
International Journal of Mathematical Archive-9(2), 2018, 109-114 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 9(2), Feb. – 2018                                                                                                               109 

 
ON (gsp)** - CLOSED SETS IN TOPOLOGICAL SPACES 

 
S. SARANYA*1 AND E.S.R. FRANCIS VIJAYA RANI2 

 
1,2Department of Mathematics, 

Aditanar College of Arts and Science, Tiruchendur, India. 
 

(Received On: 14-12-17; Revised & Accepted On: 19-01-18) 
 
 

ABSTRACT 
In this paper we have introduced a new class of sets called (gsp)**-closed sets which is properly placed in between the 
class of (gsp)*-closed sets and (gsp)-closed sets. Properties and characterization of (gsp)**-closed sets are 
investigated. 
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1. INTRODUCTION:   
 
Levine [4] introduced the class of g – closed sets in 1970. Dontchev[2] introduced gsp - closed sets.  Pauline Mary 
Helan [12] introduced (gsp)* - closed sets in 2014.  Sindhu Surya [15] introduced strongly (gsp)* - closed sets in 2015.  
The Purpose of this paper is to introduce the concept of (gsp)**-closed sets and (gsp)**-open sets in topological space 
and some of their properties and characterization are investigated. 
 
2. PRELIMINARIES  
 
In  this chapter  (X,𝜏)  represent  non-empty  topological spaces  on which no  separations  axioms  are assumed unless 
otherwise mentioned.  (X, 𝜏) will be replaced by X if there is no changes of confusion.  For a subset A of a space        
(X, 𝜏), cl(A) and int(A) denote  the closure and interior of A respectively. 
 
The smallest semi-closed (resp. pre-closed and 𝛼-closed) set containing a subset A of (X, 𝜏) is called the semi-closure 
(resp. pre-closure and 𝛼-closure) of A and is denoted by scl(A) (resp. pcl(A) and 𝛼cl(A)).    
 
Definition 2.1: A subset A of a topological space (X, 𝜏) is called  

(i) pre-open set [8] if A⊆int(cl(A)) and pre-closed if cl(int(A))⊆A. 
(ii) semi-open set [5] if A⊆cl(int(A)) and semi-closed if int(cl(A))⊆A. 
(iii) semi-pre-open set [1] if A⊆cl(int(cl(A))) and semi-pre-closed if int(cl(int(A)))⊆A. 
(iv) 𝛼-open set [10] if  A⊆int(cl(int(A))) and 𝛼-closed if cl(int(cl(A))⊆A. 
(v) regular open set [8] if A=int(cl(A)) and regular closed if A=cl(int(A). 

 
Definition 2.2: A subset A of a topological space (X, 𝜏) is called  

(i) a generalized closed set[6] (briefly g-closed) if cl(A)⊆U, whenever A⊆U and U is open. 
(ii) a 𝛼-generalized  closed set[7] (𝛼g-closed)  if 𝛼cl(A)⊆U,  whenever A⊆U and U is open. 
(iii) generalized-semi-pre-regular-closed [3] (briefly gspr-closed) if spcl(A)⊆U, whenever A⊆U and U is regular 

open. 
(iv) generalized semi-closed [2] (briefly gs-closed) if scl(A)⊆U, whenever A⊆U and U is open. 
(v) generalized  pre-closed [9]( briefly gp-closed) if  pcl(A)⊆U,  whenever  A⊆U and U is open. 
(vi) generalized semi- pre-closed [3]( briefly gsp-closed) if spcl(A)⊆U, whenever A⊆U and U is open. 
(vii) generalized pre-regular closed[4](briefly gpr-closed) if pcl(A)⊆U, whenever A⊆U and U is regular open. 
(viii)weakly generalized closed [11](briefly wg-closed) if cl(int(A)) ⊆ U, whenever  A⊆U and U is open. 
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(ix) regular weakly generalized closed[14] (briefly rwg-closed) if cl(int(A))⊆U, whenever A⊆U and U  is regular    
      open. 
(x) g*-closed [17]  if  cl(A)⊆U, whenever  A⊆U and U is g-open. 

       (xi) g**- closed set[13] if cl(A)⊆U, whenever A⊆U  and U is g*- open. 
(xii) (gsp)*-closed[15]  if  cl(A)⊆U, whenever A⊆U and U is (gsp)-open. 

       (xiii) (g*p) closed set [17] if pcl⊆U, whenever A⊆U and U is g-open.  
       (xiv) sg**- closed set[16]  if scl(A)⊆U, whenever  A⊆U and U  is  g**open.  
       (xv)Strongly (gsp)* closed set[11] if  cl(int(A))⊆U, whenever A⊆U and U is (gsp)-open. 
 
The complements of the above mentioned closed sets are their respective open sets. 
 
Remark 2.3: [17] Jankovic and Reilly pointed out that every singleton {x} of a space X is either nowhere dense or pre-
open. This provides another decomposition X=X1∪X2, where X1={x∈X/ {x} is nowhere dense} and X2={x∈X/ {x} is 
pre-open}. 
 
Definition 2.4: [17] The intersection of all gb-open sets containing A is called the gb-kernel of A and it is denoted by 
gb-ker(A). 
 
Lemma 2.5: [17] For any subset A of X, X2∩cl(A)⊆ gb-ker(A). 
 
Theorem 2.6: For a topological space (X, 𝜏), 

(i) Every (gsp)* open set is g-open. 
(ii) Every open set is (gsp)*-open. 
(iii) Every (gsp)*-open set is (gsp)-open. 
(iv) Every semi-open set is (gsp)*-open. 

 
3. (gsp)**-closed  sets                 
 
In this chapter, we introduce (gsp)**-closed sets in topological spaces  and  obtain some of  their properties. 
 
Definition 3.1: A  subset A  of  a topological  space (X,𝜏)  is  said  to  be  a (gsp)**-closed set if cl(A)⊆U, whenever     
A ⊆ U and  U  is (gsp)*-open. The family of all (gsp)**-closed sets in X is denoted by (gsp)**-C(X, 𝜏). 
 
Theorem 3.2: Every closed set is (gsp)**-closed. 
 
Proof: Let A be a closed set. Let A ⊆ U and U is (gsp)*-open. Since A is closed, cl(A) = A ⊆ U. Thus, cl(A) ⊆ U  
whenever A⊆U and U is (gsp)*-open and therefore  A is (gsp)**-closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general , as  shown  in  the  following  example. 
 
Example 3.3: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {a, b}, X}.  Then A = {a, c}  is (gsp)**-closed  but  not  closed.  
 
Theorem 3.4: Every (gsp)*-closed set is (gsp)**-closed. 
 
Proof: Let A be a (gsp)*-closed set. Let A ⊆ U and U is (gsp)*-open. Since every (gsp)*-open set is (gsp)-open, U is 
(gsp)-open. Also since A is (gsp)*-closed, cl(A) ⊆ U  whenever  A ⊆ U  and  U is (gsp)*-open. Hence A is (gsp) **-
closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general ,  as  shown  in  the  following  example. 
 
Example 3.5: Let X = {a, b, c}; 𝜏 = {𝜙, {a}, {a, c}, X}, Then A = {a, b} is (gsp)**-closed   but not (gsp)*-closed. 
 
Theorem 3.6: Every g*-closed set is (gsp) **-closed. 
 
Proof: Let A be a g*-closed set. Let A ⊆ U and U is (gsp)*-open. Since every (gsp)*-open set is g-open and also since 
A is g*-closed, cl(A) ⊆ U whenever A ⊆ U  and U  is (gsp)*-open. Hence A is (gsp) **-closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general ,  as  shown  in  the  following example. 
 
Example 3.7: Let X = {a, b, c} with 𝜏 = {𝜙,{a},{b,c}, X}, Then A = {b} is (gsp)**-closed  but  not g*-closed. 
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Theorem 3.8: Every (gsp)**-closed set is (gsp)-closed. 
 
Proof: Let A be a (gsp)**-closed set. Let A⊆ U and U is open. Since every open set is (gsp)*-open and also since A is 
(gsp) **-closed, spcl(A) ⊆ cl(A) ⊆ U. This implies that spcl(A) ⊆ U whenever  A ⊆ U and U is open. Hence A is 
(gsp)-closed. 
 
The converse of the above theorem need not be true in general, as shown in the following example. 
 
Example 3.9: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {c}, {a, c}, X}, Then A = {a} is (gsp)-closed but not (gsp)**-closed. 
 
Theorem 3.10: Every (gsp)**-closed  set  is  gpr-closed. 
 
Proof: Let A be a (gsp)**-closed. Let A ⊆ U and U is regular–open. Since every regular-open set is (gsp)*-open and 
also since A is (gsp)**-closed, pcl(A) ⊆ cl(A) ⊆ U. This implies that pcl(A) ⊆ U whenever  A ⊆ U  and U is r-open. 
Hence A is gpr-closed. 
 
The converse of the above theorem need not be true in general, as shown in the following example. 
 
Example 3.11: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {a, b}, X}, Then A = {a} is gpr-closed but not (gsp)**-closed. 
 
Theorem 3.12:  Every (gsp)**-closed  set  is wg-closed. 
 
Proof: Let A be a (gsp)**-closed. Let A ⊆ U and U is open. Since every open set is (gsp)*-open and also since A is 
(gsp)**-closed, cl(int(A)) ⊆ cl(A) ⊆ U. This implies that cl(int(A)) ⊆ U  whenever A ⊆ U  and U  is open. Hence A is 
wg-closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general ,  as  shown  in  the  following  example. 
 
Example 3.13: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {a, b}, X}, Then A = {b} is wg-closed  but not (gsp)**-closed. 
 
Theorem 3.14: Every (gsp)**-closed set is  rwg-closed. 
 
Proof: Let A be a (gsp)**-closed set. Let A ⊆ U and U is regular open. Since every regular open set is(gsp)*-open and 
also since A is (gsp)**-closed, cl(int(A)) ⊆ cl(A) ⊆ U. This implies that cl(int(A)) ⊆ U whenever A ⊆ U and U is  
regular open. Hence A is rwg-closed. 
 
The converse of the above theorem need  not  be  true  in  general , as  shown  in  the  following  example. 
 
Example 3.15: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {c}, {a, c}, X}, Then A = {a, b} is rwg-closed but not (gsp)**-
closed. 
 
Theorem 3.16: Every (gsp)**-closed set is  𝛼g-closed. 
 
Proof: Let A be a (gsp)**-closed set. Let A ⊆ U and U is open. Since every open set is (gsp)*-open and also since A is 
(gsp)**-closed, cl(A) ⊆ U. Since 𝛼cl(A) ⊆ cl(A) ⊆ U. This implies that 𝛼cl(A) ⊆ U whenever A ⊆ U  and  U is open. 
Therefore A is g-closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general, as  shown  in  the  following  example. 
 
Example 3.17: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {a, b}, X}, Then A = {b} is 𝛼g-closed but not (gsp)**-closed. 
 
Theorem 3.18: Every (gsp)**-closed  sets is  gspr-closed. 
 
Proof: Let A be a (gsp)**-closed. Let A ⊆ U and U is regular open. Since every regular open set is (gsp)*-open and  
also since A  is (gsp)**-closed, cl(A) ⊆ U, spcl(A) ⊆ cl(A) ⊆ U. This implies that spcl(A) ⊆ U  whenever A ⊆ U and 
U is regular-open. Hence A is gspr-closed. 
 
The  converse  of  the  above theorem need  not  be  true  in  general , as  shown in  the  following  example. 
 
Example 3.19: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {c}, {a, c}, X}; Then A = {a} is gspr-closed but not (gsp)**-closed. 
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Theorem 3.20: Every (gsp)**-closed  set is gs-closed. 
 
Proof: Let A be a (gsp)**-closed set. Let A ⊆ U and U is open. Since every open set is (gsp)*-open and also since A is 
(gsp)**-closed,  scl(A) ⊆ cl(A) ⊆ U. This implies that scl(A) ⊆ U, whenever A ⊆ U and  U is open. Hence A is gs-
closed. 
 
The  converse  of  the  above  proposition  need  not  be  true  in  general , as  shown  in  the  following  example. 
 
Example 3.21: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {c}, {a, c}, X}, Then A = {a} is gs-closed but not (gsp)**-closed. 
 
Theorem 3.22: Every (gsp)**-closed set  is  gp-closed. 
 
Proof: Let A be a(gsp)**-closed. Let A ⊆ U and U is open. Since every open set is (gsp)*-open and also since A is 
(gsp)**-closed , pcl(A) ⊆ cl(A) ⊆ U. This implies that, pcl(A) ⊆ U  whenever A ⊆ U and  U is open. Hence A is gp-
closed. 
 
The converse of the above theorem need not be true in general, as shown in the following example. 
 
Example 3.23: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {a, b}, X}, Then A = {b} is gp-closed but not (gsp)**-closed. 
 
Theorem 3.24: Every regular-closed set is (gsp)**-closed set. 
 
Proof: let A be a regular closed. Let A ⊆ U and U is (gsp)**-open. Since every regular closed set is closed and by 
Theorem 3.2, A is (gsp)** - closed. 
 
The  converse of the above theorem need not be true in general, as  shown in the following example. 
 
Example 3.25: Let X = {a, b, c}; 𝜏 = {𝜙, {a}, {b, c}, X}, Then A = {b} is (gsp)**-closed  but not regular closed. 
 
Remark 3.26: (gsp)**-closed sets is independent of sg**-closed sets. 
 
Example 3.27: Let X = {a, b, c}; 𝜏 = {𝜙, X, {a}, {a, c}}, Then A = {b} is sg**-closed  but  not (gsp)**-closed. 
 
Example 3.28: Let X = {a, b, c}; 𝜏 = {𝜙, X, {a}, {sb, c}}, Then A = {b} is (gsp)**-closed  but  not  sg**-closed. 
 
4. Basic properties (gsp)**-closed sets 
 
In this chapter we obtain some of its basic properties in topological spaces. 
 
Theorem 4.1: If A is a (gsp)**-closed  set  of (X,𝜏) such  that  A⊆B⊆cl(A)  then B  is  also a (gsp)**-closed  set (X,𝜏). 
 
Proof: Let U be (gsp)*-open set in X such that B ⊆ U. Then A ⊆ U Since A is (gsp)**-closed , cl(A) ⊆ U. Also, since 
B ⊆ cl(A). Therefore cl(B) ⊆ cl(cl(A)) = cl(A) ⊆ U. Thus, cl(B) ⊆ U  whenever B ⊆ U  and  U is (gsp)*-open. 
The converse of the above theorem need not be true in general, as shown in the following example. 
 
Example 4.2: Let X = {a, b, c} with 𝜏 = {𝜙, {a}, {b, c}, X}. Let A = {b} and B = {a, b}.  Then A and B are (gsp)**-
closed set in X but A ⊆ B ⊈ cl(A).  
 
Theorem 4.3: If a subset A of X is (gsp)**-closed  set in X. Then cl(A)\A does not  contain  any non-empty (gsp)*-
closed set in X. 
 
Proof: Suppose A is (gsp)**-closed  set  in X. Suppose U is any non – empty (gsp)*-closed set such that cl(A)\A ⊇ U. 
Now, U ⊆ cl(A) \ A. Then U ⊆ cl(A)⋂Ac. This implies U ⊆ X \ A. Therefore, A ⊆ X \ U. Since U   is (gsp)*-closed 
set, X \ U is (gsp)*-open in X. Since A is (gsp)**-closed in  X , cl(A) ⊆ X \ U. This implies U ⊆ X \ cl(A). Also,          
U ⊆ cl(A) and therefore U ⊆ cl(A)⋂X\cl(A) = 𝜙. This implies that U = 𝜙. Which is a contradiction to U is non-empty. 
Hence  cl(A) \ A  does  not  contain  any  non-empty(gsp)*-closed  set  in X. 
 
Corollary 4.4: If a subset A of a space X is (gsp)**-closed in X. Then cl(A) \ A does not contain any non-empty closed  
set in X. 
 
Proof: Let A be a (gsp)** - closed subset of X. Suppose cl(A) – A contains a non – empty closed set F. By Theorem 
3.2, F is (gsp)** - closed.  Thus we have, cl(A) / A contains a non – empty (gsp)** - closed set. This contradicts the 
theorem 4.4. Hence cl(A) / A does not contain any (gsp)**- closed set.  
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Theorem 4.5: If A is (gsp)*-open and (gsp)**-closed  set of  X  then A is a closed set of X. 
 
Proof: Let A be (gsp)*-open and (gsp)**-closed set. Then cl(A) ⊆ A and obviously A ⊆ cl(A). Therefore A = cl(A). 
Hence A is closed. 
 
Definition 4.6: Let X be a topological space and Y be a subspace of X. Then the subset A of Y is (gsp)* - open in Y if 
A = G ∩Y, where G is (gsp)* - open in X. 
 
Theorem 4.7: Let A ⊆ Y ⊆ X and if A is a (gsp)**-closed set in X. Then A is a (gsp)**-closed relative to Y. 
 
Proof: Given that A ⊆ Y ⊆ X and A is a (gsp)**- closed set in X.  To prove that A is (gsp)** - closed set relative to Y.  
Let us assume that A ⊆ Y∩U, where U is (gsp)* - open in X.  since A (gsp)**- closed set in X, then cl(A) ⊆ U.  That 
implies, Y∩ cl(A) is the closure of A in Y and Y∩U is (gsp)*- open in Y. Therefore cl(A) ⊆ Y∩U in Y.  Hence A is 
(gsp)**- closed set relative to Y. 
 
Theorem 4.8: Let A be a (gsp)**-closed in  (X,𝜏). Then A is closed iff cl(A) \ A  is a(gsp)*-closed. 
 
Proof: Suppose A is closed in X. Then A = cl(A). Therefore cl(A) \ A = 𝜙. Hence, A is (gsp)*-closed. Conversely, 
Suppose cl(A)-A is (gsp)*-closed  set  in X. Since A is (gsp)*-closed, By Theorem 4.1, cl(A)\A does not contain any 
non-empty (gsp)*-closed  set  in X. This implies that cl(A)\A = 𝜙. Thus A=cl(A). Hence A is closed. 
 
Theorem 4.9: If A and B are (gsp)**-closed sets then A⋃B is also a (gsp)**-closed set. 
 
Proof: Let A  and  B be (gsp)**-closed  and A⋃B ⊆ U and U is (gsp)*-open. Since A and B are (gsp)**-closed,      
cl(A) ⊆ U and cl(B) ⊆ U. Since cl(A⋃B) = cl(A)⋃cl(B) ⊆ U. Therefore cl(A⋃B) ⊆ U  whenever A⋃B ⊆ U and U  is 
(gsp)*-open. Therefore A⋃B is a (gsp)**-closed set. 
 
Definition 4.10: The intersection of all (gsp)*-open sets containing A is called the (gsp)*-kernel of A and it is denoted 
by (gsp)*-ker(A). 
 
Theorem 4.11: A subset A of X is (gsp)**-closed iff cl(A)⊆(gsp)*-ker(A). 
 
Proof:  
Necessity: Let A be a (gsp)*-closed subset of X and x∈cl(A). Suppose x∉(gsp)*-ker(A). Then there exists a (gsp)*-
open set U containing A such that x∉U. Since A is (gsp)**-closed set, then cl(A)⊆U. This implies that, x∉cl(A), which 
is a contradiction to x∈cl(A). Therefore cl(A)⊆(gsp)*-ker(A). 
 
Sufficiency: Suppose cl(A)⊆(gsp)*-ker(A). If U is any sb*-open set containing A, then (gsp)*-ker(A)⊆U. That 
implies, cl(A)⊆U. Hence A is (gsp)**-closed in X. 
 
Remark 4.12: For any subset A of X, gb-ker(A)⊆(gsp)*-ker(A). 
 
Theorem 4.13: For any subset A of X, X2∩cl(A)⊆(gsp)*-ker(A). 
 
Proof: By Lemma 2.5 and Remark 4.12, X2∩cl(A)⊆(gsp)*-ker(A). 
 
Theorem 4.14: A subset A of X is (gsp)**-closed if and only if X1∩cl(A)⊆A. 
 
Proof: Necessity: Suppose that A is (gsp)**-closed and x∈X1∩cl(A). Then x∈X1 and x∈cl(A). Since x∈X1, then 
int(cl({x}))=∅. Therefore {x} is semi-closed. By Theorem 2.4, {x} is (gsp)*-closed. If x does not belongs to A, then 
U=X–{x} is a (gsp)*-open set containing A and so cl(A)⊆U. Since x∈cl(A), x∈U. This is a contradiction to x not in U. 
Hence X1∩cl(A)⊆A. 
 
Sufficiency: Let X1∩cl(A)⊆A. Then X1∩cl(A)⊆(gsp)*-ker(A). Now, cl(A)= X∩cl(A)=(X1∪X2) ∩cl(A) = (X1∩cl(A)) ∪
 (X2∩cl(A)) ⊆(gsp)*-ker(A). Then by Theorem 2.6, A is (gsp)**-closed. 
 
Theorem 4.15: Arbitrary intersection of (gsp)**-closed sets is (gsp)**-closed. 
 
Proof: Let {Ai} be the collection of (gsp)**-closed sets of X. Let A=∩Ai. Since A⊆Ai, for each i, then cl(A)⊆cl(Ai). 
That implies, X1∩cl(A)⊆X1∩cl(Ai). Since each Ai is (gsp)**-closed, then by Theorem 4.14, X1∩cl(Ai)⊆Ai, for each i. 
Now, X1∩cl(A)=X1∩cl(∩Ai)⊆∩(X1∩cl(Ai))⊆∩Ai=A. Again by Theorem 4.14, A is (gsp)**-closed. 
 
Remark 4.16: The set of all (gsp)**- closed sets form a topology on X. 
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5. (gsp)** open sets 
 
Definition 5.1.A subset A of (X, τ) is said be (gsp)**-open set if its complement X\A is (gsp)**-closed in X. The 
family of all (gsp)**-open sets in X is denoted by (gsp)**-O(X, 𝜏). 
 
Theorem 5.1: For a topological space (X,𝜏) 

(i) Every open set is (gsp)** open set. 
(ii) Every g* - open is (gsp)** open set. 
(iii) Every (gsp)* open set is (gsp)** open set. 
(iv) Every (gsp)** open set is gspr open set. 
(v) Every (gsp)** open set is (g*p) open set. 
(vi) Every (gsp)** open set is rwg open set. 
(vii) Every (gsp)** open set is (𝛼𝑔) open set. 
(viii) Every (gsp)** open set is gs open set. 
(ix) Every (gsp)** open set is (gsp) open set. 
(x) Every (gsp)** open set is gpr open set. 
(xi) Every (gsp)** open set is wg open set. 
(xii) Every (gsp)** open set is gp open set. 
(xiii) (gsp)** open set is independent of sg** open sets. 
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