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ABSTRACT 
Tilted two fluids cosmological models with variable G and Λ In General Relativity are presented. Here one fluid is 
matter field modelling material content of the universe and another fluid is radiation field modelling the cosmic 
microwave background (CMB). The tiltedness is also considered. To get the deterministic model; we have assumed a 
supplementary condition ( ) nG t sT= where s and n are constants. We have also discussed the behaviours of some 
physical parameters.  
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1. INTRODUCTION 
 
In Einstein field equations, Newtonian constant of gravitation G plays the role of a coupling constant between geometry 
of space and matter. A number of authors investigated cosmological model with variable Newtonian gravitational 
constant G and cosmological constant Λ. The Cosmological Constants was proposed by Dirac [1]. Bertolami [2] has 
examined a cosmological model with a time-dependent cosmological term. The cosmological constant problem 
obtained by Weinberg [3]. A model with a cosmological term of the form Λ = β (a) where a is the scale factor of the 
universe and β is a positive constant derived by Overdin and Cooperstock [4]. Dolgov and Silk [5] have presented some 
of the recent discussions on the cosmological constant ‘problem’ and consequence on cosmology with a time-varying 
cosmological constant. Berman [6] has studied Cosmological models with variable gravitational and cosmological 
constants. Einstein field equations that treated G and Λ as coupling variables within the framework of general relativity 
investigated by Abdel-Rahman [7]. Flat FRW models with variable G and variable Λ are derived by Kalligas et al. [8]. 
Pradhan and Chakrabarty [9] have examined LRS Bianchi I models with varying gravitational and cosmological 
constants. Early viscous universe with variable gravitational and cosmological constants are proposed by Singh et al. 
[10]. Bali and Tinker [11] have obtained Bianchi type III bulk viscous barotropic fluid cosmological models with 
variable G and Λ. Dagwal [12] has formulated Kaluza-Klein viscous fluid cosmological  model  with A time  
dependent Λ. 
 
Biachi type-I two fluid cosmological models with a variable G and Λ has obtained by oli [13]. Samanta [14] has 
formulated presented two fluid anisotropic cosmological model with variable G and Λ. Singh et al.[15] have 
investigated two-fluid cosmological model in Bianchi type V space time without variable G and Λ. 
 
Many researchers have presented several aspects of two fluid cosmological models without variable G and Λ. 
Cosmological models with two fluids evaluated by McIntosh [16]. Coley and Dunn [17] have examined Bianchi type 
VI0 model with two fluid sources. Two fluid Bianchi type II cosmological models are developed by Pant and Oli [18]. 
Verma [19] has obtained Qualitative analysis of two fluids FRW cosmological models. Two fluid cosmological models 
in Bianchi type V space-time constructed by Adhav et al. [20]. Pawar and Dagwal [21] have investigated Bianchi type 
IX two fluids cosmological models in General Relativity. Venkateswarlu [22] has studied Kaluza-Klein mesonic 
cosmological model with two-fluid source. Two-fluid cosmological model of Bianchi type-V with negative constant 
deceleration parameter are investigated by Singh et al. [23]. Axially Bianchi type-I Mesonic cosmological models with 
two fluid sources in Lyra Geometry and Two fluid Axially Symmetric Cosmological Models in f(R,T) Theory of 
Gravitation  presented by Pawar et al. [24, 25].  
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In recent years, there has been a considerable interest in investigating spatially homogeneous and anisotropic 
cosmological models in which matter does not move orthogonal to the hyper surface of homogeneity. Such types of 
models are called tilted cosmological models. The general dynamics of tilted cosmological models are presented by 
King and Ellis [26]; Ellis and King [27]; Collins and Ellis [28]. Dunn and Tupper [29] have studied tilted Bianchi type-
I cosmological model for perfect fluid. Tilted electromagnetic Bianchi type-I cosmological model in General Relativity 
calculated by Lorentz [30]. Mukherjee [31] has examined Bianchi type-I cosmological model with heat flux in General 
Relativity. Different aspects of tilted cosmological models examined by Lidsey [32], Horwood et al. [33], 
Bogoyavlenskii and Novikov [34], Hewitt et al. [35, 36], and Apostolopoulos [37]. Bali and Meena [38] have 
investigated tilted cosmological models filled with disordered radiation in General Relativity. Tilted plane symmetric 
cosmological models with heat conduction and disordered radiation studied by Pawar et al. [39]. Conformally flat tilted 
cosmological models and tilted Kantowski-Sachs cosmological models with disordered radiation in scalar tensor theory 
of gravitation proposed by Saez and Ballester are calculated by Pawar and Dagwal [40, 41]. Tilted Bianchi type VI0 
cosmological model in Saez and Ballester scalar tensor theory of gravitation and Bianchi type-I mesonic stiff fluid 
cosmological model formulated by Sahu [42, 43]. Pawar and Dagwal [44 - 46] have obtained tilted plane symmetric 
magnetized cosmological models, tilted Cosmological Models in f(R,T) Theory of Gravitation and tilted Kasner-Type 
Cosmological Models in Brans-Dicke Theory of Gravitation. 
 
Coley and Hervik [47] have presented Bianchi cosmologies a Tale of two tilted fluids.  Bianchi type-I models with two 
tilted fluids derived by Sandin and Uggla [48]. Sandin [49] has constructed tilted two fluid Bianchi type-I models. Two 
fluids tilted cosmological model in General Relativity presented by Pawar and Dagwal [50]. Tilted and non tilted 
homogeneous plane symmetric C-field cosmological models are investigated by Pawar et al. [51] 
 
Different aspects LRS Bianchi type-I space time presented by Thorne [52], Tripathy et al. [53, 54], Bali and Kumawat 
[55], Abdussattar and prajapati [56]. Pawar et al. [57, 58] have obtained bulk viscous fluid with plane symmetric string 
dust magnetized cosmological model in general relativity and Lyra manifold. Bayaskar et al. [59] have derived 
cosmological models of perfect fluid and massless scalar field with electromagnetic field. 
 
The solution of the field equation can be established by applying a law of variation for Hubble’ parameter which was 
investigated by Berman [60], that yields a constant value of deceleration parameter. The cosmological models with a 
constant deceleration parameter developed by Berman and Gmide [61]; Beesham [62]; Reddy and Venkateswara Rao 
[63]; pradhan and Vishwakarma [64]; Tiwari [65]. Two fluids Kantowski-Sachs cosmological models with matter and 
radiating source in scalar tensor theory of gravitation proposed by Saez and Ballester are studied by Pawar et al.        
[66, 67]. 
 
2. FIELD EQUATION 
 
We consider the metric in the form 

2
2 2 2 2 2 2

31 dtds dt R dx dy dz
R

β
   = − + + +  

   
∫

,

                                                                                   (1) 

where R is functions of t alone. 
 
The Einstein’s field equations are  

( ) ( )1
2

i i i i
j j j jR g R G t T t g− = − −∧ .                                                                                                              (2) 

 
The energy momentum tensor for a two fluid source is given by 

)()( r
ji

m
jiji TTT +=

,
                                                                                                                                  (3) 

where )(m
jiT is the energy momentum tensor for matter field and )(r

jiT  is the energy momentum tensor for radiation 
field which are given by  

( )( )m
i j m m i j m i j i j j iT p u u p g q u q uρ= + − + + ,                                                                                         (4) 

( ) 4 1
3 3

r
i j r i j r i jT v v gρ ρ= −                                                                                                                             (5) 

with       1,i j
i jg u u =                                                                                                                                     (6) 

0 , 0,i j
i iq q q u> =                                                                                                                                    (7) 
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and 

1i j
i jg v v = .                                                                                                                                                 (8) 

Where mp is the pressure,
 mρ is the energy density for matter field and rρ  is the energy density for radiation field, 

iq is the heat conduction vector orthogonal to iu . The fluid vector iu has the components  ( sinh ,R α 0,0,
cosh )α  for matter field satisfying Equation (6) and α  is the tilt angle. The fluid   vector iv  has the components    
(0, 0, 0, 1) for radiation field satisfying Equation (8)  
 
The Einstein’s field equation (2) reduces to  

( ) ( )
2

24 44
2

1

sinh2 sinh 2 ( )
3

r
m m m

R R G t P p q t
R R R

ρ αρ α + = − + + + + + ∧   ,                                   (9) 

( )
2
4 44
2 2 ( )

3
r

m
R R G t p t
R R

ρ + = − + + ∧   ,                                                                                                (10) 

( ) ( ) ( )
2

24 4
2

14
3

2 sinh3 cosh 2
1

m m m r
R R G t P p q t

dtR RR
R

β αρ α ρ
β

 + = + − + + + ∧    + 
 ∫

,               (11) 

( ) ( )
2

1
1

sinhsinh cosh cosh 0
coshm mG t P R q q αρ α α α

α
 

+ + + = 
 

.                                                  (12) 

 
We solve the above set of highly non linear equations with the help of special law of variation of Hubble’s parameter, 
proposed by Berman (1983) that yields constant deceleration parameter model of universe. We consider only constant 
deceleration parameter model defined by 

44
2
4

A Aq
A

 
= −  

  ,                                                                                                                                              (13) 

where     

1
3

3
31 dtA R

R
β  = +    
∫ is the overall scalar factor.                                                                                         (14)               

                                
 

Here the constant is taken as negative because the sign of deceleration parameter q whether the model accelerates or not 
.The positive sign q (>1) corresponds the decelerating model where the negative sign (-1 < q < 0) indicates acceleration 
and q = 0 corresponds to expansion with constant velocity. The solution of (13) is given by  

( )
1
1 ,qA Ct D += +

                                                                                                                                          (15)                                                                                                                               
where C & D are constant of integration. 
 
This equation implies that the condition of expansion is 1+q > 0. 
 
From equations (14)   and   (15), we get

 

( )
1

3 13 1
31 qdtR Ct D

R
β +  + = +    
∫

 .                                                                                                             (16) 
Solving equation (16) we get  

2
11

1
q

qN TqR T e
−
++= ,                                                                                                                                             (17) 

where ( ) ( )
( )
1

Ct D T &
3 2

q
N

C q
β +

+ = =
− .

 

 
The metric (1) reduces to the following form      

( )
2 2

1 12 2
2 2 2 2 2 4 21 1

q q
q qN T N Tq qds dT T e dx dy T e dz
− −
+ +−+ += − + −

 ,                                                                 (18) 

Where    ( ) ( )
( )
1

Ct D  T, & 1
3 2

q
N C

C q
β +

+ = = =
−

.     
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3. SOME PHYSICAL AND GEOMETRICAL PROPERTIES   
 
For the equation of state of matter we shall assume the gamma law 

( 1) , 1 2m mp γ ρ γ= − ≤ ≤ .                                                                                                             (19) 
 
We assume a power law of gravitational constant G 

( ) nG t sT= ,                                                                                                                                                   (20) 
where s & n are constant. 
 
Conservation law for radiation field  

4

4

3
3

4
4 0

3 1
r r

R
dtR R
R

β
ρ ρ

β
+ + =

+

 
 
 

      ∫
 .                                                                                                 (21) 

 
Solving equation (9), (10), (11), (17),(20) and (21) We get energy density of radiation, energy density matter and 
pressure for matter as 

4
1

r
q

k

T
ρ

+

= ,                                                                                                                                                     (22) 

( ) ( )

2

42 1 6
11

1 1 2 2 4 ,
1

33
m n n q

qq

k
s q T

TT

βρ
γ + + +

++

  
  = − −  +    

                                                                                (23) 

and          
( )

( ) ( )

2

42 1 6
11

1 1 2 2 4
1

33
m n n q

qq

kp
s q T

TT

γ β
γ + + +

++

  
−   = − −  +    

                                                                      (24) 

where k is integration constant 
 
Solving   equation (9), (10) (11), (22) & (24) the cosmological constant is given by  

( ) ( ) ( )
( )

( )

2

62 4 1
1 1

4 33 2(1 ) 1 2
1 1

3 3
n q

q q

k sqt
q q T

T T

γγ γ β
γ γ

γ
− +

+ +

  − − + −
∧ = + +   + +    

                                               (25) 

 
Figure-1: Energy density of radiation versus Cosmic Time 
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Figure-2: Energy density of matter versus Cosmic Time 

 

 
Figure-3: Pressure for matter versus Cosmic Time 

 

 
Figure-4: Cosmological constant versus Cosmic Time 
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In Fig.1 we show energy density for radiation versus cosmic time by setting the value 1 & 1q k= = . In Fig.2 we 
show energy density for matter versus cosmic time by setting the value 1 , 1, 1, 1, 1 & 1q s n kγ β= = = = = = . In 
Fig.3 we show pressure for matter versus cosmic time by setting the value 1 , 1, 1, 1, 1 & 1q s n kγ β= = = = = =  
also in Fig.4 we show cosmological constant versus cosmic time by setting the value 1 , 1, 1, 1, 1 & 1q s n kγ β= = = = = = .  

Initially, the energy density for radiation rρ  is infinite, the energy density for matter mρ and the cosmological 

constant ∧  are undetermined but for large value of T, the energy density for radiation rρ  and matter mρ , the 

cosmological constant ∧  are vanish. For dust universe 1γ = , the pressure mp is zero, the cosmological constant∧  is 

infinite at 1q = −  and whenT = ∞ , the cosmological constant∧  is vanishing. At
4

&
1

T n
q

= ∞ =
+

, the 

cosmological constant ∧  is constant but the cosmological constant∧ is infinite, when
4

0 &
1

T n
q

= =
+

 for Zeldovich 

universe 2γ = . For radiation universe 4
3γ = , the cosmological constant ∧  is infinite at 0& 2T q= = but for 

large value of T and 2q = , the cosmological constant ∧  is zero.  
 
In case 0 & 0kβ = =   

 
When the deceleration parameter 1q = , the cosmological constant ∧  is zero for dust universe 1γ = . For 

Zeldovich universe 2γ = , the cosmological constant ∧  is vanish at 4q = .When 2q → , the cosmological constant

0∧→  for radiation universe 4
3γ = .  

 
The tilt angleα , flow vectors iu and heat conduction vectors iq  for the model (18) are given by 

cosh 1α =    &  sinh 0α =   ,                                                                                                                       (26) 

1 0u =    &    4 1u =  ,                                                                                                                                      (27) 

1 40 & 0q q= =  .                                                                                                                                      (28) 
 
Hubble parameter and spatial volume are given by 

( )
6

1
H

q T
=

+  ,                                                                                                                                              (29) 

1
1 qV T += .                                                                                                                                                        (30) 

 
When 0T = , the Hubble parameter is infinite and spatial volume is zero but atT = ∞ , the Hubble parameter is zero 
and spatial volume is infinite. For 1q = − , the Hubble parameter and spatial volume are infinite. 
 
The anisotropy parameter, scalar of expansion and shear scalar as 

( )
( )

22

2 2
1

12 2
9

9
q

q

q

T

β
−
+

 
+ ∆ = + 

  

,                                                                                                                            (31) 

( )
6

1 q T
θ =

+  ,                                                                                                                                                (32) 

2
2

6
1

2

3 qT

βσ
+

= .                                                                                                                                                 (33) 
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For large value of T, the anisotropy parameter is constant, the scalar of expansion and   shear scalar are vanish but 
initially, the anisotropy parameter , the scalar of expansion and  shear scalar are infinite. At 2q = , the anisotropy 
parameter is constant .The scalar of expansion is infinite, the shear scalar is zero and the anisotropy parameter is 

constant for 1q = − .When 0β → , the model is nonshearing universe and the anisotropy parameter 
4
9

∆→ . 

 
The density parameters are 

( ) ( )
( )

( )
( )

2

( 4) 2 2 1
1 1

1 1 11
54

162 81
m n n n q q

q q

q q k q
s T

T T

β
γ + + − −

+ +

 
+ + + Ω = − − 

  
,                                                                          (34) 

( )
( )

2

2 1
1

1
.

108
r q

q

k q

T
−
+

+
Ω =

                                                                                                                                         (35)

 

 
Total energy density as 

( ) ( )
( )

( )
( )

22

( 4) 2 2 1
1 1

1 1 11 1 1
54 108 81

162
n n n q q

q q

q q k q
s T s

T T

β
γ γ+ + − −

+ +

 
+ + +  Ω = − + −      

.                                                 (36) 

 

 
Figure-5: Density parameter versus Cosmic Time 

 
In Fig.5 we show density parameter versus cosmic time by setting the value 1 , 1, 1, 1, 1 & 1q s n kγ β= = = = = = . 

WhenT →∞ , all density parameters are vanishing. The density parameter rΩ is infinite, the density parameter mΩ

and total density parameterΩ  are undetermined at 0T → . All density parameters are vanishing for 1q = − . At 0s =
, the density parameter mΩ and total density parameterΩ  are infinite. The density parameter rΩ  is zero, when 0k = .  
 
4. CONCLUSION 
 
We have presented tilted two fluids cosmological models with variable G and Λ In General Relativity. The study 
results into an expanding and shearing universe. The tilt angle α , flow vectors iu are constant and heat conduction 
vectors iq are zero. Initially, the energy density for radiation rρ  is infinite, the energy density for matter mρ and the 

cosmological constant ∧  are undetermined but for large value of T, the energy density for radiation rρ  and matter

mρ , the cosmological constant ∧  are vanish.  
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For dust universe 1γ = , the pressure mp is zero, the cosmological constant∧  is infinite at 1q = −  and whenT = ∞ , 

the cosmological constant∧  is vanishing. At
4

&
1

T n
q

= ∞ =
+

, the cosmological constant∧ is constant but the 

cosmological constant∧ is infinite, when
4

0 &
1

T n
q

= =
+

 for Zeldovich universe 2γ = . For radiation universe

4
3γ = , the cosmological constant ∧  is infinite at 0& 2T q= = but for large value of T and 2q = , the 

cosmological constant ∧  is zero.  
 
When 0,T =  the Hubble parameter is infinite and spatial volume is zero but at T = ∞ , the Hubble parameter is zero 
and spatial volume is infinite. For 1q = − , the Hubble parameter and spatial volume are infinite. For large value of T, 
the anisotropy parameter is constant, the scalar of expansion and   shear scalar are vanish but initially, the anisotropy 
parameter , the scalar of expansion and  shear scalar are infinite. At 2q = , the anisotropy parameter is constant .The 
scalar of expansion is infinite, the shear scalar is zero and the anisotropy parameter is constant for 1q = − . When

T →∞ , all density parameters are vanishing. The density parameter rΩ is infinite, the density parameter mΩ and total 

density parameterΩ  are undetermined at 0T → . All density parameters are vanishing for 1q = − . At 0s = , the 

density parameter mΩ and total density parameterΩ  are infinite. The density parameter rΩ  is zero, when 0k = . When

0β → , the model is nonshearing universe and the anisotropy parameter
4
9

∆ → . 

 
In case 0 & 0kβ = =   
                  

When the deceleration parameter 1q = , the cosmological constant ∧  is zero for dust universe 1γ = .For 
Zeldovich universe 2γ = , the cosmological constant ∧  is vanish at 4q = .When 2q → , the cosmological constant

0∧→  for radiation universe 4
3γ = .  

 

Since   
lim

0T
σ
θ

→ ∞ = 
 
 

  the models approach isotropy for large value of T.  
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