Osalusi (2006), Raju (2007), Matthews and James (2008), Mostafa (2012), Ghara et al. (2013), Faiza
(2013), Raju and Neela (2016) and others. The effects of Hall currents in an MHD flow of an ionized gas under varied
conditions and of different geometrical considerations in slip flow regime represent an area of rapid growth in the
contemporary research, but still, there is a few problems which are yet to be investigated in different conditions. So, in
this paper an attempt is made to study the temperature distribution due to magnetohydrodynamic (MHD) slip-flow of
an ionized gas between two parallel porous walls in a rotating frame of reference, taking into account the effects of Hall
currents, Hartmann number, rotation and porous parameters. The governing equations of flow and heat transfer are
formulated and simplified. The resulting linear differential equations are solved and obtained the solutions to
temperature distribution of two cases of study - when the side walls are made up (i) insulating (hon-conducting) and (ii)
conducting porous materials. The mean temperature and the rate of heat transfers coefficients at the side walls are also
determined. The temperature profiles are plotted and the behavior of heat transport is discussed by analyzing the
governing parameters. This paper is arranged as follows. Section 1 gives the brief introduction. In section-2, the basic
equations of flow and energy with boundary conditions are given. Section 3 presents the solutions to the problem of
two cases of study. Section 4 deals with the results and discussion of temperature distribution based on the profiles,
which are displayed in figures 2 to 16; while section 5 presents the conclusion. This theoretical study may bear several
practical applications of many engineering's and industrial manufacturing processes, such as in aerodynamic heating
and in the problems of engineering applications, for example in rotating MHD generators, Hall accelerators and
thermo-nuclear power reactors and polymer solutions etc.

2. FORMULATION OF THE PROBLEM

A steady flow of an ionized gas (electrically conducting gas) between two parallel porous walls infinite in extent along
x- and z— directions is considered, when both the fluid and side walls are in a state of rigid rotation with uniform
angular velocity © about y-axis normal to the side walls. Fig.1 shows the co-ordinate system and flow model. The x-
axis is taken in the direction of hydrodynamic pressure gradient in the plane parallel to the channel walls, but not in the
direction of flow and y- axis is at right angles to it. The fluid is subjected to a constant suction v, applied normal to the
side walls. A parallel uniform magnetic field Hy is applied in the y — direction by taking the Hall currents in to account.
The height of the channel is denoted by 2h (that is, y = £ h) and the width is assumed to be very large in comparison
with the channel height 2h. Since, the side walls are infinitely large in extent along x- and z- directions, so all physical
quantities except pressure will depend on y only. It is also assumed that, the induced magnetic field is negligible in
comparison with the applied field under the assumption that the magnetic Reynolds number is small. The fluid velocity

v, magnetic field B, electric field E and the current density 3 may reasonably be assumed asV = (u, v,,w),
B =(0,H,,0) E =(E,,0,E,) J =(J,,0,J,) and Q =(0,Q, 0) in the equations of momentum and current.

3. BASIC EQUATIONS OF FLOW WITH BOUNDARY CONDITIONS AND MATHEMATICAL ANALYSIS
OF THE PROBLEM

The fundamental equations to be solved are the equations of motion and current for the steady flow of neutral fully
ionized gas valid under the above assumptions on par with Spitzer [38] and Sato [33] are expressed as

—{1—5( —ﬂ]}%+pv du+pvd l;+H0{—01(EZ+uH0)+o-2(EX—WH0)}: 2,0Qw, )
o, )| dx dy
2
{l-s(1- )}—+ v, “+p dy2+H0{ &,(E, +UH,) + 0, (E, —WH,)}= 200w, @

in the above equatlons, Q represents the angular velocity with which the whole system is rotated about y-axis and s =
pe/p is the ratio of the electron pressure to the total pressure. o is the density, v the kinematic viscosity, H is the
applied uniform transverse magnetic field, V, is constant suction velocity, o, is the conductivity which is defined as a

© 2018, IIMA. All Rights Reserved 165



Prof. T. Linga Rajul and V. Gowri Sankara Rao* /
MHD Heat Transfer Slip-Flow Between Two Parallel Porous Walls in a Rotating System with ... / IJMA- 9(2), Feb.-2018.

coefficient of proportionality between current density and the collision term in the equation of motion of charged
particles. o, o, are the modified conductivities parallel and normal to the direction of electric field. The value of s is

1/2 for neutral fully-ionized plasma and approximately zero for a weakly—ionized gas. u, w and E, and E, are x- and
z- components of velocity v/ and electric field E respectively. Also,

1
o, = 0_02,0'2= O_Omz and m=aw,/ £+; ' (3)
1+m 1+m T T

where @, is the gyration frequency of electron, t and t, are the mean collision time between electron and ion, electron
and neutral particles respectively. The expression for 'm' as given above in eq(3) is valid in the case of partially-
ionized gas agrees with that of fully—ionized gas when t, approaches infinity.

Then the two equations (1) and (2) have been non-dimensionalised, using the characteristic length h and velocity

u :_[QJ h_2 . Using the notations u, w for u/u, , w/up and y for y/h, we obtain the non-dimensional
P dx Yo%
equations as

d?u du H.2 mH 2

d—y2+ d—y—ﬁ(mz+u)+l+r;2 (mX—W)+k1: 2T2W, (4)

d3w dw  H,? mH,_?

dy? /Id_y+1+m2 (M =W) + T2 (m, +u) +k, =—2T"u, ©)
1 m ]

where, k;=1-s|1— ~ |, ke= -5 ~ |, Mx = EJ(Houp),  mz = E,/(HoUp), Hartmann number H,is

1+m 1+m
defined as H,2= H,'h’o, | T2 (Taylor number)= €2 h? and A (Suction number) = (hvo)/v) (6)
pVv 1%

Writing q = u+iw, k =k;+ik,, E =my+im,; equations (4) and (5) can be written in complex form as:

d?q dq -H,2  .mH_? R, . H2 mH 2 @)
= 2iT =-k - a__E - a_E
dy2+}bdy+[1+mz+ll+m2+ : d '"T-m? 1+m?
and which is to be solved subject to the slip boundary conditions as given by
q=_—,_,3d_q at y=+1, (8)
dy

where B is the first order velocity slip parameter.
Also, I, and I, defined by J,/( o, Houp) and J./( o, Houy) respectively, are given in complex notation as

. m-+i . s is
I :|X+||Z:[1+m2][q—lHa—F]+F (9)

a

The non-dimensional electric field m, and m, are to be determined by boundary conditions at large x and z. The
solutions are obtained in two cases of study, that is when the side walls are made up of non-conducting (insulating) and
conducting porous materials, in turn which are used to determine the temperature distribution using the energy equation
as described below.

4. FORMULATION OF BASIC ENERGY EQUATION WITH BOUNDARY CONDITIONS

In many engineering problems, one can be interested in the quantity of heat flow as well as the pattern of temperature
to which the heat flow generates under steady or unsteady conditions. For this purpose, we need to combine the
physical law for the rate of heat transfer with the energy conservation equation. Using the fully developed steady flow
as already obtained from the equation (9), the effect of flow parameters on the fluid’s temperature and the heat
transferred between the fluid and the porous walls is discussed. It is assumed that the thermal boundary conditions
apply everywhere on the infinite channel walls and neglected the thermal conduction in the flow direction. The
governing energy equation is simplified as:

1 d20 _ _do du)’  (dw) (10)
- == - - vV H 2| 2 —
P dyZ + A dy + {[ dy j +[ dy j +H, } 0,
|2 - Ixz + Izz- (11)
.. . . - . . T -T 2o Jd +id
In addition to the dimensionless quantities as already defined in (6), we use g - —F—+ and I +il,= >~ |
' lc) o,Hu,
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where ¢, is the specific heat at constant pressure and P, is the Prandtl number. Moreover, the wall temperature T is

constant everywhere and the temperature T is finite everywhere in the fluid and is a function of y only.

The boundary conditions are
6’=¢ﬂd—0 at y=+1 and 49 _ o at y=0. 12)
dy dy

Solving the eq. (10) with the help of (11) and (12), we determine the temperature distribution, mean temperature and
the rate of heat transfer in the fluid flow when both the side walls are made up of non-conducting and conducting
porous materials by using the expressions for velocity fields of the egs. (4 - 5).

5. SOLUTION OF THE PROBLEM
The solutions of the governing energy equation (10) are carried out separately as in the following two cases of study.
Non-Conducting (insulating) porous plates:

When the side walls are kept at large distance in z-direction and are made up of the non-conducting porous material,
then the induced electric current does not go out of the channel but circulates in the fluid. So, an additional condition

for the current defined in non-dimensional form is obtained by I1| dy = 0. If the insulation at large x is also
0 z

assumed, another relation is obtained as J'1| dy = 0. Constants in the solution are determined by the above two
0 X

conditions and solutions for velocity distributions are obtained, which in turn are used to determine the temperature

distributions from the following simplified equation:

1 d?2e de dQ dO H_2 —
-+ A== _—= = a -1 —1)=0
p, dy? - dy - dy dy T 1rm? (Q )(Q )

where Q =q/q,, , d,, =U, +iw,, Q isthe complex conjugate of Q. q is the solution of the velocity distributions
in complex form, which is given by

(13)

a(y) =u(y)+iw(y) = c,e™ + c,e™ + %, where u(y)=¥ and w(y) :% (14)

The mean velocity distributions in complex notation are

In T g W, = O __qm
2i

Solving the equation (13) for temperature distribution @ by using the boundary conditions (12), the expressions for
temperature distributions and the rate of heat transfer coefficients at the side walls are obtained as:

O = dg + dy, e + bge™” + bye™” + be™” + b,e> + b,,e™

a
iw = ]
q,=U,+iw =Cay +C,a, +—, whereu_ =

(15)

b,y my my bisy bysy myy myy
+ b,,e™” + b,,e™ + b,.e™ + b,,e™” + b,,e>’ + b,,e™” + b,;e"™

+ b,,e™ + b,,e” + b_e™ + b,e> + b,y (16)

1
The mean temperature is given by 0, = J‘gdy
0

e’ —1 e’ —1 e —1 e’ —1 e’ —1 e —1
e R e B R e R C R
3 4 5 6 3

b m_ mo_ bs be m;
+b,, € 1 +b,, € 1 +b, © 1 +b,g er-1 +b,, er-1 +Db,g € 1
b14 m, m, b15 b16 m,

my b b, b b,
+b,, [e—l] +by, [e—lj +b, (e—l] +b,, [e—lj +b, [e—l] 4B 17)
m, b, b, by b, 2
The rate of heat transfer coefficient (Nusselt number) at the upper side wall is give by
N, =[_ d_aJ = Ad, e’ —d, . (18)
dy y=1
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The rate of heat transfer coefficient at the lower wall is give by

N, = [dﬁj =—A1d,, e " + dg (19)
dy ye1

Conducting porous plates

When the side walls are made up of conducting porous materials and short—circuited by an external conductor, the
induced electric current flows out of the channel. In this case no electric potential exists between the side walls. If we
assume zero electric field in the x— and z- directions, then we have my, = 0, m, = 0. Constants in the solution are
determined by these two conditions. Solutions for velocity distributions are obtained, which in turn are used to
determine the temperature distributions from the following simplified equation:

1 d2@ do dQ dQ 1 s? 1 is m Q Q
Prdy? My Tdy ay THe (QQH[ 1+m2]H oy R (a, )| O
(20)

where Q =q/q,, » d,, = U, +iw,, Q is the complex conjugate of Q. q is the solution of the velocity distributions

1+2

in complex form, which is given by

" 2 " 2i

a+g a-q
q(y) — u(y) + iW(y) — Cl em1y +Cz emz)’ +%, Where U(y) 2 and W(y) 2| . (21)
The mean velocity distributions in complex notation are given by
a, =c1b7+c2b8+&,where, u =In 9%  ang W = dn " On (22)
a

Solving the equation (20) for temperature distribution @ with the help of the boundary conditions (12), the expressions
for temperature distributions and the rate of heat transfer coefficients at the walls are obtained as:

0(y)=d, +d,e™™ +bye™’ +h,e™ +b,e™ +b,e™ +be™

(23)
+ b e™ +be™ +be™ +be™ + b,y
The mean temperature is given by
1
0, = [ody
0
-4 _ by by _ by by
4 d, [el}b(elj ih, (61} ih, Lel}b(elj
/1 b19 \ b20 i b21 b22 (24)
+b55(e : _1J+b56[e : _1J +b,, [e _lj+b58 (e : _lj + D
m, m, b, b, 2
The rate of heat transfer coefficient at the upper side wall is
N o[ -99]  =ad,e* —d,, (25)
u dy
and the Nusselt number at lower wall is given by
N, = (d_gj = —Ad,e”* +d, (26)
dy ),

6. RESULTS AND DISCUSSION

The heat transferred aspects of slip-flow of an ionized gas in a horizontal channel bound by two parallel porous walls
under the influence of an applied transverse magnetic field, taking Hall currents in to account are investigated
analytically. This problem is considered in two cases, one for non-conducting porous side walls and other for
conducting porous side walls. It is assumed that the magnetic Reynolds number is small. The transport properties of
the fluid are taken to be constant and the bounding walls are maintained at constant and equal temperatures. The
resulting differential equations are solved using the prescribed boundary conditions. Exact solutions are obtained for
the temperature distributions, the rate of heat transferred coefficients in two cases of the study, by making use of the
already obtained solutions for velocity distributions. The computational values of the distributions are determined to
represent them graphically for various sets of values of the governing parameters involved and the profiles are shown in
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figures 2 to 16. Further the effect of flow parameters (such as the Hartmann number y_, Hall parameter m, Taylor
number T, porous parameter 1, and slip parameter 4z on heat transfer is discussed in the following sub-sections. It is

noted that the expressions of the temperature distribution are found to be independent of the ratio of electron pressure to
the total pressure in case of non-conducting porous side walls and depending on it for conducting porous side walls. It
is also found that, the analysis of this paper is in good agreement with that of Raju and Rao (1993), when the side walls
are non-porous with no-slip boundary conditions. Also, we recover the results of Raju and Neela (2016) when A =0
that is for non-porous walls.

Non-Conducting (insulating) porous plates
In this case, the profiles of the temperature distributions are shown in figs.2 to 6. Fig. 2 shows the effect of varying
Hartmann number H_ on temperature distribution. It is observed, as H, increases the temperature distribution is

found to decrease except at near to the upper wall, where it increases when all other parameters are fixed, that is for
fixed values of the Hall parameter m, Taylor number T, Porous parameter 4 and slip parameter 2. Fig. 3 exhibits the

effect of varying the Hall parameter 'm' on temperature distribution. It is observed that, the temperature distribution
decreases as the Hall parameter increases. Fig. 4 shows the effect of varying the Taylor number (Rotation parameter) 'T'
on temperature distribution. It is found that, the temperature distribution decreases as T increases. The effect of slip
parameter /3 is exhibited in Fig. 5. It is seen that, an increase in /£ increases the temperature distribution. The effect

of porous parameter A is shown in Fig. 6. As A increases the temperature distribution is found to decrease, but
when A =5 it increases at near to the lower wall.

Conducting porous plates
The graphs for temperature distributions are shown in Figs.7 to 16 for both cases, that is, when the ratio of electron
pressure to the total pressure (ionization parameter), s =0 from figs. 7 to 11 and s = 0.5 from figs.12 to 16.

A) For the ionization parameter, s =0.
The effect of varying Hartmann number H_ on temperature distribution is shown in Fig. 7. It is observed that an

increase in H_ increases the temperature distribution when the remaining parameters are fixed. Fig. 8 exhibits the

effect of varying the Hall parameter 'm' on temperature distribution. It is observed that the temperature distribution
decreases as the Hall parameter increases. Fig. 9 shows the effect of varying the Taylor number (Rotation parameter) 'T'
on temperature distribution. It is found that the temperature distribution decreases as ‘T' increases. The effect of slip
parameter /3 is exhibited in Fig. 10. It is seen that, as /3 increases the temperature distribution is found to increase

except at nearer to the upper wall, where it decreases. The effect of porous parameter A is shown in Fig. 11. As A
increases the temperature distribution is found to decrease.

B) For the ionization parameter s = 0.5.
Fig. 12 shows the effect of varying Hartmann number H_, on temperature distribution. It is found that, as H increases

the temperature distribution increases. Fig. 13 exhibits the effect of varying the Hall parameter 'm' on temperature
distribution. It is observed that, the temperature distribution decreases as the Hall parameter increases. Fig. 14 shows
the effect of varying the Taylor number 'T' on temperature distribution. It is found that, the temperature distribution
increases as 'T' increases. The effect of slip parameter /3 is exhibited in Fig. 15. It is seen that, as /3 increases the

temperature distribution decreases. The effect of porous parameter A is shown in Fig. 16. It is observed that the
temperature distribution decreases at the center of the channel as A increases. But the same is increasing at the lower
wall.

7. CONCLUSION

Magnetohydrodynamic heat transfer slip-flow of an ionized gas in a horizontal channel bounded by two parallel porous
side walls under the action of an applied transverse magnetic field with Hall effect in a rotating frame of reference is
studied theoretically. The transport properties of the fluid are taken to be constant and the bounding walls are
maintained at constant and equal temperatures. The fundamental equation of energy is written down and the resulting
differential equation is solved analytically to obtain the closed form solutions for temperature distribution, the mean
temperature and the rate of heat transfer at the side walls. This problem is studied in two cases, that is when the two
side walls are made up of non-conducting (insulating) and conducting porous materials. Profiles for the temperature
distributions are plotted and discussed the effect of flow parameters, like the Hartmann number, Hall parameter, Taylor
number, porous parameter and the slip parameter on the temperature fields. The expressions of the temperature
distribution are found to be independent of the ratio of electron pressure to the total pressure in case of hon-conducting
porous side walls and depending on it for conducting porous side walls.
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In case of non-conducting porous side walls, it is noticed that, an increase in Hartmann number diminishes the
temperature distribution in the fluid region except at near to the upper wall, where it is found to increase, when all other
parameters are fixed (that is for fixed values of the Hall parameter, Taylor number, Porous parameter and slip
parameter). Also, an increase in Hall parameter and Taylor number are tend to diminish the temperature distribution.
But, an increase in slip parameter is to enhance the temperature distribution.

In case of conducting porous side walls and when the ratio of electron pressure to the total pressure is zero, it is found
that, an increase in Hartmann number is to raise the temperature distribution, when all other parameters are fixed. But
an increase in Hall parameter and Taylor number are to diminish the temperature distribution. An increase in the slip
parameter is to enhance the temperature distribution except at nearer to the upper wall, where it diminishes. It is also
observed that, an increase in the values of porous parameter is to diminish the temperature.

In case of conducting porous side walls and when the ratio of electron pressure to the total pressure is half, it is seen
that, an increase in Hartmann number raises the temperature distribution. The effect of raising the Hall parameter,
Taylor number and slip parameter is to diminish the temperature distribution. Also, is found that, an increase in the
values of porous parameter diminishes the temperature distribution at the center of the channel, but enhances the same
at the lower wall. Although the validity of the obtained results is not verified practically, the fact is that the solutions
satisfy all boundary and interface conditions and hence it is hoped that this theoretical study bears some conformity as
is evident from the figures.

FIGURES:

Fig.-1: ngordinate system and physical model
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Fig. 4 Temperature distribution for different T and fixed values of
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m, Ha, Tand A tl'!ug-ﬂuﬂwiiq porous plates )

1
05
JE—1 04 —p=0
—-T=2 ——f=000
- 0 —— a0t
——T d & : t L
-1 45 05 1
02
L4
Al5 15 25
ﬂ._‘l .11
Fig.6 Temperature distribution for different A and fixed values of Fig. 7 Temperature distribution for different Ha and fixedvalues of
m,Ha, Tand §  (Mon-Conducting porous plates | fom. T A and s=0 (Conducting porous plates)
i ;
{'/'_t} \
g LY
/ \
s / W,
— =1 l.' s ‘\\
b5 —m2 .l'l ’,ﬁ ! J—
_ | \ "
04 ——i=3 / .."'I M \ il
——h=3 I|I I_." ——HEd
03 n'l.-f ; —
I
02 I|II|- /‘_\ T
|'|-' :/‘f-._‘—? ——HEl]
a5 4 05 05 ‘ 15 1= 3 o ’ e
01

Fig.B Temperature distribution for different m
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Fig. 8 Temperature distribution for different T

and fixed values of B, m, Ha, & and s=0
[Conducting porous plates |
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Fig. 12 Temperature distribution for different Ha and fixed values

of B,m, T,h and s=0,
{Conducting porous plates)

[1]

{Cenducting porous plates )

A

350

[ —e—pta=z |

———pia=20

-5

B

0.5

© 2018, IIMA. All Rights Reserved

—S— s
S——
——biamE
———ia= 10

Fig. 14 Temperature distribution for different T and
fixed values of B, m, Ha , A and s=0.5

Fig. 11 Temperature distribution for different &  and fixed values of
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Fig.16 Temperature distribution for different A and
fixed values of mHaTand g s=0.5
(Conducting porous plates )
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APPENDIX

Constants/functions:

a, = [Mz[mif}zﬂi}, a, = — [k+MZE( ”mn, a, =e™-mpBe™, a, =e™-m,Le",

1+m 1+m?

a;g =e"+pme™, a, = R & =8 —8d, 8 =3-3,;, a, =a,| - % ;
& a;
8, a, — 2
5 o my m,
e —1 e -1 —m —m _ = _ = _ =
am:——ai, Ayg = a,, = ,b.l_ml' bz—m2’ ba— 21 b4—a1’ bS_Cl'
85 m, m,

GM oy _CM BB bb,
b7’b10—b7’b11— bslblz_ b,
b13 = m1+b1’ b14 = m1+b2v b15 = m2+b11 b16 = mz"'bzv b17 = _b9 b11’ blS = _bg b12v b19 = _blo buv

_ a —
be = G, b7 = C1a26+C2a27+_2’ bs = b7' b9 =
a

M2 1
by = —byby, b, = _m1 b,, = %’ by, = by by, ¢ by, by, = by by, by, bys = b21b22012jr
by = — by by by, b, = by by, c, by, by = by by c,hy, b,y = b, by, ng, by = =By by, ¢, by,
a4, &,
by, = bZlbzngS’ by, = bzlbznge’ b33 == b21b22b7b5’ b34 = - b21b22b7b6’
a, b, a b b, b, b
bys = bzlbzz[gzé_ébs_mé"'m bs} by = b1_372’ by, = b1_482’ by = m,
_ bg _ b _ by _ by _ by,

b39 - 2 ' b40 - 2 ' b41 - 2 ' b42 - 2 ' b43 - 2 ’

b,”+Ab, bys" + A0y by” + 4Dy b, + 4Dy, b, +4b,
b — by b — by _ by, _ by _ by
“omPeam” T mf+am T bl+ab. Y b l+Ab, ° m2+Am,’
b — by _ by _ by _ b, _ bss b — bi
“ m2eam, " b2+Ab Y b2+Ab,” P bP+Ab’ P bi+ib,” A

b, = b, e™ +b,e* +b,, e +b,e* +b,, e +b,e* +h,,,
b b -2 -1
b56 = bSOb].ebl +b51b2e ’ +b52blebl +b53 b2e ’ +b54' b57 =¢€ +ﬂ/1e ! b58 = ﬂb56_b55’
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b59 = b48+b507 C = a5, C, = &, d1:b75_b76 b74’ d2:b767 d36 = b58_b63 b57' d37 = besv
d38 = b13b38 e + b14 b39 e + b15 b4o e +b16b41 el +b42b13 e +b14b43 e +b14 mleml +b45 mlem1

+b,.be% +b,.be" +b,, me™ +b, me™ +b,be”+b,be* +h,be” +bbe% +h,

— —by —by b —by —by et -m u
dsg - blsbsse ’ +b14 bsge * +b15 b4oe ) +b16b4le ’ +b42bISe ’ +b14b43e ) +b14 me +b45 me

+b,be™ +b,be™ +b,me™ +b,, me ™ +b be™+b, be " +b,be™+b,be™+b,

d,, = bye™ + b,e™ + b,e™ + b,e™ + b,e™ + be™ + be™ + b,e” + by,

d,, = byee ™ + bye ™ + b,e ™ + be ™ + b,e ™+ b,e ™ + b,e™+ b,e ™ + by

m = \/a’ m, = _\/a
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