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ABSTRACT 
In 2012 Wardowski [1] defined the F-contraction. The main aim of this paper is to find the common fixed point for two 
mappings satisfying contraction conditions as similar to that of F-contraction. 
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INTRODUCTION 
 
In1998, Jungck and Rhoades [4] introduced the notion of weakly compatible mappings. In 2012, Wardowski [1] 
defined the F-contraction The main purpose of this paper is to present fixed point results for pair of map satisfying a 
new contractive condition as similar to that of F-contraction by using the concept of weakly compatible maps in a 
complete metric space. 
 
Definition 1.1(a): [1] Let ),( dX  be a metric space. A mapping XXT →: is said to be an F-contraction if there 
exists 0>τ such that for all Xyx ∈, with  

0),( >TyTxd     ⇒ ( )( ) ( )( ), ,F d Tx Ty F d x yτ + < , 
Where F satisfies following conditions: 
(F1) F is strictly increasing. 
(F2) For each sequence { }∞=1nnα of positive numbers, lim 0nn

α =
→∞ if and only if lim ( ) .F nn

α = −∞
→∞  

(F3) There exist )1,0(∈k such that lim ( ) 0.
0

k Fα α
α

=+→  
 
Definition 1.1 (b): [4] Two self-mappings f and g on a metric space ),( dX are said to be weakly compatible if the 
commute at their coincidence points, that is, if )()( xgxf = , for some Xx∈ ,then )()( xgfxfg = .  
 
Wardowski [1] stated and proved the Banach contraction principle as follows. 
 
Theorem 1.2[1]: Let ),( dX  be a complete metric space and XXT →: be an F- contraction. Then T has a unique 

fixed point Xx ∈∗ and for every Xx∈ the sequence { }∞=1n
n xT converges to Xx ∈∗ . 

 
By replacing the conditions (F2) and (F3) by the following conditions 

(F 2′ ) −∞=Finf . 
(F 3′ ) F is continuous on ).,0( ∞  

 
The family of functions satisfying the conditions (F1), (F 2′ ) and (F 3′ ) is denoted by ℑ . 
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Piri, H., Kumam, P. [2] have proved the following result. 
 
Theorem 1.3[2]: Let T be a self-mapping of a complete metric space X into itself. Suppose ℑ∈F and there exists 

0>τ for all Xyx ∈, with 0),( >TyTxd ⇒ ( )( ) ( )( )yxdFTyTxdF ,, <+τ  

Then T has unique fixed point Xx ∈∗ and for every Xx ∈0 the sequence { }∞=10 n
n xT converges to ∗x . 

 
We denote the family of functions satisfying the conditions (F1), (F 2 ) and (F3′ ) by Φ . 
 
Recently Secelean [3] proved the following lemma. 
 
Lemma 1.4:  Let RRF →+: be an increasing mapping and { }∞=1nnα be a sequence of positive real numbers. Then the 
following conditions hold: 

(a) If lim ( )F nn
α = −∞

→∞ , then lim 0nn
α =

→∞ . 

(b) If −∞=Finf and lim 0nn
α =

→∞
, then lim ( )F nn

α = −∞
→∞ . 

 
By proving the above lemma 1.4, Secelean proved that the condition (F 2′ ) and (F 2 ) are equivalent. 
 
MAIN RESULT 
 
Theorem 1.5: Let ),( dX  be a complete metric space and f and g be two continuous self-mappings on X where f is 
one to one function and f and g weakly compatible mappings, )(Xf is closed subset of X and )()( XgXf ⊆ .  
 
Suppose Φ∈F and there exist 0>τ such that  

Xyx ∈∀ , , 0))(),(( >yfxfd ⇒ )))(),((()))(),((( ygxgdFyfxfdF ≤+τ .                            (1) 
Then f and g has a unique common fixed point. 
 
Proof: let Xx ∈0 be an arbitrary point in X. Then we consider the following sequence 

)()( 10 xgxf = , )()( 32 xgxf = , that is nnn yxgxf == + )()( 1 . 
 
Now since f is one to one, it follows that )()( yfxf = if yx = then since 1+≠ nn xx ⇒ )()( 1+≠ nn xfxf         
i.e., 0))(),(( 1 >+nn xfxfd so from (1) it follows that  

        )))(),((()))(),((( 11 ++ ≤+ nnnn xgxgdFxfxfdFτ  
 

⇒ τ−≤ ++ )))(),((()))(),((( 11 nnnn xgxgdFxfxfdF . 

   .)))(),((( 1 τ−= − nn xfxfdF  

   .2)))(),((( 1 τ−≤ − nn xgxgdF  

   .2)))(),((( 12 τ−= −− nn xfxfdF  

   .3)))(),((( 12 τ−≤ −− nn xgxgdF  
        . 

        . 
        . 
   .)))(),((( 21 τnxfxfdF −=  

 
Taking limit ∞→n both sides and using condition (F 2 ) we get, 

       
( ( ( ), ( ))) .lim 1F d f x f xn nn

= −∞+
→∞

 

⇒ ( ( ), ( )) 0lim 1d f x f xn nn
=+

→∞
. 

⇒ ( , ) 0.lim 1d y yn nn
=+

→∞
                      (2) 
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Now we prove that the sequence { }ny  is a Cauchy sequence. If not then there exist 0>ε such that for a natural 

number N, ε≥),( mn yyd and ε<− ),( 1 mn yyd whenever Nmn >> .  
 
From (2), we have  

        
.

22
),(),(),( 11 εεεε =+≤+≤≤ −− mnnnmn yydyydyyd

 
⇒ ( , ) .lim d y yn m

m
ε=

→∞
                                     (3)

 
 
Now .0),())(),(( >= mnmn yydxfxfd  
 
So Now from (1) we have  

)))(),((()))(),((( mnmn xgxgdFxfxfdF ≤+τ . 

)))(),((( mn xfxfdF .)))(),((( 11 τ−≤ −− mn xfxfdF  
 
Since 0>τ is arbitrary  

⇒ ))).(),((()))(),((( 11 −−< mnmn xfxfdFxfxfdF  
 
Since F is strictly increasing we have, 

)).(),(())(),(( 11 −−< mnmn xfxfdxfxfd                     (4) 
 
So from (2), (4) 

1 1

1 1

( ( ), ( )) ( ( ), ( ))
( ( ), ( )) ( ( ), ( )) ( ( ), ( ))

n m n m

n n n m m m

d f x f x d f x f x
d f x f x d f x f x d f x f x

ε − −

− −

≤ <
≤ + +   

( ( ), ( )) .lim 1 1d f x f xn mm
ε=− −

→∞
                      (5)

 
 
Since .0),())(),(( >= mnmn yydxfxfd  from (1) we have  

)))(),((()))(),((( mnmn xgxgdFxfxfdF ≤+τ . 
)))(),((()))(),((( 11 −−≤+ mnmn xfxfdFxfxfdFτ  

 
So by condition(F3`), (3), (5) we have, 

).()( εετ FF ≤+  
Which is a contradiction. Therefore the sequence{ }ny  must be Cauchy sequence in X. Now since X is complete we 
have  
 .lim y zn

n
=

→∞
 

Where Xz∈ . That is we have  
 ( ) ( ) .lim lim 1f x g x zn nn n

= =+
→∞ →∞

 

 
Since )(Xf is closed it follows that )(Xfz∈ . So there exist some Xu∈ such that ).(ufz =  
 
Now, ))(,( ugzd = ( , ( )) 0.lim 1d z g xnn

=+
→∞  

⇒ ).(ugz = So ).()( ugzuf ==  
 
Therefore z is the coincident point of f and g. since f and g are weakly compatible mappings we have, 

 ).()( uguf = ⇒ ).()( ufgugf = ⇒ ).()( zfzg =                    (6) 
If zzf ≠)( . Then 0)),(( >zzfd , 

⇒ 0))(),(( >ufzfd . 
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So from (1),  
 ))(),((())(),((( ugzgdFufzfdF ≤+τ . 

))(),((())(),((( ufzfdFufzfdF ≤+τ  
 
Since 0>τ , it follows that this is a contradiction. Hence ).()( zgzzf == so z is the common fixed point of f and g. 
 
To prove the uniqueness. Let us assume that u is another fixed point of f and g Then ).()( zgzzf == and 

).()( uguuf ==  
 
If zu ≠ 0),( >zud ⇒ 0))(),(( >zfufd . So from (1) we have 
       )))(),((()))(),((( zgugdFzfufdF ≤+τ . 
 ⇒ )),(()),(( zudFzudF ≤+τ . 
 
Since 0>τ , this is a contradiction. So .zu =  
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