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ABSTRACT
The purpose of this paper is to study generalized (o, t) n —derivations satisfying certain identities on semigroup
ideals of a prime near ring. Some well known results characterizing commutativity of 3-prime near rings by n-
derivations have been generalized using semigroup ideals.
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1. INTRODUCTION

Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative centre Z; and for any pair of
elements x,y € N, [x,y] = xy —yx and (x,y) = x + y — x — y stand for the commutator and additive commutator
respectively. Let o and 7 be mappings on N. For any x,y € N, set the symbol [x, y], . will denote xo(y) — t(y)x,
while the symbol (x o y), . will denote xa(y) + t(y)x. A near ring N is called zero-symmetric if 0x = 0, for all
x € N (recall that left distributivity yields that x0 = 0). The near ring N is said to be 3-prime if xNy = {0} for
x,y € N implies that x = 0 or y = 0. A near ring N is called 2-torsion free if (N,+) has no element of order 2. A
nonempty subset U of N is called a semigroup right (resp. semigroup left) ideal if UN < U (resp. NU < U); and if U is
both a semigroup right ideal and a semigroup left ideal, it is called a semigroup ideal. Let n = 2 be a fixed positive
integer and N = N X N X....X Ng_times}- A map A:N™ - N is said to be permuting on a near ring N if the
relation A(xq, Xz, Xp) = A(Xp (1) s X (2) s+ s Xpy) holds for all x; € N, i=12,....,n and for every
permutation € S,,, where S,, is the permutation group on {1,2,...,n}. An additive mapping f: N — N is said to be a
right (resp. left) generalized derivation with associated derivation d if F(xy) = F(x)y + xd(y) (resp. F(xy) =
d(x)y + xF(y)), for all x,y € N and F is said to be a generalized derivation with associated derivation d on N if it is
both a right generalized derivation and a left generalized derivation on N with associated derivation d.

Ozturk et al. [6] and Park et al. [8] studied bi-derivations and tri-derivations in near rings. A mapping d:N X N —» N is
said to be symmetric (permuting) on a near ring N if d(x,y) = d(y,x) for all x,y € N. A symmetric bi-additive
mapping d: N X N - N (additive in each argument) is said to be a symmetric bi-derivation on N if d(xy,z) =
d(x,z)y + xd(y,z) holds for all x,y,z€ N. A permuting tri-additive map A:N X N X N — N is said to be a
permuting tri-derivation on N if

Alxw,y,z) = A(x,y, 2)w + xA(w, y, z)
is fulfilled for all w,x,y,z € N.

Very recently Park [7] defined n-derivation in rings. Let o, 7 be endomorphisms on N. An additive mapping d : N —
N is said to be a (o,7) derivation if d(xy) = a(x)d(y) + d(x)z(y), (or equivalently d(xy) = d(x)t(y) +
o(x)d(y)) for all x,y € N. The notions of symmetric bi-(a, 7) derivation and tri-(o, T) derivation have already been
introduced and studied in near-rings by Ceven [3] and Ozturk [5], respectively. Motivated by the concept of tri-
derivation in rings, Park [7] introduced the notion of n-derivation in rings. An n-additive (i.e. additive in each
argument) mapping d: N X N....x N — N is called (o, t)-n-derivation of N if there exist automorphisms o,7: N -
N such that the equations
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d(x1x1, %5, .0 %) = (X1, Xg, ..., % )0 (x1) + T(x)d (%1, %5, ..., %X,)
d(xq, %325, ..., xn) = d(xq, X5, ..., x)0(x3) + TO)d(Xq, X3, ..., Xp)

d(xy, Xg, .oy XnXs) = A(X1, Xg, ..., X )0 (x5) + T(x)d (X1, X2, ..., X7,)
hold for all x, x1, x5, x5, ..., %y, X5, € N.

Majeed and Adhab [4] defined Generalized (o, t) n-derivation in near rings. An n-additive mapping F: N X N....X
N — N is called a right generalized (o, 7) n-derivation associated with (o, t) n-derivation d on N if the relations
F(x1%1, X, %) = F(x1, %5, ..., %)0(x1) + () (X1, X5, ..., Xp)
F(xy,%5%5, .0, %) = F(xq,%0,...,x)0(x3) +t(x)d(x1,%5,...,%,)

F(x1, X0,y XnXg) = F(X1,%5,..., %)0(%5) + 7(x,)d (X1, X5,...,%5)
hold for all x;, x1, x5, x5, ..., X,, X5, € N.

An n-additive mapping F: N X N....x N — N is called a left generalized (o, T) n-derivation associated with (o, 7) n-
derivation d on N if the relations

F(xty2x1, %0, .., xp) = d(xq, X, x5)0(x1) +7(0)F(x1, X0, .., Xp)

F(xy,%5 X3, ..., %) = d(xq,%2,...,%,)0(x3) + T(x)F (x4, %3,...,%,)

F(x1, %, X0 %) = d(xq, %5, ..., x)00%) + T00)F (X1, %5,...,%7)
hold for all x;, x1, x5, x5, ..., X,, Xy, € N.

A mapping F: N™ - N is called a generalized (o, 7) n-derivation associated with (g, ) n-derivation on N if F is both
a right generalized and a left generalized (o, T) n-derivation with associated (o, T) n-derivation d on N.

2. PRELIMINARY RESULTS
We begin with several Lemmas, most of which have been proved elsewhere.

Lemma 2.1: [1, Lemmas 1.2] Let N be 3-prime near ring.
(i) Ifz e Z\{0}, then z is not a zero divisor.
(if) 1f Z\{0} and x is an element of N for which xz € Z, then x € Z.

Lemma 2.2: [1, Lemmas 1.3 and Lemma 1.4] Let N be 3-prime near ring and U be a nonzero semigroup ideal of N.
(i) Ifx,y € Nand xUy = {0}, thenx =0ory = 0.
(i) If x € N and xU = {0} or Ux = {0}, then x = 0.

Lemma 2.3: [1, Lemma 1.5] If N is a 3-prime near ring and Z contains a nonzero semigroup left ideal or a nonzero
semigroup right ideal, then N is a commutative ring.

Lemma 2.4: [4, Lemma 2.9] If N is a 3-prime near ring admitting a generalized (o, 7) n-derivation F associated with a
(0, T) n-derivation d of N, then
(dxq, %9, .. xp)o(x1 ) + T(x)F (X1, Xgy v, X))y = d(Xq, X3, oo, X )0 (7)Y + T(x)F (X1, X3y e, X)),
(d(xq, X9, ooy )0 (x3) + T F (X1, X5, 0, X))V = d(Xq, X2, ..., X0 )0 (x5)y + T(X5)F (X1, X5, ..., X)) V5

(A1, x5, .0y x0)0 () + T(X)F (X1, X, ..o, X))y = A (X1, Xg, ..o, X )T (%)Y + T(xn)F (X1, X5, e, X))y
forall x;,x1,x5,%3,..., %, %5,y € N.

Lemma 2.5: [2, Lemma 4] Let N be an arbitrary near ring. Let S and T be non-empty subsets of N such that st = —ts
foralls € Sandt € T.Ifa,b € S and cis an element of T for which —c € T, then (ab)c = c(ab).

Lemma 2.6: Let N be a 3-prime near ring and Uy, U,, ..., U,, be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that 7(U;) = U, fori = 1,2,...,n. If d is a nonzero (o, 7) n-derivation on N, then d(U,,U,,...,U,) # {0}.

Proof: Let
d(uq,uy,....,u,) = Oforallu, € Uy, u, € U,,...,u, € U,. 2.1)

Replacing u, by u,r;, where r;, € N in (2.1), we get
d(uq, Uy, ..., uy)o(ry) + t(u)d(ry, Uy, ..., uy) =0

and using (2.1), we get t(u,)d(ry, uy,....,u,) = 0. Since t(U;) = U; fori = 1,2,...,n,
Uld(T‘l, Uy, ... .,un) = 0.
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Using Lemma 2.2(ii), we obtain
d(r, ug, ..., uy) = 0. (2.2)

Replacing u, by u,r,, where r, € N in (2.2), we find
d(ry,uy, ..., up)a(ry) + 1(uy)d(r, e, ..., uy) =0
and using (2.2), we get t(u,)d(ry,75,...., Uy) = 0i.e. U d(ry, 15, ..., uy) = 0.

Another application of by Lemma 2.2(ii) yields that d(ry,1y,....,u,) = 0. Proceeding as above inductively, we
conclude that d(ry,13,....,1,) = 0 forall ry,1,,...,1, € N, a contradiction which completes the proof.

Lemma 2.7: Let N be a 3-prime near ring and Uy, U,, ..., U,, be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that o(U;) = Uy, t(U;) = U;for i =1,2,...,n. If d is a nonzero (o,7) n-derivation on N such that
d(Ul, U2,.. . Un)a = {0} or ad(Ul, Uz,. . Un) = {O}, then a= 0.

Proof: Suppose that d(U,, U,,...Uy,)a = {0}. Then
d(uq, uy,...uy)a = Oforallu, € U;,u, € U,,...,u, € Up,. (2.3)

Replacing u, by u,u; foru; € U, in (2.3), we get
(d(uq, uy, ... uy)o(uy) +t(u)d(uy, uy, ... uy))a = 0.

Using Lemma 2.4 and (2.3), we find
d(uq,uy, ... uy)o(uy)a = 0.

Since ¢(U;) = U,, we have
d(ui,uy,...uy)lU;a = 0.

Using Lemma 2.2 (i) and Lemma 2.6, we obtain a=0.

Lemma 2.8: Let N be a 3-prime near ring and Uy, U,, ..., U,, be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that o(U,) = Uy;t(U;) = U; and U; n Z \ {0}. If d is a (o, T) n-derivation on N, then d(Z,N,N,...,N) <
Z.

Proof: Suppose that z € U; n Z. Then
d(zx1,%9,..., %) = d(x12,%5,...,%,) forall x;,x,,...,x, € N,
d(z,x5,...,%,)0(x1) + T(2)d (%1, X5, ..., %) = T(x1)d(Z, %5, ..., x0) + d(xq,X3,...,%,)0(2)

By hypothesis
d(z,x,..., %)%, = x,d(2,%5,...,x,) forall x;,x,,...,x, € Nandz € Z.
Hence d(Z,N,N,...,N) € Z.

Lemma 2.9: Let N be a 3-prime near ring and Uy, U,, ..., U, be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that o(U;) = U;, t(U;) = U; for i =1,2,....,n. If F is a nonzero generalized (o, 7) n-derivation
associated with a (o, t) n-derivation d on N, then F(U,, U,,...,U,) # {0}.

Proof: Let
F(uq,uy,...,uy) = Oforallu, € Uj,u, € Uy,...,u, € U,. (2.4)

Replacing u, by u,ry, where r;, € N in (2.4) and using it, we get
T(ul)d(rl,uz,.. .,un) = 0 fOI’ a" ul € Ul' uz € Uz,. ..,un € Un and T‘l € N. (2.5)

Since t(U;) = U; fori =1,2,....,n, we get
U,d(ry,uy,...,u,) = Oforall u, € U,,...,u, € U, andr; € N.

Applying Lemma 2.2(ii), we find
d(ry,uy,...,u,) =0forallu, € U,,...,u, € U,andr; € N. (2.6)

Now replacing u, by wu,r, in (2.6) for r, € N, we get t(u,)d(r,71s,...,u,) =0 and by hypothesis
U,d(ry, 1y, ..., uy) = {0}. Again application of Lemma 2.2(ii) yields that d(ry, 1y, us,...,u,) =0forall u; €
Us,...,u, € U,andr,,r, € N. Proceeding inductively, we get d(r,1s,,...,1,) =0forallr,r,...,1, € N.
i.e., d=0. Hence

F(riug, uy, ..., uy) = F(ry, uy, ..., uy)o(uy) = 0forallu, € U;,u, € U,,...,u, € Uyandr, € N
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which implies that F (ry, us,...,u,)U; = 0. By Lemma 2.2 (ii), we find
F(ry,uy,...,u,) =0forallu, € U,,...,u, € U,andr, € N. (2.7

Replacing u, by r,u, in (2.7), we get F(ry, 1y, ..., u,)U, = {0} and Lemma 2.2 (ii) gives
F(ry,1y,...,u,) =0forallr,r, € N.

Proceeding inductively, we obtain F = 0 on N, a contradiction.

Lemma 2.10: Let N be a 3-prime near ring and Uy, Us, ..., U, be nonzero semigroup ideals of N. Let o, T be mappings
on N such that o(U;) = U;, t(U;) = U;fori=1,2,...,n. If Fisanonzero generalized (o, t) n-derivation associated
with a (g, ) n-derivation d on N such that F (U, U,,...U,)a = {0} or aF (U, U,,...U,) = {0}, thena = 0.

Proof: Suppose that F(U,,U,,...U,)a = {0}. Then
F(uq,uy, ...uy)a = Oforallu, € Uj,u, € Uy, ...,u, € U, (2.8)

Replacing u, by u,u; where u; € U; in (2.8) and using Lemma 2.4, we obtain
d(uq,uy, ... uy)o(uy)a = 0foralluy,u; € Uy, u, € Uy,...,u, € U,.

Since 6(U;) = U; fori =1,2,...,n, we have
d(uq,uy,...uy)Uja = {0} forallu, € Uy, u, € Us,,...,u, € U,.

By Lemma 2.2 (i), either a = 0 or d(uq, uy,....,u,) = 0. If d(uy, uy, ... u,) = {0}, then

Fugui, uy,...u)a = F(ug,uy,...uy)o(uy)a + t(u)duy, uy, ... upy)a = 0
yields that F(uq,u,,...u,)U;a = 0. Again using Lemma 2.2(i), we find either a = 0 or F(uy, uy,....,u,) = 0. Later
yields contradiction by Lemma 2.9, hence we get the result.

3. MAIN RESULTS

Theorem 3.1: Let N be a 3-prime near ring and U,, U,, ..., U,be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that o(U;) = U, t(U;) = U; fori =1,2,...,n. If F is a nonzero generalized (g, t) n-derivation associated
with a (g, T) n-derivation d on N such that F(U,,U,,...,U,) € Z, then N is a commutative ring.

Proof: Ifd # 0 forall uy,u; € U, u, € U,,...,u, € Uy,, we get
Fugui, uy, ..., up) = d(ug, Uy, ..., uy)o(uy) +t(u)F(uy,uy,...,u,) € Z. (3.1)

Now commuting (3.1) with the element 7(u, ), we have
(d(ull Uz)yeeey un)a(u:,l) + T(ul)F(uir Upyeeny un))T(ul)
=t(u)(duq, Uy, ..., uy)o(uy) + t(u)F(ug,us, ..., uy)).

Using Lemma 2.4, we obtain
d(uqg, Uy, ..., uy)o@)t(uy) + tu)Fug, uy, ..., uy)t(uy)
= t(u)d @y, Uy, ..., up)oy) + t(u)t(u)Fug,uy, ..., uy).

This implies that,
d(uqg,uy, ..., uy)o()t(uy) = t(uy)d @y, Uy, ..., uy)o(uy). (3.2)

Replacing u; by ujx for x € N in (3.2) and using o(U;) = U; fori = 1,2,...,n, we find
d(uq, uy, ..., u)uixt(uy) = t(u)d Wy, uy, ..., Uy U X.

Now replacing uj by o(uy), we get
d(uqg, Uy, ..., uy)o@)xt(uy) = t(u)d Wy, Uy, ..., uy)o(uy)x.

Using (3.2), we obtain d(uq, Uy, ..., U)o (u)xt(u,) = duqg, uy, ..., uy)o(uy)t(uy)x,
d(uq,uy, ..., uy)o()x, t(u)] =0.

This implies that
d(uq,uy, ..., u)Us[x,uq] = 0.

Using Lemma 2.2 (i), we get d(uq, Uy, ...,u,) = 0 or [x,u,] = 0. Later gives U; € Z. Now if d(uq, uy,...,u,) =
forallu; € U; fori =1,2,...,n,then

F(uuy, uy, ..., uy) = u F(ui,uy,..., u,) € Z.
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An appeal to Lemma 2.1 and Lemma 2.9 gives U; S Z. Hence by Lemma 2.3, N is a commutative ring. Assume that
d = 0. From (3.1), we have F(u ui, uy,...,uy,) = t(u)F(uy, uy, ..., u,) € Z and invoking Lemma 2.1 and Lemma
2.9, we get U; € Z and N is a commutative ring by Lemma 2.3.

Theorem 3.2: Let N be a 3-prime near ring and U,, U, ..., U,, be nonzero semigroup ideals of N. Let o, 7 be mappings
on N such that o(U;) = U;, t(U;) = U; for i =1,2,...,n. If F;, F, are generalized (o, 7) n-derivations associated
with nonzero (o, t) n-derivations d;, d, respectively such that [F;(Uy,U,,...,U,), F,(Uy, Uy, ..., U,)] = {0}, then
(N, +) is abelian.

Proof: Suppose that x € N is such that
[x,Fz(Ul,Uz,...,Un)] = [x+x,F2(U1,U2,..., Un)] = 0.

Forall u;,u; € U; suchthatu, +uj € Uy,
[x + x, Fp(uy + uj, uy, ..., uy)] = 0.

This implies that

(x + )F,(uy +ug, Uy, ..., Uy) = Fo(uy +ug, g, ..., uy)(x + x),

(x + 0)F,(ug, Uy, .. Uy) + (0 +x)F(ul, Uy, ..., Uy)
=Fy(uy +uj, Uy, .., U)X + Fy(uy +uf, uy,..., Up)X,

Fy(ug, Uy, .. Uuy)(x + %) + Fy(uy, ug, ..., uy)(x + x)
=xF,(uy +ug, Uy, ..., Uy) + xF(uy +ug, uy,..., uy),

Fy(uy, Uy, ., U)X + Fo(Ug, Uy, .. U)X + Fo(ug, Uy, .., U)X + F(ug, Uy, ..., Up)X
= xF, (U, Uy, . Up) + XF (U, Uy, oo Uy) + XF, (U, Uy, .o, Uy) FXF, (WY, Ug, - v, Uy).

This implies that
) sz((u]:,-‘ui), uz, . un) = 0‘
where (uy,uy) is the additive commutator (u; + u; — u; —uy), U € Uy,...,u, € U,.

Ifr,s € Uj,wehavers € U; andrs +rs = r(s +s) € U, and since [F; (U, U,,...,Uy), F,(Uy, Uy, ..., Uy)] = {0},
taking x = F;(rs,u,...,u,) wherer,s € U, ujy € Uy,...,u, € U, gives
[FI(T'S, ué, .o .,u,’,l), FZ(Ul' Uz,. oy Un)] = {0}
= [Fi(rs,uy,..., up) + Fi(rs,uy, ..., up), F,(Uy, Uy, ..., Up)]

Arguing in the similar manner as above, we get
Fl(Ulz, U2,..., Un)Fz(ul +u£ _ul _ui,uz,...,un) = {O}.

Since U? is a semigroup ideal, Lemma 2.10 gives

Fy(uy +uy —uy —ug, up, us, ..., uy) = 0 3.3)
for all uy, u; € U; suchthatu, +uj € U;. Nowtake u; = rx'andu; =ry forr € U;andx’,y’ € N, so that
u,upand uy, +uy = rx’ +ry’ =r(x' +y") € U;. It follows from relation (3.3) that

F,(rx" +ry —rx' —ry',u,us,...,u,) = Oforallr € U; and x',y' € N.

Replacing r by rw for w € U, in above expression, we get

d,(Uy, Uy, ., Uw(x" +y" —x" —y") = {0}
forallw e U;and x',y' € Nie., d,(Uy, Uy, ..., U )U (x" +y' —x'—y") ={0}forall x’,y’ € N and by Lemma 2.2
(i) and Lemma 2.6, we getx' +y'—x'—y' =0 forall x’,y' € N and hence (N, +) is abelian.

Theorem 3.3: Let N be a 3-prime near ring and U, U, ..., U,, be nonzero semigroup ideals of N. Let g, 7 be mappings
on N such that a(U;) = U;, T(U;) = U; fori=1,2,...,n. If F;, F, are generalized (o, t) n-derivations associated
with nonzero (o,t) n-derivations dq,d, respectively such that F,(U,,U,,...,U,) o F,(Uy,U,,...,U,) = {0}, then
(N, +) is abelian.

Proof: Assume that x € N is such that
X o FZ(UllUZ""!Un) = (x +.x) o FZ(UIIUZI"'FU‘H.) = O.

For all u,,uj € U, suchthatu, + u; € Uy,
(x +x)o Fy(uy +ug,uy,...,uy) = 0,

(c+20)F,(uy +ug, Uy, .. uy) + F(ug +uj,uy,. . up)(x+x) =0,
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(x +0)F,(ug, Uy, .. Uy) + (0 +2)F,(ug, Uy, ..., Uy)
= —F(u; +ug, Uy, .., U)X — Fy(uy +ug, uy,..., Up)X,

XFy(uq, Uy, .y Uy) + XFy(Ug, Uy, .o Uy) + XF (U, Uy, ..o, Uy) + XF(Ug, Uy, . Uy)
= —F,(u; +ug, Uy, .., U)X — Fp(uqy +uf, y,..., Up)X,

XF,(uq, Uy, Uy) + xF(ug, Uy, .o uy) + XF (U, Uy, ..o, Uy) + XF(ug, Uy, . Uy)
= xF,(u; +uj, uy, ..., uy) + xFy(uq +ug, Uy, ..., Uy),

ZF,(Ug, Uy, .oy Up) + XF (U, Uy, v Uy) + XFo (Ul Uy, - Uy) + XF (U, Uy, - .n, Uy)
= xF(ug, Uy, .. Upy) + XF(Up, Uy, e, Uy) + XFy (Uy, Uy, Uy + X (UL, Ug,y e, Uy ).
This implies that xF, ((uy, u1),uy,...,u,) = 0, where (uq,u;) is the additive commutator (v, + u; —uy —ug),u, €
U,,...,u, € U,. Arguing in the similar manner as in Theorem 3.2, we get the required result.

Theorem 3.4: Let N be a 2-torsion free 3-prime near ring and U;, U, ..., U,, be nonzero semigroup ideals of N. Let o, 7
be mappings on N such that o(U;) = U;,t(U;) = U; fori =1,2,...,n. If F}, F, are generalized (o, ) n-derivations
associated with (o, t) n-derivations d,, d, respectively with at least one of d,, d, not zero such that

Fi(xy, %2, 000, ) A (Y1, Y2s oo 0 Yn) + Fa(Xq, X, 0, x))d 1 (Y1, V2o V) = 0
fOI’ a" X1, Y1 € Ul’ X2,Y2 € Uz,...;xn,yn € Un,then Fl = O or Fz = 0.

Proof: By hypothesis for all x;,y; € U;; x5,¥2 € UyyeosXp, Y € Uy
Fl(xl'le e '!xn)dZ(YDyZ' e '!yn) + FZ(xllel e '!xn)dl(YDyZ' e '!yn) =0. (34)

Replacing x, by u,v, for u;,v; € U; in (3.4), we get
{di(uy, %2, ., %) (V1) + T(UDF; (01, X, -, X)) 3o (V1 V2s -0 V)
+{T(u1)F2 (171, X2yeey xn) + dZ (ul' X2yeey xn)a(vl)}dl (yl' Vareens yn) = 0'

dy (U, X2, X0)0 (W) Ay (Y1, V2000 V) + TW)FL (01, X2, -, X))o (U1, V2 -0 V)
+t(u)F(vy, X2, .o, X)) Ay (U1, V2o o0 Vi) + da(Ug, Xa, 0, X))o (V)AL (V1 Y200 V) = 0,

dy Uy, X2, 0, X)) 0 (V) A, V1, V2s -0 Yn) + TUD{FL (01, X2+, X0 )do (V1, V2s -0 V)
+F, (01, X2, X)) A1 (Y1, V2o - V)3 AUy, Xo, e, X))o (V) Ay (V1, Y2y V) = 0.

Using (3.4) middle summand is 0, we conclude that
dl(ul' Xoyeeny xn)a(vl)dZ (YI' Voreens yn) + dZ(ulle' Ty xn)a(vl)dl(yl' Yo, !yn) = 0

Since ¢ (U;) = U; fori = 1,2,...,n, we get
dy(uq, X, 0, X )V1d, (Y1, V2s o0 Vo) + dp(Ug, X2, o, X)) V1A (V1 V20 o0 Vo) = 0. (3.5)

Replacing y, by y,t for t € U, in (3.5), we obtain
dy(uy, X2, 0, )V {d, (Y1, V20 -, Yu) 0 () + T(v1) Ao (6, Y2, - V) }
+dy Uy, %o, -, )V {T (VDAL (8 Y20 - ) + A1 (VL Y20 - YR)o (D)) = 0,

dy (U, X2, X)) V1A (Y1, Y2 -, Y )0 (8) + dy(Ug, Xo, 0, X)) V1TV R (6, Y2, -0, Vi)
+dy (U, X2, X)) VIT(V) AL (E Y20 -0 Yn) + Ao (U, X, o, X)) V1A (V1 Vo) -, YO (E) = 0.

Using (3.5), we get
dy(Uy, Xgy e, X)) V1d (Y1, Yoo oo V)t + dy(Ug, X, oo, X)) V1dy (U1, Vo oo YOt = 0. (3.6)

Replacing t by td,(w,,w,,...,w,) forallw, € U;,,w, € U,,...,w, € U, in (3.6), we have
dy(uq, X2, X)) V1A (Y1, Y2 ooy Y )ty (We, W, .o, W)
+d2(u1,x2, . .,xn)vldl(yl,yz, . .,yn)tdl(wl, Wz, vy Wn) = 0.

Using (3.5) in the above relation, we obtain
dy(uy, Xz, )01 {=d1 (1, V2, -, Y ) o (We, Wa, o W)}
. ] ] _dl(ul,xz,...,xn)vldl(yl,yz,...,yn)tdz(wl,WZ,...,Wn) :0
which implies that
Zdl(ul,xz, . .,xn)vldl(yl,yz, . .,yn)tdz(wl, Wz, vy Wn) = 0,
2-torsion freeness implies that
dl(ul, xz, sy xn)vldl(yl, yz, erey yn)tdz (Wl' W2, erey Wn) = 0.
Then by Lemma 2.2 (i) and Lemma 2.6, one of d;, d, must be zero. Assuming without loss d; = 0 in which case
d, # 0, then (3.4) gives F, (xy, x5, ..., X)d2 (Y1, V2, .-, V) = 0. By using Lemma 2.7 and Lemma 2.9, we get F; = 0.
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Theorem 3.5: Let N be a 3-prime near ring; U;, U,, ..., U, be nonzero semigroup ideals of N and o, T be mappings on
N such that o(U;) = U;,t(U;) = U;. Let F;,F, be generalized (o,t) n-derivations associated with (o,7) n-
derivations d,,d, respectively such that F,(U;,U,,...,U,) e F, (U, U,,...,U,) ={0}. If d,(Z,N...,N)+# {0};
d,(Z,N...,N) # {0}and U, n Z # {0}, then N is a commutative ring. Moreover F; = 0 or F, = 0.

Proof: By hypothesis

Fl(xl'xz""'xn)FZ(.VL.VZ""'yn)+Fz(yl'.VZ""'yn)Fl(xl'xZ""'xn) = 0. (37)
for all x;,y; € Uy ; x5,9, € Uy, ..., x5,V € U,. Suppose that z; € U; N Z such that d,(zq, x5,...,x,) # 0 for all
X, € Uy,...,xp € Up,.

Replacing z; by z;x; in (3.7), we get
di (21, %3, %) 0 (X)) F (Y1, V2o oo V) + T(20)F1 (1, X2, -, X)) 2 (V1 V20 -0 V)
+F, (Y, Voo VOFL (1, X, o, x0)0(20) + (01, Y2, - V)T () dy (24, X5, ..., %) = 0.

Since z; € U, n Z\{0}and o(U,) = U;,t(U;) = U;, we have
Ay (z1, %2, X)X F, (V1. Vos o0 Yn) + 20{F1 (1, X0 oo, X)) F (V1 Y20 o0 V)
T, Yoo V) F1 (O, X0 x0)} + B (V1 Y200 V) X1 dy (21, X2, .0, X)) = 0.

Using (3.7) the middle summand is 0, we conclude that
di(z1, %2, ) Fo (Y1, V2o oo V) + B2 (0, Y20 V) %1 dy (21, %2, ., X)) = 0.

Since dq(zy,x3,...,x,) € Z \ {0}, we have
X1 Fo (1, Y250 V) + (01, Y25 )% = 0. (3.8)

Choosing z, € Z such that d,(z,,y,,...,y,) # 0 and replacing y; by z,y; in (3.8), we have
x1{d2 (22, Y2, -, Yn)0 (V1) + T(2)F (Y1, Y2 -0 V) }
HFE (1, Y2r -0 ¥0)0(22) + T(71)d2 (22, Y2, -, V)% =0,
x1d2(22, Y20 - YY1 + X2 F, (Y1, Y200 Vo) + B2V Y20 Yn)ZoX1 + y1d3(22, Y2 5+, Vo)X = 0.

Using (3.8), we obtain x;d,(Z2, Y2, .-, Vu)V1 + V1d2(25, V4, ..., Vu)x, = 0 and since d,(z3,¥,,..., V) € Z \ {0}, we
have
xX1y1 +y1x; = 0forall x;,y, € U;. (3.9)

Applying Lemma 2.5 with S = U; and T = U? shows UZ centralizes U? so that U? € Z by Lemma 2.6 and hence N is
a commutative ring by Lemma 2.3. Further, it follows that
Fi(xy, Xz X)) Fo (01, Y200 V0) = Fo(V, Yoo V) Fr (g, X2, -, %)
=—F (1, Y2 Y F2 (X1, 2,1, %)

Hence, F, (U, Uy, ..., U,)F, (U, Uy, ..., Uy,) = {0}. Therefore F; = 0 or F, = 0.

Theorem 3.6: Let N be a 3-prime near ring and U, U, ..., U,, be nonzero semigroup ideals of N. Let g, 7 be mappings
on N such that o(U;) = U; fori =1,2,...,n. If F is a generalized (o, t) n-derivation associated (o, t) n-derivation d
onNand a € N suchthat [F(Uy,Us,...,Uy,),al,, = {0}, theneither o(a) € Zord(a,a,...,a) = 0.

Proof: Forallu, € Uy, u, € U,,...,u, € U, anda € N, we have
F(uq, Uy, ..., up)o(a) = t(a)F(uqg, uy, ..., uy). (3.10)

Replacing u; by au, in (3.10), we get
{d(a,uy,...,u)o(uy) + t(a)F(uy, uy, ..., uy)}o(a)
=t(a){d(a,uy,...,u)o(uy) + t(a)F(uq, uy, ..., up)}

Using Lemma 2.4 and (3.10), we get
d(a,uy,...,up)o(u)o(a) + t(a)F(uy, Uy, ..., uy)o(a)
=t(a)d(a,uy, ..., uy)o(uy) + t(@)F(uq, Uy, ..., uy)o(a),

d(a,uy,...,u)uo(a) = t(a)d(a,uy, ..., uy)uy. (3.11)

Replacing u, by u,v, for v; € U; in(3.11) and using (3.11), we obtain
d(a,uy,...,uy)Ui[vy,0(a)] =0forallv, € Uj,u, € Us,...,u, € Uy,

By Lemma 2.2 (i), we get d(a, u,, ..., u,) = 0or[vy,a(a)] = 0. If [vy,0(a)] =0, then
vi0(a) = a(a)v, forallv, € U;. (3.12)
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Replacing v; by v;r for r€ N in (3.12) and using (3.12), we obtain U;[r,a(a)] = 0. Hence o(a) € Z. If
d(a,u,,...,u,) = 0, then replacing u, by au,, we get

d(a,a,...,uy)o(u,) +t(a)d(a,uy,...,u,) =0

d(a,a,ug,...,uy)o(uy) =0

d(a,a,us,...,u,)U, = {0}.

Using Lemma 2.2(ii), we get d(a, a, us, ..., u,) = 0. Proceeding inductively, we conclude that d(a, a, a,...,a) = 0.

Theorem 3.7: Let N be a 3-prime near ring and U, U, ..., U,, be nonzero semigroup ideals of N. Let g, 7 be mappings
on N such that ¢ is additive, o(U;) = U;, T(U;) = U; fori=1,2,...,n. If F;, F, are nonzero generalized (o,7) n —
derivations associated with (g, ) n- derivations d,, d, on N respectively such that

Fi(xq, %2, .0, x0)0 (Fo(V1, Y25+, V) + T(Ez(xpx_z'---:xn))F1(Y1'3’2'---'3’n) =0
forall x;,y, € Uy; x5,y, € Uy, ..., %5, Vs € U, , then (N, +) is abelian.

Proof: By hypothesis, we have

Fi(xq,%2,...,xp)0 (FZ(YLyZ""'yn)) + T(Fz(xlﬁxz""'xn))Fl(y1'YZ""'yn) =0 (3.13)
forall x;,y, € Uy, 5,9, € Uy, ..., Xp, YV € U,

If we choose u,,u; € U, suchthatu, +u; € Uy, then replacing y; by u; + uy in (3.13), we get
Fi(x1, X5, 0, %) 0 (Fy(ug + Uy, Vo, ¥0)) + T(Fz(xl,xz,...,xn))Fl(u1 + Uy, ys, -0 ¥n) =0,

Fi(xy, Xz, %) 0 {Fo(Ug, Yoo, V) + Fo (U, Yoo )} + T(Fa(Xg, Xa, -+, X))
Fl(ul'yZ" "!yn) + T(FZ(xlle" "!xn))Fl(u:,L'yZ" "!yn) = O'

Fi(xq, 2,000, x0)0 (Fa (U, Y2 -, V) + Fi(Xq, X2, x0) 0 (Fa(Ug, Y2, -5 V)
+T(F2(x1,x2,...,xn))Fl(ul,yz,...,yn) + T(Fz(xl,xz,...,xn))Fl(ui,yz,...,yn) =0.

Using (3.13), we get

Fy (g, %, x0) 0 (Fp(Ug, Y2, -, ¥0)) + Fr (g, Xg, -, X0) 0 (Fp(Ug, Y2, -5 V)

Fy (g, %0, %0)0 (Fp(—Ug, Yoo, V) ) + Fi(, X, 00 (Fa(—ug, ¥, -, ) = 0.

Fy (g, %, x0)0 (Fp(ug + Uy — Uy — U4, Y5, ¥)) =0,

Fy(Uy, Us,..., Up)o (Fp((ug, u1), Y2, 1)) = {0}
for all wu,,u;€ U, such that wu;+uj€ Uy, € U,...,yp, € U,. Using Lemma 210, we get
o (F;((uqg,u1),¥2,-.-,¥,)) = 0. By hypothesis, we conclude that F,((uq,u1),¥5,...,¥,) = 0 for all u;, uj € U; such
that u, + uy € Uy, y, € U,,...,y, € U,. Arguing in the similar manner as in Theorem 3.2, we get the result.

The following examples show that the 3-primeness hypothesis in Theorems 3.1, 3.2, 3.3, 3.6 and 3.7 cannot be omitted.
Example 3.8: Let S be a left near ring. Let us consider

0 x y
N = {(O 0 z)
0 0O

Then N is a zero-symmetric left near ring with regard to matrix addition and matrix multiplication but not a 3-prime

0 0 y
near ring. If we set U = [(0 0 0)

0 0 O

x,y,ZES]

Yy € S}, then clearly U is a nonzero semigroup ideal of N. Define mappings

F,F,,dy,dy: Nx N....x N> N by
0 x; m\/0 x vy, 0 x, 0 0 zz,..2,
0 0 z]J{0 0 =z |..l0 0 z,|]]=(0 0 0 )
0 0 0/\0 O O 0 0 O 00 0
0 x1 y»\/0 x ¥ 0 X, Wn 0 0 x5 .2
0 0 zJ{0 0 =z ]|..|0 0 =z,]]=({0 0 0 '
0 0 0/\0 0 O 0 0 O 0 0 0
0 x1 »\/0 x ¥ 0 xn Wn 0 0 xxp..%
0 0 z]J{0 0 =z |..l0 0 z,|]]=(0 0 0 )
0 0 0/\0 O O 0 0 O 00 0
X1 Y\ /0 x3 ¥ 0 x, 0 0 z2z,..2,
d, 0 0 zJ){0 0 2z ].{0 0 2z,]]=|0 O 0 .
0 0 0/\0 0 O 0 O 0 0 0
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0 x y 0 x =z 0 x y 0y z
Define o,7: N - N by o—<0 0 z> = <0 0 y) and T(O 0 z) = (O 0 x>.
0 0 O 0 0 O 0 0 O 0 0 O

If we choose U; = U, =...= U, = U, then it is easy to see that F; and F, are nonzero generalized (o, t) n- derivations
associated with (o, T) n- derivations d, and d, on N respectively such that the following situations hold:

()[F (Uy, Us,..., U, F, (U, Uy, ..., U] = {0},

(ii) F,(Uy, Uy,...,Uy) o Fy(Uy,Uy,...,U,) = {0},

(iii) Fy (1, X3, -, %) 0 (Fo (01, Y20 ¥0)) + T(F2 (1, %2, -+, %) )Fs (Y1, V20 V) = O

(iv) [F(Uy, Uy,..., Up),aly, = {0} forall xy,y; € Us; X3, ¥5 € Uy, ..; %0,V € Up; 0(Uy) # Uy, T(U;) # U for
i=12,...,n,0(a) ¢ Z;d.(a,aq,...,a) # 0and (N,+) is not abelian.

Example 3.9: Let S be a left near ring. Let us consider

0 x y
N={<0 0 0) x,y,zeS}
0 z O

Then N is a zero-symmetric left near ring with regard to matrix addition and matrix multiplication but not a 3-prime

0 x O
near ring. If we set U = (0 0 0)

0 00
F,diNX N....x N—> N by

0 X1 N 0 X2 Y2 0 Xn Yn 0 Y1Y2 «-Yn 0
Fl[l0o 0 O0]J{0O O O0}]..{0O O O =0 0 0
0 zz 0/\0 z O 0 z, O 0 0 0
0 x5 y1\/0 x2 ¥ 0 xpn ¥ 0 0 0
d (0 0 0)(0 0 0)...(0 0 0) =<O 0 0)
0 zz 0/\0 z O 0 z, O 0 zzy..z, O
0 x y 0 y 0 x y 0 y O
Define o,7: N - N by a<0 0 0) = <0 0) and r(O 0 0) = (0 0 0)
0 z O 0 x O 0 z O 0 x O
If we choose U, = U, =...= U, = U, then it is easy to see that F ia a nonzero generalized (o,t) n- derivation

associated with (o,t) n- derivation d on N satisfying F(Uy,U,,...,Uy,) € Z; a(U;) # U;, t(U;) # U; for i =
1,2,...,nand N is not a commutative ring.

X € S}, then clearly U is a nonzero semigroup ideal of N. Define mappings

oS N
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