International Journal of Mathematical Archive-2(9), 2011, Page: 1636-1645
 Available online through www.ijma.info ISSN 2229-5046

On Hilbert Modules over Locally m-Convex H^{*} - Algebras

M. Khanehgir*
Department of Mathematics, Faculty of Science, Islamic Azad University-Mashhad Branch, Mashhad, Iran, P. O. Box 413-91735
E-mail: khanehgir@mshdiau.ac.ir

(Received on: 22-08-11; Accepted on: 04-09-11)

Abstract

In this paper a Hilbert E-module W is defined where $\left(E,\left(I . \mathrm{I}_{\lambda}\right)_{\lambda \in \Lambda}\right)$ is a locally m-convex H^{*}-algebra. With each $\lambda \in \Lambda$, we associate a Hilbert module \widehat{W}_{λ} over an H^{*} - algebra \widehat{E}_{λ}. We obtain relationship between these spaces and the initial space. Moreover the existence of orthonormal bases in a Hilbert E-module is proved. We topologized the space of bounded E - linear operators via suitable family of seminorms.

2000 AMS subject classification: 46L08, 46k05, 46c05, 46c50.
Key Words: Hilbert module, Locally m-convex H^{*}-algebra.

1. Introduction

A locally multiplicatively convex algebra (1.m.c.a in short) is a topological algebra (E, τ) whose topology τ is determined by a directed family $\left(I . I_{\lambda}\right)_{\lambda \in \Lambda}$ of submultiplicative seminorms. Such an algebra will usually denoted by $\left(E,\left(I . I_{\lambda}\right)_{\lambda \in \Lambda}\right)$. If, in addition, E is endowed with an involution $x \mapsto x^{*}$ such that $|x|_{\lambda}=\left|x^{*}\right|_{\lambda}$, for any $x \in E, \lambda \in \Lambda$, then $\left(E,\left(I .\left.\right|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ is called an 1.m.c. ${ }^{*}-$ algebra. Let $\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ be a complete 1.m.c.a. It is known that $\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ is the inverse limit of the normed algebras $\left(E_{\lambda},\left(|.|_{\lambda}^{\prime}\right)_{\lambda \in \Lambda}\right)$, where $E_{\lambda}=E / N_{\lambda}$ with $N_{\lambda}=\left\{x \in E:|x|_{\lambda}=0\right\}$, and $|\bar{x}|_{\lambda}^{\prime}=|x|_{\lambda}$. An element x of E is written $x=\left(x_{\lambda}\right)_{\lambda}=\left(\pi_{\lambda}(x)\right)_{\lambda}$, where $\pi_{\lambda}: E \rightarrow E_{\lambda}$ is the canonical surjection. The algebra $\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ is also the inverse limit of the Banach algebras \widehat{E}_{λ}, the completion of E_{λ} s. The norm in \widehat{E}_{λ} will also be denoted by I.I' .

In the following we define the locally m-convex H^{*} - algebra spaces. This notion was introduced in [5] as a natural extension of the classical H^{*} - algebras of W. Ambrose ([1]). Here we consider the case where the algebra is complete and it is endowed with a continuous involution.

Definition: 1.1 A locally m-convex H^{*}-algebra (I.m.c. H^{*}-algebra in short) is a complete I.m.c. ${ }^{*}$-algebra $\left(E,\left(I . I_{\lambda}\right)_{\lambda \in \Lambda}\right)$ on which is defined a family $\left(\langle. .,\rangle_{\lambda}\right)_{\lambda \in \Lambda}$ of positive semi-definite pseudo-inner products such that the following properties hold for all $x, y, z \in E$ and $\lambda \in \Lambda$:
(i) $|x|_{\lambda}^{2}=\langle x, x\rangle_{\lambda}$,
(ii) $\langle x y, z\rangle_{\lambda}=\left\langle y, x^{*} z\right\rangle_{\lambda}$,
(iii) $\langle y x, z\rangle_{\lambda}=\left\langle y, z x^{*}\right\rangle_{\lambda}$.

For every $\lambda \in \Lambda$, the quotient space $E_{\lambda}=E / N_{\lambda}$ is an inner product space under $\left\langle x_{\lambda}, y_{\lambda}\right\rangle_{\lambda}=\langle x, y\rangle_{\lambda}$. The
underlying Banach space \hat{E}_{λ} is a Hilbert space. Moreover, the involutive Banach algebra $\left(\hat{E}_{\lambda}, \mid . I_{\lambda}^{\prime}\right)$ is an
 Theorem 2.3). So there exists a unique homomorphism $\phi: E \rightarrow \lim _{\leftarrow \lambda} \hat{E}_{\lambda}$ in which $\chi_{\mu} o \varphi=\pi_{\lambda, \mu} o \pi_{\lambda}$, where I. $I_{\lambda} \geq I . I_{\mu}$ and $\chi_{\mu}: \lim _{\leftarrow \lambda} \widehat{E}_{\lambda} \rightarrow \widehat{E}_{\mu}$ is the natural projection. One can see that φ is an isomorphism and $\lim _{\leftarrow \lambda} \widehat{E}_{\lambda} \cong E$ (See also the remarks following Satz 1.1 in [7]). One of the most useful consequences of this isomorphism is that every coherent sequence in $\left\{\hat{E}_{\lambda}: \lambda \in \Lambda\right\}$ determines an element of E.

Given an I.m.c. H^{*}-algebra $\left(E,\left(I . I_{\lambda}\right)_{\lambda \in \Lambda}\right)$. Since $*$ is an involution, E is proper, namely $\operatorname{lan}(E)=\{0\}$, where $\operatorname{lan}(E)=\{x \in E: x E=\{0\}\}$ is the left annihilator of E and so each \widehat{E}_{λ}, for every $\lambda \in \Lambda$. The trace class $\tau(E)$ of E is defined as the set $\tau(E)=\{a b: a, b \in E\}$. Clearly, $\tau(E)$ is an ideal of E which is complete * - algebra in the topology τ determined by suitable submultiplicative seminorms $\tau_{\lambda}(),. \lambda \in \Lambda$ related to given seminorms on E by $\tau_{\lambda}\left(a^{*} a\right)=|a|_{\lambda}^{2}$, for all a in E. For every $\lambda \in \Lambda$, there exists a canonical continuous linear form on $\tau(E)$ called the trace $-\lambda$ of E and we denote it by $t r_{\lambda}$ which is related with the semi-definite pseudoinner product $\langle., .\rangle_{\lambda}$ of E by $\operatorname{tr}_{\lambda}(a b)=\left\langle a, b^{*}\right\rangle_{\lambda}$ for all $a, b \in E$. The trace class in the H^{*} - algebra $\hat{E}_{\lambda}, \lambda \in \Lambda$ is defined as the set $\tau\left(\widehat{E}_{\lambda}\right)=\left\{\left[a+N_{\lambda}\right]\left[b+N_{\lambda}\right]: a, b \in E\right\}$. It is known that $\tau\left(\hat{E}_{\lambda}\right)$ is an ideal of \widehat{E}_{λ}, which is Banach $*_{\text {-algebra }}$ under a suitable norm $\hat{\tau}_{\lambda}($.$) . The norm \hat{\tau}_{\lambda}$ is related to given norm $\mid . I_{\lambda}^{\prime}$ on \hat{E}_{λ} by $\hat{\tau}_{\lambda}\left(\left[a^{*} a+N_{\lambda}\right]\right)=\left|\left[a+N_{\lambda}\right]\right|_{\lambda}^{\prime 2}$, for all $a \in E$. The trace class $\tau\left(E_{\lambda}\right)$ of $E_{\lambda}, \lambda \in \Lambda$ is defined similarly. Obviously $\tau\left(E_{\lambda}\right)$ is an ideal of E_{λ} which is norm $*$-algebra under a suitable norm $\tau_{\lambda}($.$) , in which$ $\tau_{\lambda}\left(a^{*} a+N_{\lambda}\right)=\left|a+N_{\lambda}\right|_{\lambda}^{\prime 2}$ for all $a \in E$. For $\lambda \in \Lambda$, there exists a continuous linear form $\hat{t r}_{\lambda}$ on $\tau\left(\hat{E}_{\lambda}\right)$ satisfying $\widehat{\operatorname{tr}}_{\lambda}\left(\left[a+N_{\lambda}\right]\left[b+N_{\lambda}\right]\right)=\widehat{\operatorname{tr}}_{\lambda}\left(\left[b+N_{\lambda}\right]\left[a+N_{\lambda}\right]\right)=\left\langle a, b^{*}\right\rangle_{\lambda}$. Similarly there exists a continuous linear form $t r_{\lambda}$ on the $\tau\left(E_{\lambda}\right), \lambda \in \Lambda$, satisfying $\operatorname{tr}_{\lambda}\left(a b+N_{\lambda}\right)=t r_{\lambda}\left(b a+N_{\lambda}\right)=\left\langle a, b^{*}\right\rangle_{\lambda}$.

Now suppose that $\chi_{\lambda}: \tau(E) \rightarrow \tau\left(E_{\lambda}\right)$ defined by $\chi_{\lambda}(a b)=a b+N_{\lambda}$ and $\pi_{\lambda, \mu}: \tau\left(E_{\lambda}\right) \rightarrow \tau\left(E_{\mu}\right)$ defined by $\pi_{\lambda, \mu}\left(a+N_{\lambda}\right)\left(b+N_{\lambda}\right)=\left(a+N_{\mu}\right)\left(b+N_{\mu}\right)$, where $\mid . I_{\lambda} \geq 1 . I_{\mu}$. Then $\left\{\tau(E), \tau ; \chi_{\lambda}\right\}$ is the inverse limit of the inverse system $\left\{\tau\left(E_{\lambda}\right), \tau_{\lambda} ; \pi_{\lambda, \mu}, \lambda, \mu \in \Lambda,\left|.\left.\right|_{\lambda} \geq\right|_{\mu}\right\}$ and it is also inverse limit of the inverse system $\left\{\tau\left(\hat{E}_{\lambda}\right), \hat{\tau}_{\lambda} ; \pi_{\lambda, \mu}, \lambda, \mu \in \Lambda,\left|.\left.\right|_{\lambda} \geq|.|_{\mu}\right\}\right.$.

In this paper we will intoduce a Hilbert module W over an l.m.c. $H^{*}-\operatorname{algebra}\left(E,\left(I . I_{\lambda}\right)_{\lambda \in \Lambda}\right)$ and for each $\lambda \in \Lambda$ we will associate a Hilbert module \widehat{W}_{λ} over an H^{*} - algebra \widehat{E}_{λ}. We shall see that $W \cong{ }_{\leftarrow \lambda}^{\lim } \widehat{W}_{\lambda}$. Then we will discuss about orthonormal bases in these spaces. Also we will topologize $L_{E}(V, W)$ and $B_{E}(V, W)$, the set of adjointable E - linear operators and the set of bounded E - linear operators from Hilbert E - module V into Hilbert E - module W, respectively, via suitable families of seminorms. Throughout this paper E is an 1.m.c. H^{*} - algebra and W is a Hilbert E-module except some results about unitary operators in Hilbert H^{*}-modules at the end of the paper. The paper is organized as follows.

In section 2 we will introduce Hilbert modules over l.m.c. H^{*}-algebras and their properties are studied. The existence of orthonormal bases in these spaces is proved.

In section 3 we topologize the space of bounded E - linear operators and the space of all adjointable E - linear operators. Also, more properties of these spaces are detected.

2. Hilbert modules over l.m.c. H^{*}-algebras and orthonormal bases

Hilbert modules over 1.m.c. H^{*}-algebras generalize the notion of Hilbert H^{*}-modules by allowing the $\tau(E)$ - valued product in an 1.m.c. $H^{*}-$ algebra.

Definition: 2.1 Let $\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ be a Hausdorff 1.m.c. H^{*} - algebra. A pre-Hilbert E-module is a left module W over E provided with a mapping
[.I.]: $W \times W \rightarrow \tau(E)$ (called $\tau(E)-$ valued product) where $\tau(E)=\{a b: a, b \in E\}$ which satisfies the following conditions:
(i) $[\alpha x \mid y]=\alpha[x \mid y] \forall \alpha \in C, \forall x, y \in W$,
(ii) $[x+y \mid z]=[x \mid z]+[y \mid z] \forall x, y, z \in W$,
(iii) $[a x \mid y]=a[x \mid y], \forall a \in E, \forall x, y \in W$,
(iv) $[x \mid y]^{*}=[y \mid x] \forall x, y \in W$,
(v) $\forall x \in W, x \neq 0, \exists a \in E, a \neq 0$, such that $[x \mid x]=a^{*} a$,
(vi) for each $\lambda \in \Lambda, W$ is a semi-definite pseudo-inner product space with $(x, y)_{\lambda}=\left\langle a, b^{*}\right\rangle_{\lambda}\left(\right.$ or $\left.t r_{\lambda}(a b)\right)$ where $[x \mid y]=a b \in \tau(E)$.

We say that W is a Hilbert E-module if it is complete with respect to the topology determined by the family of seminorms $\|x\|_{\lambda}=\sqrt{(x, x)_{\lambda}}, x \in W, \lambda \in \Lambda$.
Given a Hilbert E-module W, then for $\lambda \in \Lambda, \xi_{\lambda}=\left\{x \in W:\|x\|_{\lambda}=0\right\}$ is a closed submodule of W. Indeed, for non zero x in ξ_{λ} and $a \in E$, if $[x \mid x]=b^{*} b$ for some non zero $b \in E$, then $\|a x\|_{\lambda}=\left|a b^{*}\right|_{\lambda} \leq|a|_{\lambda}|b|_{\lambda}=0$. For $\lambda \in \Lambda, W_{\lambda}=W / \xi_{\lambda}$ is an inner product space with $(x, y)_{\lambda}=t r_{\lambda}\left[x+\xi_{\lambda} \mid y+\xi_{\lambda}\right]$ (or $\left\langle a, b^{*}\right\rangle_{\lambda}$ where $[x \mid y]=a b)$ and its completion \widehat{W}_{λ} is a Hilbert space.

Example: 2.2 Let $\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$ be an l.m.c. H^{*}-algebra. Then E is a Hilbert module over itself with $\tau(E)$-valued product defined by $[a \mid b]=a b^{*}$. Also it is easy to verify that a closed submodule of a Hilbert E - module is again a Hilbert E-module. Note that analogue of Lemma 2.2 of [1] holds for 1.m.c. H^{*}-algebras. More precisely if x is a non zero element in an l.m.c. H^{*} - algebra E, then $x^{*} x, x x^{*}, x^{*}$ are also non zero. The proof of the following proposition can be based on the direct application of previous comments about Hilbert E-module W.

Proposition: 2.3 Let W be a Hilbert module over an 1.m.c. $H^{*} \operatorname{algebra}\left(E,\left(|.|_{\lambda}\right)_{\lambda \in \Lambda}\right)$. For each $\lambda \in \Lambda, \widehat{W}_{\lambda}$ is a Hilbert module over the proper H^{*}-algebra \widehat{E}_{λ} with $\pi_{\lambda}(a)\left(x+\xi_{\lambda}\right)=a x+\xi_{\lambda} \quad$ and $\left[x+\xi_{\lambda} \mid y+\xi_{\lambda}\right]=\pi_{\lambda}([x \mid y])$ for every $a \in E$ and for every $x, y \in W$. Let σ_{λ}^{W} be the canonical map from W onto $\widehat{W}_{\lambda}, \lambda \in \Lambda$. For $\lambda_{1}, \lambda_{2} \in \Lambda,\left|.\left.\right|_{\lambda_{1}} \geq|.|_{\lambda_{2}}\right.$, there is a canonical surjective linear map $\sigma_{\lambda_{1} \lambda_{2}}^{W}: \widehat{W}_{\lambda_{1}} \rightarrow \widehat{W}_{\lambda_{2}}$ such that $\sigma_{\lambda_{1} \lambda_{2}}^{W}\left(\sigma_{\lambda_{1}}^{W}(x)\right)=\sigma_{\lambda_{2}}^{W}(x)$. Also $\left\{\widehat{W}_{\lambda}, \widehat{E}_{\lambda} ; \sigma_{\lambda_{1} \lambda_{2}}^{W},\left|. I_{\lambda_{1}} \geq|.|_{\lambda_{2}}, \lambda_{1}, \lambda_{2} \in \Lambda\right\}\right.$ is an inverse system of Hilbert H^{*} - modules in the following sense:

$$
\sigma_{\lambda_{1} \lambda_{2}}^{W}\left(\pi_{\lambda_{1}}(a) \sigma_{\lambda_{1}}^{W}(x)\right)=\pi_{\lambda_{1} \lambda_{2}}\left(\pi_{\lambda_{1}}(a)\right) \sigma_{\lambda_{1} \lambda_{2}}^{W}\left(\left(\sigma_{\lambda_{1}}^{W}(x)\right)\right.
$$

and

$$
\left(\sigma _ { \lambda _ { 1 } \lambda _ { 2 } } ^ { W } \left(\left(\sigma_{\lambda_{1}}^{W}(x)\right), \sigma_{\lambda_{1} \lambda_{2}}^{W}\left(\left(\sigma_{\lambda_{1}}^{W}(y)\right)\right)_{\lambda_{2}}=\left\langle\pi_{\lambda_{1} \lambda_{2}}\left(\pi_{\lambda_{1}}(a)\right), \pi_{\lambda_{1} \lambda_{2}}\left(\pi_{\lambda_{1}}\left(b^{*}\right)\right)\right\rangle_{\lambda_{2}}\right.\right.
$$

Where $[x \mid y]=a b$, for every $x, y \in W$ and for every $a \in E$;
$\sigma_{\lambda_{2} \lambda_{3}}^{W} \sigma_{\lambda_{1} \lambda_{2}}^{W}=\sigma_{\lambda_{1} \lambda_{3}}^{W},\left|.\left.\right|_{\lambda_{1}} \geq\left|.\left.\right|_{\lambda_{2}} \geq|.|_{\lambda_{3}} ; \sigma_{\lambda \lambda}^{W}=i d_{W_{\lambda}} \stackrel{\lim _{\leftarrow \lambda}}{\leftarrow W} \lambda_{\lambda}\right.\right.$ is a Hilbert E - module with

$$
\left(\pi_{\lambda}(a)\right)_{\lambda}\left(\sigma_{\lambda}^{W}(x)\right)_{\lambda}=\left(\sigma_{\lambda}^{W}(a x)\right)_{\lambda}
$$

and

$$
\left\langle\left(\sigma_{\lambda}^{W}(x)\right)_{\lambda \in \Lambda},\left(\sigma_{\lambda}^{W}(y)\right)_{\lambda \in \Lambda}\right\rangle=\left(\left\langle\pi_{\lambda}(a), \pi_{\lambda}\left(b^{*}\right)\right\rangle_{\lambda}\right)_{\lambda \in \Lambda}
$$

Where $[x \mid y]=a b$. Indeed, $\underset{\leftarrow \lambda}{\lim _{\lambda}} \widehat{W}_{\lambda}$ maybe identified with W. So every coherent sequence in $\left\{\widehat{W}_{\lambda}: \lambda \in \Lambda\right\}$ determines an element of W.

For the basic facts about Hilbert H^{*}-modules we refer to [2] and [4]. In particular with the assumption of the previous proposition, we have the following three relations in Hilbert \widehat{E}_{λ} - module $\widehat{W}_{\lambda}(\lambda \in \Lambda)$,

$$
\begin{gathered}
\left\|x+\xi_{\lambda}\right\|_{\lambda}^{2}=\hat{\operatorname{tr}}_{\lambda}\left(\left[x+\xi_{\lambda} \mid x+\xi_{\lambda}\right]\right)=\hat{\tau}_{\lambda}\left(\left[x+\xi_{\lambda} \mid x+\xi_{\lambda}\right]\right) \\
\left|\left[x+\xi_{\lambda} \mid y+\xi_{\lambda}\right]\right|_{\lambda}^{\prime} \leq \hat{\tau}_{\lambda}\left(\left[x+\xi_{\lambda} \mid y+\xi_{\lambda}\right]\right) \leq\left\|x+\xi_{\lambda}\right\|_{\lambda}\left\|y+\xi_{\lambda}\right\|_{\lambda} \\
\left\|\left(a+N_{\lambda}\right)\left(x+\xi_{\lambda}\right)\right\|_{\lambda} \leq\left|a+N_{\lambda}\right|_{\lambda}^{\prime}\left\|x+\xi_{\lambda}\right\|_{\lambda}
\end{gathered}
$$

As an immediate consequence of the above relations and the previous comments we obtain:

$$
\begin{gathered}
\|x\|_{\lambda}^{2}=\operatorname{tr}_{\lambda}([x \mid x])=\tau_{\lambda}([x \mid x]) \\
|[x \mid y]|_{\lambda}^{\prime} \leq \tau_{\lambda}([x \mid y]) \leq\|x\|_{\lambda}\|y\|_{\lambda} \\
\|a x\|_{\lambda} \leq|a|_{\lambda}^{\prime}\|x\|_{\lambda}
\end{gathered}
$$

Proposition: 2.4. Let W be a Hilbert module over an 1.m.c. H^{*}-algebra E and $b(E)=\left\{a \in E:\|a\|_{\infty}=\sup _{\lambda}|a|_{\lambda}<\infty\right\}$ and $b(W)=\left\{x \in W:\|x\|_{\infty}=\sup _{\lambda}\|x\|_{\lambda}<\infty\right\}$. Then $b(E)$ is an H^{*} - algebra and $b(W)$ is a $b(E)-$ Hilbert module.

Proof: Clearly, the sets $b(E)$ and $b(W)$ are complex vector spaces and $b(W)$ is a left $b(E)$-module. Because,
 Cauchy-Schwarz inequality, applied to Hilbert \widehat{E}_{λ} - module \widehat{W}_{λ}, yields for $x, y \in b(W)$, the inequality $\|(x, y)\|_{\infty}^{2} \leq\|(x, x)\|_{\infty}\|(y, y)\|_{\infty}$, so that the restriction of $b(W)$ of the $\tau(E)$ - valued product on W is a $\tau(b(E))$ - valued product on $b(W)$. Obviously, $\left(b(E),\left(\left.\langle., .\rangle_{\lambda}\right|_{b(E) \times b(E)}\right)_{\lambda \in \Lambda}\right)$ and $\left(b(W),\left.[.,]\right|_{.b(W) \times b(W)}\right)$ take more properties being as a subset of E and W respectively. To proof of completeness in [7], Satz 3.1, also applied here and show that $b(E)$ and $b(W)$ are complete for norm $\|a\|_{\infty}=\|\langle a, a\rangle\|_{\infty}^{\frac{1}{2}}$ and $\|x\|_{\infty}=\|(x, x)\|_{\infty}^{\frac{1}{2}}$, respectively, for every $a \in E, x \in W$. Q.E.D.

Definition: 2.5 A non zero projection e in an 1.m.c. H^{*} - algebra E is called minimal, if $e E e=C e$. Also element u in a Hilbert E-module W is said to be a basic element if there exists a minimal projection $e \in E$ such that $[u \mid u]=e$. An orthonormal system in W is a family of basic elements $\left\{u_{\alpha}\right\}_{\alpha}, \alpha \in I$ satisfying $\left[u_{\alpha} \mid u_{\beta}\right]=0$ for all $\alpha, \beta \in I, \alpha \neq \beta$. An orthonormal basis in W is an orthonormal system generating a dense submodule of W.

If V is a subset of a Hilbert E-module W, we define $V^{\perp}=\{w \in W \mid[w \mid v]=0 \forall v \in V\}$. Clearly V^{\perp} is a closed submodule of W. If V is a submodule of W then $V^{\perp}=\left\{x \in W \mid(x, v)_{\lambda}=0, \forall v \in V, \forall \lambda \in \Lambda\right\}$.
M. Khanehgir*/ On Hilbert Modules over Locally m-Convex H^{*}-Algebras/IJMA-2(9), Sept.-2011, Page: 1636-1645 Our next result is a generalization of Lemma 1.3 in [4].

Lemma 2.6. Let W be a Hilbert E-module and let u in W be such that $e=[u \mid u]$ is an idempotent in E. If the closed submodule generated by u is complemented or e does not belong to N_{λ}, for each $\lambda \in \Lambda$ then $[w \mid u]=[w \mid u] e$ for all $w \in W$.

We can also generalized Corollary 1.4 of [4] to Hilbert modules over 1.m.c. $H^{*}-$ algebras.

Corollary: 2.7 If $\left\{u_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal system in a Hilbert E - module W in which for every $\alpha \in I$ the closed submodule generated by u_{α} is complemented or u_{α} does not belong to ξ_{λ}, for each $\lambda \in \Lambda$, then

$$
\left[w-\sum_{\alpha \in J}\left[w \mid u_{\alpha}\right] u_{\alpha} \mid w-\sum_{\alpha \in J}\left[w \mid u_{\alpha}\right] u_{\alpha}\right]=[w \mid w]-\sum_{\alpha \in J}\left[w \mid u_{\alpha}\right]\left[w \mid u_{\alpha}\right]^{*}
$$

for every finite subset J of I and for all w in W.
Our next result is a generalization of Proposition 1.5 of [4].
Proposition: 2.8 Let W be a Hilbert E-module, let u be a basic element in W, and let M denote the closed submodule of W generated by u. If M is orthogonally complemented in W then the mapping $w \rightarrow[w \mid u] u$ is the orthogonal projection from W onto M. As a consequence we have $M=E u$.

Our next result is a generalization of Theorem 1.6 of [4] which provides a very useful characterization of orthonormal bases in a Hilbert E - module W.

Theorem: 2.9 Let $\left\{u_{\alpha}\right\}_{\alpha \in I}$ be an orthonormal system in a Hilbert E - module W in which for every $\alpha \in I$, the closed submodule generated by u_{α} is complemented, then the following statement are equivalent.
(i) For all w_{1}, w_{2} in W the family $\left\{\left[w_{1} \mid u_{\alpha}\right]\left[w_{2} \mid u_{\alpha}\right]^{*}\right\}_{\alpha \in I}$ is summable in the space $\left(\tau(E),\left(\tau_{\lambda}\right)_{\lambda \in \Lambda}\right)$, with sum equale to $\left[w_{1} \mid w_{2}\right]$.
(ii) For every w in W, we have $[w \mid w]=\sum_{\alpha \in I}\left[w_{1} \mid u_{\alpha}\right]\left[w_{2} \mid u_{\alpha}\right]^{*}$ (Parseval's identity) in the space ($\left.\tau(E),\left(\tau_{\lambda}\right)_{\lambda \in \Lambda}\right)$.
(iii) For every w in W, we have $w=\sum_{\alpha \in I}\left[w \mid u_{\alpha}\right] u_{\alpha}$ (Fourier expansion).
(iv) $\left\{u_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal basis in W.

Remark: 2.10 Parseval's identity leads to the equality $\sum_{\alpha \in I}\left|\left[w \mid u_{\alpha}\right]\right|_{\lambda}^{2}=\|w\|_{\lambda}^{2}$ for every $\lambda \in \Lambda$. Indeed,

$$
\sum_{\alpha \in I}\left|\left[w \mid u_{\alpha}\right]\right|_{\lambda}^{2}=\sum_{\alpha \in I} t r_{\lambda}\left(\left[w \mid u_{\alpha}\right]\left[w \mid u_{\alpha}\right]^{*}\right)=t r_{\lambda}\left(\sum_{\alpha \in I}\left(\left[w \mid u_{\alpha}\right]\left[w \mid u_{\alpha}\right]^{*}\right)\right)=t r_{\lambda}([w \mid w])=\|w\|_{\lambda}^{2}
$$

The existence of basic elements in a Hilbert module over an 1.m.c. H^{*} - algebra can be guaranteed by an argument similar to Proposition 1.7 of [4]. A slightly modification of Theorem 1.9 of [4] gives the following theorem in a Hilbert E - module.

Theorem: 2.11 Let S be a subset of a Hilbert E-module W. If S is a maximal orthonormal system then it is an orthonormal basis in W and converse is true when each closed submodule generated by every element of S is complemented in W.

Proof: Let S be a maximal orthonormal system in W and let M be the closed submodule generated by S. If $M \neq W$, then there exists $x \in W-M$. It implies that $\|x\|_{\lambda_{0}} \neq 0$, for some $\lambda_{0} \in \Lambda$. Now if $M^{\perp}=\{0\}$ then $\left(M+\xi_{\lambda_{0}}\right)^{\perp} \subseteq M^{\perp}=\{0\}$. Hence in the Hilbert $\widehat{E}_{\lambda_{0}}$ - module $\widehat{W}_{\lambda_{0}}$, we have $M+\xi_{\lambda_{0}}=W+\xi_{\lambda_{0}}$ which is a
contradiction. So $M^{\perp} \neq\{0\}$ and therefore there exists a basic element u in M^{\perp}. Obviously $S \cup\{u\}$ is an orthonormal system strictly containing S, which is a contradiction. The converse is obvious by Fourier expansion. Q.E.D.

Corollary: 2.12 Every non zero Hilbert module over an l.m.c. H^{*} - algebra has an orthonormal basis.
Theorem: 2.13. In a Hilbert E-module $W,\left\{v_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal system if and only if $\left\{v_{\alpha}+\xi_{\lambda}\right\}_{\alpha \in I}$ is an orthonormal system in the Hilbert \widehat{E}_{λ} - module \widehat{W}_{λ} when v_{α} does not belong to ξ_{λ} for each $\alpha \in I$ and for each $\lambda \in \Lambda$. Also if $\left\{v_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal basis in W and v_{α} does not belong to ξ_{λ} for each $\alpha \in I$ then $\left\{v_{\alpha}+\xi_{\lambda}\right\}_{\alpha \in I}$ is an orthonormal basis in the Hilbert \widehat{E}_{λ} - module \widehat{W}_{λ}. So we have an analogue of Fourier expansion and Parseval's identity associated to this orthonormal basis in Hilbert \widehat{E}_{λ} - module \widehat{W}_{λ}.

Proof: Suppose that v is a basic element in W. If for some $\lambda_{0} \in \Lambda, v \in \xi_{\lambda_{0}}$, then $v+\xi_{\lambda_{0}}$ is not a basic element in $\widehat{W}_{\lambda_{0}}$. It is clear that for $\mu \in \Lambda$ in which, $\left|.\left.\right|_{\lambda_{0}} \geq 1 .\right|_{\mu}, v \in \xi_{\mu}$ and $v+\xi_{\mu}$ is not a basic element in \widehat{W}_{μ}. Now if v does not belong to $\xi_{\lambda}, \lambda \in \Lambda$ then we have

$$
\begin{aligned}
{\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right] \widehat{E}_{\lambda}\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right] } & =\pi_{\lambda}([v \mid v]) \widehat{E}_{\lambda} \pi_{\lambda}([v \mid v]) \\
& =\pi_{\lambda}([v \mid v] E[v \mid v]) \\
& =\pi_{\lambda}(C[v \mid v]) \\
& =C\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right]
\end{aligned}
$$

Hence $v+\xi_{\lambda}$ is a basic element in \widehat{W}_{λ}. Conversely, if for each $\lambda \in \Lambda, v+\xi_{\lambda}$ is a basic element in \widehat{W}_{λ} then we have

$$
\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right] \widehat{E}_{\lambda}\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right]=C\left[v+\xi_{\lambda} \mid v+\xi_{\lambda}\right]
$$

and this implies that

$$
\pi_{\lambda}([v \mid v] E[v \mid v]-C[v \mid v])=0
$$

for every $\lambda \in \Lambda$. So $[v \mid v] E[v \mid v]-C[v \mid v] \subseteq \widehat{N}_{\lambda}$ for every $\lambda \in \Lambda$ and therefore $[v \mid v] E[v \mid v]-C[v \mid v]=0$. It is easy to verify that, $\left\{v_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal system in W if and only if $\left\{v_{\alpha}+\xi_{\lambda}\right\}_{\alpha \in I}$ is an orthonormal system in \widehat{W}_{λ}, when v_{α} does not belong to ξ_{λ} for each $\alpha \in I$ and for each $\lambda \in \Lambda$. Now suppose that $\left\{v_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal basis in W and for each $\alpha \in I, v_{\alpha}$ does not belonge to ξ_{λ} then as we mentioned before, $\left\{v_{\alpha}+\xi_{\lambda}\right\}_{\alpha \in I}$ is an orthonormal system in \widehat{W}_{λ}. We are going to show that it generates a dense submodule of \widehat{W}_{λ}. For this, let $x+\xi_{\lambda} \in \widehat{W}_{\lambda}$. Since $\left\{v_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal basis in W, So we have

$$
\exists \gamma_{i_{k}} \in C, \exists v_{\alpha_{i_{k}}} \in\left\{v_{\alpha}\right\}_{\alpha \in I} ; k \in I N, \sum_{k=1}^{n} \gamma_{i_{k}} v_{\alpha_{i_{k}}} \rightarrow x
$$

as n tends to ∞. It implies that

$$
\sum_{k=1}^{n} \gamma_{i_{k}}\left(v_{{\alpha_{i}}_{k}}+\xi_{\lambda}\right) \rightarrow x+\xi_{\lambda}
$$

when n tends to ∞. Thus if for all $\alpha \in I, v_{\alpha}$ does not belong to ξ_{λ} then $\left\{v_{\alpha}+\xi_{\lambda}\right\}_{\alpha \in I}$ is an orthonormal basis in \widehat{W}_{λ}. Q.E.D.

3. Space of bounded operators

Definition: 3.1 Let V and W be two Hilbert modules over an 1.m.c. $H^{*}-\operatorname{algebra}\left(E,\left(\mid . I_{\lambda}\right)_{\lambda \in \Lambda}\right)$. An operator $T: V \rightarrow W$ is called E - linear if it is linear and satisfies $T(a x)=a T(x)$ for all $a \in E$ and for all $x \in V$. We say that E-linear operator T is bounded if for each $\lambda \in \Lambda$, and for each $x \in V$ there exists $K_{\lambda}>0$ in which $\|T(x)\|_{\lambda} \leq K_{\lambda}\|x\|_{\lambda}$.
Put $\bar{P}_{\lambda}^{V}(x)=(x, x)_{\lambda}^{\frac{1}{2}}$ and $\bar{P}_{\lambda}^{W}(T x)=(T x, T x)_{\lambda}^{\frac{1}{2}}$, where $(x, x)_{\lambda}$ and $(T x, T x)_{\lambda}$ are denoted positive semi-definite pseudo-inner products in V and W respectively. So the E - linear operator T is bounded if for each $\lambda \in \Lambda$, and for each $x \in V$ there exists $K_{\lambda}>0$ in which $\bar{P}_{\lambda}^{W}(T x) \leq K_{\lambda} \bar{P}_{\lambda}^{V}(x)$.

The set of all bounded E - linear operators from Hilbert module V into W is denoted by $B_{E}(V, W)$ and when $V=W$ is denoted by $B_{E}(V)$. It is easy to see that the map $\widetilde{P}_{\lambda}, \lambda \in \Lambda$, defined by $\widetilde{P}_{\lambda}(T)=\sup \left\{\bar{P}_{\lambda}^{W}(T x): x \in V, \bar{P}_{\lambda}^{V}(x) \leq 1\right\}$ is a seminorm on $B_{E}(V, W)$.

Theorem: 3.2 Let V and W be Hilbert modules over an 1.m.c. $H^{*}-\operatorname{algebra}\left(E,\left(|.|_{\lambda \in \Lambda}\right)\right)$. Then
(i) $B_{E}(V, W)$ is a complete locally convex space with topology determined by the family of seminorms $\left\{\widetilde{P}_{\lambda}\right\}_{\lambda \in \Lambda}$.
(ii) $B_{E}(V)$ is a locally C^{*} - algebra with the topology determined by the family of seminorms $\left\{\widetilde{P}_{\lambda}\right\}_{\lambda \in \Lambda}$.

Proof: Suppose that $\lambda_{1}, \lambda_{2} \in \Lambda, I . I_{\lambda_{1}} \geq 1 . I_{\lambda_{2}}, S \in B_{\widehat{E}_{\lambda_{1}}}\left(\widehat{V}_{\lambda_{1}}, \widehat{W}_{\lambda_{1}}\right)$, set of bounded $\widehat{E}_{\lambda_{1}}$ - linear operators. We have

$$
\left(\sigma_{\lambda_{1} \lambda_{2}}^{\hat{W}}\left(S\left(\sigma_{\lambda_{1}}^{\hat{V}}(x)\right)\right), \sigma_{\lambda_{1} \lambda_{2}}^{\hat{W}}\left(S\left(\sigma_{\lambda_{1}}^{\hat{V}}(x)\right)\right)_{\lambda_{2}} \leq\|S\|_{\lambda_{1}}^{2}\left(\sigma_{\lambda_{2}}^{\hat{V}}(x), \sigma_{\lambda_{2}}^{\hat{V}}(x)\right)_{\lambda_{2}}\right.
$$

Therefore the following map is a bounded $\widehat{E}_{\lambda_{2}}$-bounded.

$$
\begin{gathered}
\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}(S): \hat{V}_{\lambda_{2}} \rightarrow \widehat{W}_{\lambda_{2}} \\
\sigma_{\lambda_{2}}^{\hat{V}}(x) \mapsto \sigma_{\lambda_{1} \lambda_{2}}^{\hat{W}}\left(S\left(\sigma_{\lambda_{1}}^{\hat{V}}(x)\right)\right)
\end{gathered}
$$

So we yield a bounded operator $\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}$ from $B_{\widehat{E}_{\lambda_{1}}}\left(\widehat{V}_{\lambda_{1}}, \widehat{W}_{\lambda_{1}}\right)$ into $B_{\hat{E}_{\lambda_{2}}}\left(\widehat{V}_{\lambda_{2}}, \widehat{W}_{\lambda_{2}}\right)$. Also $\left\{B_{\widehat{E}_{\lambda}}\left(\hat{V}_{\lambda}, \widehat{W}_{\lambda}\right),\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*} ;\left|. I_{\lambda_{1}} \geq\right| . I_{\lambda_{2}}, \lambda_{1}, \lambda_{2} \in \Lambda\right\}$ is an inverse system of Banach spaces. We are going to show that $B_{E}(V, W)$ and $\underset{\leftarrow \lambda}{\lim _{\widehat{E}_{\lambda}}}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right)$ are isomorphic. Suppose that $\lambda \in \Lambda, T \in B_{E}(V, W)$. One can see that, $T\left(\xi_{\lambda}^{V}\right) \subseteq \xi_{\lambda}^{W}$ and so there exists a unique operator $T_{\lambda}: V_{\lambda} \rightarrow W_{\lambda}$ in which $\sigma_{\lambda}^{W} o T=T_{\lambda} o \sigma_{\lambda}^{V}$. Moreover T_{λ} is a bounded E_{λ} - linear operator. It has a continuous extension $\widehat{T}_{\lambda}: \widehat{V}_{\lambda} \rightarrow \widehat{W}_{\lambda}$. Thus we can define the following continuous linear operator

$$
\begin{gathered}
\left(\pi_{\lambda}\right)_{*}: B_{E}(V, W) \rightarrow B_{\hat{E}_{\lambda}}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right) \\
T \mapsto \hat{T}_{\lambda}
\end{gathered}
$$

where $\sigma_{\lambda}^{\widehat{W}} o T=\hat{T}_{\lambda} o \sigma_{\lambda}^{\hat{V}}$. Also, for $\lambda_{1}, \lambda_{2} \in \Lambda, \mid . I_{\lambda_{1}} \geq 1 . I_{\lambda_{2}}$ we have $\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*} o\left(\pi_{\lambda_{1}}\right)_{*}=\left(\pi_{\lambda_{2}}\right)_{*}$. Now we can define the following isomorphism operator

$$
\begin{gathered}
\phi: B_{E}(V, W) \rightarrow \lim _{\leftarrow \lambda} B_{\widehat{E}_{\lambda}}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right) \\
\phi(T)=\left(\left(\pi_{\lambda}\right)_{*}(T)\right)_{\lambda} .
\end{gathered}
$$

For each $T \in B_{E}(V, W),\|\phi(T)\|_{\lambda}=\widetilde{P}_{\lambda}(T)$. Linear operator $\quad \phi \quad$ is surjective. Indeed, let $\left(\left[T_{\lambda}\right]\right)_{\lambda \in \Lambda} \in \lim _{\leftarrow \lambda} B_{\widehat{E} \lambda}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right)$. We define linear operator T as follows

$$
\begin{gathered}
T: V \rightarrow W \\
x \mapsto\left(\hat{T}_{\lambda}\left(\sigma_{\lambda}^{\hat{V}}(x)\right)\right)_{\lambda}
\end{gathered}
$$

For $\lambda_{1}, \lambda_{2} \in \Lambda$ that $I . I_{\lambda_{1}} \geq \mid . I_{\lambda_{2}}$ we have

$$
\sigma_{\lambda_{1} \lambda_{2}}^{\hat{V}}\left(\hat{T}_{\lambda_{1}}\left(\sigma_{\lambda_{1}}^{\hat{V}}(x)\right)\right)=\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}\left(\hat{T}_{\lambda_{1}}\right)\left(\sigma_{\lambda_{2}}^{\hat{V}}(x)\right)=\hat{T}_{\lambda_{2}}\left(\sigma_{\lambda_{2}}^{\hat{V}}(x)\right)
$$

So T is well-defined. Also it is a bounded E-module map and $\phi(T)=\left(\left(\pi_{\lambda}\right)_{*}(T)\right)_{\lambda \in \Lambda}$. Completeness of ${ }_{\leftarrow \lambda}^{\lim } B_{\widehat{E} \lambda}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right)$ implies that $B_{E}(V, W)$ is complete.

For $\lambda \in \Lambda, \widetilde{P}_{\lambda}$ is a submultiplicative seminorm on $B_{E}(V)$ and $\left\{B_{\widehat{E_{\lambda}}}\left(\widehat{V_{\lambda}}\right),\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*} ;|.|_{\lambda_{1}} \geq 1 . I_{\lambda_{2}}, \lambda_{1}, \lambda_{2} \in \Lambda\right\}$ is an inverse system of C^{*} - algebras and linear operator

$$
\begin{gathered}
\tilde{\phi}: B_{E}(V) \rightarrow \lim _{\leftarrow \lambda} B_{\widehat{E}_{\lambda}}\left(\hat{V}_{\lambda}\right) \\
T \mapsto\left(\left(\pi_{\lambda}\right)_{*}(T)\right)_{\lambda}
\end{gathered}
$$

is an isomorphism of topological algebras. Also, $\|\tilde{\phi}(T)\|_{\lambda}=\widetilde{P}_{\lambda}(T)$ and since $B_{\widehat{E}_{\lambda}}\left(\widehat{V_{\lambda}}\right)$'s are C^{*}-algebras, so $B_{E}(V)$ is a locally C^{*}-algebra. Q.E.D.

Definition: 3.3 We say that E - linear operator T has an adjoint if there exists E-linear operator $T^{*}: W \rightarrow V$ in which $[T x \mid y]=\left[x \mid T^{*} y\right]$ for each $x \in V$ and $y \in W$. The set of adjointable E-linear operators from Hilbert E - module V into Hilbert E-module W is denoted by $L_{E}(V, W)$ and for each $\lambda \in \Lambda$, the set of adjointable operators from V_{λ} into W_{λ} is denoted by $L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)$. Let $T \in L_{E}(V, W)$. For each $\lambda \in \Lambda$, since $T\left(\xi_{\lambda}^{v}\right) \subseteq \xi_{\lambda}^{W}$, we can define

$$
\begin{aligned}
& \left(\pi_{\lambda}\right)_{*}: L_{E}(V, W) \rightarrow L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right) \\
& \left(\pi_{\lambda}\right)_{*}(T)\left(x+\xi_{\lambda}^{V}\right)=T(x)+\xi_{\lambda}^{W}
\end{aligned}
$$

$\operatorname{Obviously}\left(\pi_{\lambda}\right)_{*}(T) \in L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)$ and $\widetilde{|T|_{\lambda}}=\left\|\left(\pi_{\lambda}\right)_{*}(T)\right\|_{L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)}$ defines a seminorm on $L_{E}(V, W)$, where $\|\cdot\|_{L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)}$ is the operator norm in $L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)$.

We topologize $L_{E}(V, W)$ via these seminorms. By similar argument just like previous theorem $L_{E}(V, W)$ may be identified with $\lim _{\leftarrow \lambda} L_{\widehat{E} \lambda}\left(\widehat{V}_{\lambda}, \widehat{W}_{\lambda}\right)$. In particular $L_{E}(V) \cong \lim _{\leftarrow \lambda} L_{\widehat{E}_{\lambda}}\left(\widehat{V}_{\lambda}\right)$ and we conclude that $L_{E}(V)$ is a locally C^{*}-algebra. The connecting maps of the inverse system $\left\{L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right)\right\}_{\lambda \in \Lambda}$ will be denoted by $\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}, \lambda_{1}, \lambda_{2} \in \Lambda,\left|.\left.\right|_{\lambda_{1}} \geq 1 .\right|_{\lambda_{2}}$, where

$$
\begin{aligned}
& \left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}: L_{E_{\lambda_{1}}}\left(V_{\lambda_{1}}, W_{\lambda_{1}}\right) \rightarrow L_{E_{\lambda_{2}}}\left(V_{\lambda_{2}}, W_{\lambda_{2}}\right) \\
& \left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}(T)\left(x+\xi_{\lambda_{2}}^{V}\right)=\sigma_{\lambda_{1} \lambda_{2}}^{W}\left(T\left(x+\xi_{\lambda_{1}}^{V}\right)\right)
\end{aligned}
$$

So $\left\{L_{E_{\lambda}}\left(V_{\lambda}, W_{\lambda}\right) ;\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}\right\}_{\| \|_{\lambda_{1}} \geq \|_{\lambda_{2}}}$ is an inverse system of normed spaces and $\left\{L_{\widehat{E_{\lambda}}}\left(\widehat{V_{\lambda}}, \widehat{W_{\lambda}}\right) ;\left(\pi_{\lambda_{1} \lambda_{2}}\right)_{*}\right\}_{\| \cdot \lambda_{1}} \geq \|_{\lambda_{2}}$ is an inverse system of Banach spaces. Also,

$$
L_{E}(V, W) \cong \underset{\leftarrow \lambda}{\lim } L_{\widehat{E_{\lambda}}}\left(\widehat{V_{\lambda}}, \widehat{W_{\lambda}}\right)
$$

So $L_{E}(V, W)$ is a complete locally convex space. On the other hand by [2] each $T \in B_{\widehat{E_{\lambda}}}\left(\widehat{V_{\lambda}}\right)$ belongs to $L_{\widehat{E_{\lambda}}}\left(\widehat{V_{\lambda}}\right)$. From this we obtain that each $T \in B_{E}(V)$ belongs to $L_{E}(V)$.

Definition: 3.4 Let W be a Hilbert module over an 1.m.c. H^{*}-algebra, E. Let $v, w \in W$ be basic vectors and let the operator $F_{v, w}: W \rightarrow W$ be defined with $F_{v, w}(x)=[x \mid w] v$. The linear span of the set $\left\{F_{v, w}: v, w \in W\right\}$ is denoted by $F_{E}(W)$ and an operator T belonging to $F_{E}(W)$ is called a generalized finite rank operator. Observe that $F_{E}(W) \subseteq B_{E}(W)$ and $F_{v, w}^{*}=F_{w, v}, T F_{v, w}=F_{T v, w}, F_{v, w} T=F_{v, T^{*} w}$, for each $v, w \in W$, for each $T \in B_{E}(W)$. Therefore $F_{E}(W)$ is a selfadjoint two-sided ideal in $B_{E}(W)$.

Definition: 3.5 An operator $T \in B_{E}(W)$ is said to be a generalized compact operator if there exists a sequence of generalized finite rank operators $\left\{F_{n}\right\}$ such that $\lim _{n} F_{n}=T$. The set of all generalized compact operators is denoted by $K_{E}(W)$. By definition $K_{E}(W)=\overline{F_{E}(W)}$ is a closed two-sided ideal in $B_{E}(W)$. Moreover, $K_{E}(W)$ may be identified with $\underset{\leftarrow \lambda}{\lim _{\leftarrow} K_{\hat{E} \lambda}\left(\widehat{W}_{\lambda}\right) \text {. } ~}$
We terminate with a result about unitary operators in Hilbert H^{*} - modules.
Definition: 3.6 Let E be a proper H^{*} - algebra. We say that Hilbert E-modules V and W are unitary equivalent if there is a unitary element U in $L_{E}(V, W)$, namely, $U U^{*}=i d_{W}$ and $U^{*} U=i d_{V}$.
If $U \in L_{E}(V, W)$ is unitary then it is clear that U is a surjective E - linear map and also that U is isometric,
since $\|U(x)\|^{2}=\operatorname{tr}[U(x) \mid U(x)]=\operatorname{tr}\left[U^{*} U(x) \mid x\right]=\operatorname{tr}[x \mid x]=\|x\|^{2}$. Our next result will be the converse assertion, that if $U: E \rightarrow F$ is an isometric, surjective E - linear map then U is unitary. For this we need the following lemma.

Lemma: 3.7 Let E be a proper H^{*} - algebra and $a \in E$. If $\|a c\|=\|b c\|$ for each $c \in E$ then $a^{*} a=b^{*} b$.
Proof: We have $\|a c\|^{2}=\|b c\|^{2}$, so that $\langle a c, a c\rangle=\langle b c, b c\rangle$ and $\left\langle a^{*} a c, c\right\rangle=\left\langle b^{*} b c, c\right\rangle$.
Hence $\left\langle\left(a^{*} a-b^{*} b\right) c, c\right\rangle=0$ for each $c \in E$. From this and by Lemma 3.1 of [1] we have
$\left.\sup _{\||c|=1} \| a^{*} a-b^{*} b\right) c \|=\sup _{\||c|=1}\left|\left\langle\left(a^{*} a-b^{*} b\right) c, c\right\rangle\right|=0$.
Thus $\left\|\left(a^{*} a-b^{*} b\right) c\right\|=0$, where $\|c\|=1$, so that $\left(a^{*} a-b^{*} b\right) c=0$ for arbitrary $c \in E$. Therefore
$\left(a^{*} a-b^{*} b\right) E=0$, so that $a^{*} a-b^{*} b=0$. Q.E.D.
Proposition: 3.8 With E, V, W as before, let U be an E - linear map from V to W. The following conditions are equivalent:
(i) U is an isometric surjective E - linear map;
(ii) U is a unitary element of $L_{E}(V, W)$.

Proof. Suppose that (i) holds. For x in $V,[U(x) \mid U(x)]=b^{*} b$ and $[x \mid x]=c^{*} c$ for some b, c in E. For each a in E, we have

$$
\begin{aligned}
\left\|a b^{*}\right\|^{2} & =\operatorname{tr}\left(a[U(x) \mid U(x)] a^{*}\right) \\
& =\operatorname{tr}([U(a x) \mid U(a x)]) \\
& =\|U(a x)\|^{2} \\
& =\|a x\|^{2} \\
& =\operatorname{tr}([a x \mid a x]) \\
& =\operatorname{tr}\left(a[x \mid x] a^{*}\right) \\
& \left.=\operatorname{tr}\left(a\left(c^{*} c\right) a\right)\right) \\
& =\left\|a c^{*}\right\|^{2}
\end{aligned}
$$

Thus $\left\|b a^{*}\right\|=\left\|c a^{*}\right\|$ for each a in E. By previous lemma $b^{*} b=c^{*} c$. This implies that $[U(x) \mid U(x)]=[x \mid x]$ for each x in E and by polarization identity $[U(x) \mid U(y)]=[x \mid y]$ for each x, y in E.

Now let $x \in V$ and $z \in W$. Since U is surjective, there is a $y \in V$ such that
$U(y)=z$. We have $[U(x) \mid z]=[U(x) \mid U(y)]=[x \mid y]=\left[x \mid U^{-1}(z)\right]$.

Hence $U^{*}=U^{-1}$. This implies that U satisfies (ii); and the implication (ii) $\Rightarrow(i)$ is obvious as already discussed. Q.E.D.

References:

[1] W. AMBROSE, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57(1945), 364-386.
[2] D. Bakic and B. Guljas, Operators on Hilbert H^{*}-modules , J. Operator Theory, Vol. 46(2001), 123-137.
[3] F. F. Bonsall, and J. Duncan, Complete normed algebras, Ergebrise der Mathematik Band 80, Springer Verlag (1973).
[4] M. CABRERA, J. MARTINEZ, A. RODRIGUEZ, Hilbert modules revisited: Orthonormal bases and HilbertSchmidt operators, Glasgow Math. J. 37(1995), 45-54.
[5] M. Haralampidou, On locally convex H^{*} - algebras, Math. Japonica 38(1993), 451-460.
[6] A. El Kinani, On locally pre- C^{*} - algebra structures in locally m-convex H^{*} - algebras, Turk J. Math. 26(2002), 263-271.
[7] K. SCHM \ddot{U} DGEN, \ddot{U} ber LMC ${ }^{*}$ - Algebren, Math, Nachr, 68(1975), 167-182.

