International Journal of Mathematical Archive-2(9), 2011, Page: 1628-1635 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

On ωI -continuous functions in Ideal topological spaces

*N. Chandramathi¹ and K. Bhuvaneswari²

¹Department of Mathematics, Hindusthan college of Engineering and Technology, Coimbatore-32 *E-mail: mathi.chandra303@gmail.com

²Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India E-mail: drkbmaths@gmail.com

(Received on: 25-08-11; Accepted on: 09-09-11)

ABSTRACT

In this paper, ω I -closed sets and, ω I -open sets are used to define and investigate a new class of functions and relationship between this new class and other classes of functions are established.

2000 Mathematics subject classification: 54A05, 54A10

Key words: ideal, local function, semi-I-open set, ω *-closed,* ω *I-closed sets and* ω *I -continuity.*

1. Introduction and preliminaries:

Topological ideal plays an important role in topology for several years. In 1992, Jankovic and Hamlett [6] introduced the notion of I-open sets in topological spaces .El-monsef et.al [6] investigated I-open sets and I-continuous functions introduced and investigated the notion of ω I-closed sets. Quite recently, Hatir and Noiri [7] have introduced the notion of semi-I-open sets and semi-I-continuous function to obtain a decomposition of continuity via ideals.

In this paper, by using ω I-closed sets due to N. chandramathi et. al [3], we introduce the notion of ωI -continuous functions in ideal topological spaces and obtain several properties of ωI -continuity and the relationship between this function and other related functions.

An ideal I on a topological space (X, τ) is a Collection of subsets of X which satisfies

- (i) $A \in I$ and $B \subset A$ implies $B \in I$ and
- (ii) $A \in I$ and $B \in I$ implies $A \bigcup B \in I$.

Given a topological space (X, τ) with an ideal I on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator

(.) *: $\mathscr{O}(X) \to \mathscr{O}(X)$, called a local function [7] of A with respect to τ and I is defined as follows: for $A \subset X$, A * (I, τ)= { $x \in X / U \cap A \notin I$ for every $U \in \tau$ (x)} where τ (x) = U $\in \tau \mid x \in U$. We will make use of the basic facts about the local functions without mentioning it explicitly. A Kuratowski closure operator cl^{*} (.) for a topology τ^* (I, τ), called the * – topology, finer than τ and is defined by $cl^*(A) = A \cup A^*(I, \tau)$. When there is no chance for confusion we simply write A^* instead $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $A^*(I, \tau)$. X* is often a proper subset of X. The hypothesis X = X* is equivalent to the hypothesis $\tau \cap I = \phi$ For every ideal topological space (X, τ , I), there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I, \tau) = \{U \setminus I : U \in \tau \text{ and } I \in I\}$, but in general $\beta(I, \tau)$ is not always a topology[10]. If is I an ideal on X, Then (X, τ, I) is called ideal space. By an ideal space we always mean an ideal topological space (X, τ, I) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will respectively denote the closure and interior of A in $(X, \tau,)$ and $cl^*(A)$ and $int^*(A)$ will respectively denote the closure and interior of A in (X, τ, I)

*Corresponding author*N. Chandramathi¹, *E-mail: mathi.chandra303@gmail.com International Journal of Mathematical Archive- 2 (9), Sept. – 2011

Definition: 1.1

A subset A of a space (X, τ) is called

(i) Semi open [7] if $A \subseteq cl$ (int (A)) and semi closed if $int(cl (A)) \subseteq A$. (ii) Pre-open [7] if $A \subseteq int (cl (A))$ and pre-closed if cl (int (A)) $\subseteq A$. (iii) \mathcal{O} -closed if [7] Cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is semi-open in X, \mathcal{O} -open if

X - A is ω – Closed.

A subset A of a space (X, τ, I) is called (iv) Semi - I -open [7] if A \subseteq Cl^{*}(Int (A)) semi–I-Closed if int (cl^{*} (A)) \subseteq A (v) α -I-open [7] if A \subset Int (Cl^{*}(Int (A).

2. \mathcal{O} I – closed sets:

Definition: 2.1 A subset A of an ideal topological space (X, τ, I) is called ωI – closed[3] if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is semi- I- open in (X, τ, I) . The complement of ωI -closed set is called ωI - open if X – A is ωI – closed. We denote the family of all ωI – closed sets by $\omega IC(X, \tau, I)$.

Theorem: 2.1 Every open set is ω I –open.

Proof: Let U be an open set. We need to show that U is ωI –open. For this we show that X-U is ωI –closed. Let X-U $\subset G$ where G is semi-I-Open in X. Since X-U is closed. So by [8, Theorem2.3] or $cl^*(X-U) \subseteq cl(X-U) \subseteq G$.this proves that X-U is ωI –closed or U is ωI –open.

Theorem: 2.2 A set A is ωI –open iff $F \subseteq \operatorname{int}^*(A)$ whenever F is semi–I-closed and $F \subseteq A$ **Proof:** Suppose that $F \subseteq \operatorname{int}^*(A)$, where F is semi-I-closed and $F \subseteq A$.Let $A^c \subseteq U$, where U is semi-I-open. Then $U^c \subseteq A$ and U^c is semi-I-closed. Therefore, $U^c \subseteq \operatorname{int}^*(A)$.Since $U^c \subseteq \operatorname{int}^*(A)$, we have $(\operatorname{int}^*(A))^c \subseteq U$, i.e $cl^*(A^c) \subseteq U$, since $cl^*(A^c) = (\operatorname{int}^*(A))^c$. Thus A^c is ωI -closed, i.e. A is ωI -open.

Theorem: 2.3 If A is an ω I –open set of (X, τ, I) such that $\operatorname{int}^*(A) \subseteq B \subseteq A$ then B is also an ω I –open set of (X, τ, I)

Proof: Let U be a semi-I-closed set of (X, τ, I) such that $U \subset B$. Then, $U \subset A$ since A is ω I –open set, we have $F \subseteq int^*(A)$ but $int^*(A) \subseteq int^*(B)$, implies $F \subseteq int^*(B)$. Therefore by theorem 2.2, B is also an ω I –open set of (X, τ, I) .

Theorem: 2.4 Let (X, τ, I) be an ideal space and A a non empty subset of X. Then A is ω I –closed if and only if $A \bigcup (X - cl^*(A))$ is ω I –closed.

Proof: Suppose A is ω I -closed. Let U be a semi-I-open set such that $A \bigcup (X - cl^*(A)) \subset U$. Then $X - U \subset X - (A \bigcup (X - cl^*(A)) = cl^*(A) - A$.

Since A is ωI -closed by [4, theorem 2.10] $X - U = \phi$ and hence X = U. Thus X is the only set containing $A \bigcup (X - cl^*(A))$. This gives, $[A \bigcup (X - cl^*(A))]^* \subset X$. This proves, $A \bigcup (X - cl^*(A))$ is ωI -closed. Conversely let F be any semi-I-closed set such that $F \subset cl^*(A) - A$. Since $cl^*(A) - A = X - (A \bigcup (X - cl^*(A)))$. This gives $A \bigcup (X - cl^*(A) \subset X - F)$ and X - F is semi-I-open. By hypothesis $[A \bigcup (X - cl^*(A))]^* = X - F$

*N. Chandramathi¹ and K. Bhuvaneswari²/On *OI* -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

and hence $F \subset X - cl^*(A)$ since $F \subset cl^*(A) - A$ it proves that $F = \phi$ and hence $cl^*(A) \subset X - F$ and X - F is semi-I-closed. This proves that A is ω I-closed.

Theorem: 2.5 Let (X, τ, I) be an ideal space and $A \subseteq X$. Then $A \bigcup (X - cl^*(A))$ is ωI -closed if and only if $cl^*(A) - A$ is ωI -open.

Proof: Let $A \bigcup (X - cl^*(A))$ be ωI -closed. We show that $X - (cl^*(A) - A)$ is ωI -closed. Let U be a semi-Iopen set containing $X - (cl^*(A) - A)$ Then $X - U \subseteq (cl^*(A) - A)$. By theorem [4, theorem 2.10,] $X - U = \phi$. Therefore, X is the only semi-I-open set which contains $X - (cl^*(A) - A)$ and hence $(X - (cl^*(A) - A))^* \subseteq X$. this proves $X - (cl^*(A) - A)$ is ωI -closed or $cl^*(A) - A$ is ωI -open.

Conversely, let $cl^*(A) - A$ is ωI -open. Then $X - (cl^*(A) - A) = A \cup (X - cl^*(A))$ is ωI -closed.

Corollary: 2.1 Let (X, τ, I) be an ideal space and $A \subseteq X$. Then A is ωI -closed if and only if $cl^*(A) - A$ is ωI -open.

Theorem: 2.6 For a subset $A \subseteq X$ the following are equivalent:

- (i) A is $\mathcal{O}I$ -closed
- (ii) $cl^*(A) A$ contains no non empty semi-I-closed set
- (iii) $cl^*(A) A$ is ω I-open.

Proof: (i) \Leftrightarrow (ii) by [4, theorem2.10], and (i) \Leftrightarrow (iii) by corollary above.

Theorem: 2.7 Let (X, τ, I) be an ideal space .Then every subset of X is ωI –closed if and only if every semi –I-open set is *-closed

Proof: Suppose every subset of X is ωI -closed .Let U be semi-I-open set then U is ωI -closed and $cl^*(A) \subseteq U$ implies $U^* \subseteq U$. Hence U is *-closed.

Conversely, suppose that every semi –I-open set is *-closed. Let U be a non empty subset of X contained in a semi-I-open set U. Then $A^* \subseteq U^*$ implies $A^* \subseteq U$. This proves that A is ω I –closed.

3. *WI* -continuous functions:

Definition: 3.1 A function f: $(X, \tau, I) \rightarrow (Y, \sigma)$ is called ωI -continuous if for every closed set V of (Y, σ) , $f^{-1}(V) \in \omega IC(X, \tau, I)$

Definition: 3.2 An ideal topological space (X, τ, I) is said to be T-dense [14] if every subset of X is *-dense in itself.

Remark: 3.1 Every continuous function is ωI -continuous but not conversely as seen from the following example.

Example: 3.1 Let $X = Y = \{a, b, c, d\}, \tau = \sigma = \{X, \phi, \{a, b\}\}$ $I = \{\phi, \{a\}\}.$

Define $f: (X, \tau, I) \to (Y, \sigma)$ by f(a) = a, f(b) = c, f(c) = b, f(d) = d. Then f is ωI -continuous but not continuous. Since $U = \{a, b\}$ is ωI -open in Y but $f^{-1}(U) = \{a, c\}$ is not open in X.

*N. Chandramathi¹ and K. Bhuvaneswari²/On *WI* -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

Definition: 3.3 A space is (X, τ, I) called a T^*_{ω} space if every ωI -closed set in it is closed.

Theorem: 3.1 Let (X, τ, I) be an ideal topological space, (Z, η) be topological space and (Y, σ, J) be a T^*_{ω} space. Then the composition $g \circ f : (X, \tau, I) \to (Z, \eta)$ of the ωI -continuous maps f: $(X, \tau, I) \to (Y, \sigma, J)$ and g: $(Y, \sigma, J) \to (Z, \eta)$ is ωI -continuous.

Proof: Let F be any closed set of (Z, η) . Then $g^{-1}(F)$ is closed in closed in (Y, σ, J) . Since g is ωI -continuous and (Y, σ, J) is a T^*_{ω} space. Since $g^{-1}(F)$ is closed in (Y, σ, J) and f is ωI -continuous, $f^{-1}(g^{-1}(F))$ is ωI - closed in (X, τ, I) . But $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ and so $g \circ f$ is ωI -continuous.

Theorem: 3.2 Let f: $(X, \tau, I) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma, J) \rightarrow (Z, \mu)$ be two functions where I and J are ideals on X and Y respectively. Then $g \circ f$ is ωI -continuous if f is ωI -continuous and g is continuous

Proof: Let $w \in \mu$. Then $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})(w) = f^{-1}g^{-1}(w)$ since $g^{-1}(w)$ is closed ad g is ωI -continuous. Now since f is ωI -continuous. So $f^{-1}g^{-1}(w)$ is ωI -closed. Hence $g \circ f$ is ωI -continuous.

Definition: 3.4[1] If (X, τ, I) is an ideal topological space and A is a subset of X, we denote $\tau|_A$ the relative topology on A and $I_A = \{A \cap I : I \in I\}$ is obviously an ideal on A.

Theorem: 3.3 Let f: $(X, \tau, I) \to (Y, \sigma)$ be a ωI -continuous function and let A be * - closed, then the restriction $f|_A: (A, \tau|_A, I|_A) \to (Y, \sigma)$ is ωI -continuous.

Proof: Let V be any closed subset of (Y, σ) since f is ωI -continuous we have $f^{-1}(V)$ is ωI -closed. Also, $(f|_A)^{-1} = f^{-1}(V) \cap A$. Since A is * -closed, then by [4, theorem 2.6] $f^{-1}(V) \cap A \in \omega IC(X, \tau)$. On the other hand $(f|_A)^{-1} = A \cap f^{-1}(V)$ and $(f|_A)^{-1} \in \omega IC(A, \tau|_A, I|_A)$. This shows that $f|_A: (A, \tau|_A, I|_A)$ is ωI -continuous.

Theorem: 3.4 Let f: $(X, \tau, I) \to (Y, \sigma, J)$ be a function and let $\{U_{\alpha} : \alpha \in \Delta\}$ be an open cover of a T-dense space X. If the restriction function $f \mid_{U_{\alpha}} is \alpha I$ -continuous for each $\alpha \in \Delta$, then f is αI -continuous.

Proof: Let V be an arbitrary open set in (Y, σ, J) . Then for each $\alpha \in \Delta$, we have $\left[\left(f \mid U_{\alpha} \right)^{-1} (V) \right] = \left(f^{-1}(V) \cap U_{\alpha} \right)$. Because $f \mid_{U_{\alpha}}$ is ωI -continuous, therefore $f^{-1}(V) \cap U_{\alpha}$ is ωI -open in X for each $\alpha \in \Delta$. Since for each $\alpha \in \Delta$, U_{α} is open in X, $f^{-1}(V) = \bigcup_{\alpha \in \Delta} \left(f^{-1}(V) \cap U_{\alpha} \right)$ is ωI -open .by [4, theorem 2.5] $\left[\left(f \mid U_{\alpha} \right)^{-1}(V) \right]$ is ωI -open. Then by proposition $f^{-1}(V)$ is ωI -open. Hence f is ωI -continuous.

Definition: 3.5 Let x be a point of (X, τ, I) and W be a subset of (X, τ, I) . Then W is called an ωI –neighborhood of x in (X, τ, I) if there exists an ωI –open set U of (X, τ, I) such that $x \in U \subseteq W$.

Theorem: 3.5 Let (X, τ, I) be a T-dense. Then for a function f: $(X, \tau, I) \rightarrow (Y, \sigma)$, the following are equivalent. (i) The function f is ωI -continuous.

(ii) The inverse image of each open set is ωI -open.

*N. Chandramathi¹ and K. Bhuvaneswari²/On *OI* -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

(iii) For each point x in (X, τ, I) and each open set V in (Y, σ) with $f(x) \in V$, there is an ωI - Open set U in (X, τ, I) such that $x \in U, f(U) \subseteq V$.

(iv) The inverse image of each closed set in (Y, σ) is ωI -closed.

(v) For each x in (X, τ, I) , the inverse of every neighborhood of f(x) is an ωI -neighborhood of x.

(vi) For each x in (X, τ, I) and each neighborhood N of f(x), there is an ωI -neighborhood W of x such that $f(W) \subseteq N$.

(vii) For each subset A of (X, τ, I) , $f(\omega I - cl(A)) \subseteq cl(f(A))$

(viii) For each subset B of (Y, σ) , $\omega I - cl(f^{-1}(B)) \subseteq f^{-1}(cl(B))$.

Proof: The implications $(i) \Leftrightarrow (ii)$: This follows from Theorem 3.1.

 $(i) \Leftrightarrow (iii)$ Suppose that (iii) holds and let V be an open set $in(Y, \sigma)$ and let $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there exists an ωI -open set U, such that $x \in U_x$ and $f(U_x) \subseteq V$, Now, $x \in U_x \subseteq f^{-1}(V)$. Hence $f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x$ and so by theorem 2.6 [4], $f^{-1}(V)$ is ωI -open in and (X, τ, I) therefore, f is ωI -continuous.

Conversely, suppose that (i) holds and let $f(x) \in V$. since f is ωI -continuous, $f^{-1}(V)$ is ωI -open in X. By putting $U = f^{-1}(V)$, we have $x \in U$ and

 $(ii) \Leftrightarrow (iv)$ This result follows from the fact that if A is a subset of (Y, σ) , then $f^{-1}(A^c) = (f^{-1}(A))^c$.

 $(ii) \to (v)$: For x in (X, τ, I) let N be a neighborhood of f(x). Then there exists an open set U in (Y, σ) such that $f(x) \in U \subseteq N$. Consequently, $f^{-1}(U)$ is an αI -open set in (X, τ, I) and $f^{-1}(f(x)) \in f^{-1}(U) \subseteq f^{-1}(N)$. that is $x \in f^{-1}(U) \subseteq f^{-1}(N)$. Thus $f^{-1}(N)$ is an neighborhood of x.

 $(v) \rightarrow (vi)$.Let $x \in X$ and N be a neighborhood of f(x).Then by assumption, $W = f^{-1}(N)$ is an ωI -neighborhood of x and $f(W) = f(f^{-1}(N)) \subseteq N$.

 $(vi) \rightarrow (iii)$. For x in (X, τ, I) , Let V be an open set containing f(x). Then V is a neighborhood of f(x), so by assumption, there exists an ωI - neighborhood W of x such that $f(W) \subseteq V$. Hence there exists an ωI - open set U in (X, τ, I) such that $x \in U \subseteq W$ and so $f(U) \subseteq f(W) \subseteq V$.

 $(vii) \Leftrightarrow (iv)$: Suppose that (iv) holds and let A be a subset of (X, τ, I) . Since $A \subseteq f^{-1}(f(A))$, we have $A \subseteq f^{-1}(cl(f(A)))$. Since cl(f(A) is a closed set in (Y, σ) , by assumption $f^{-1}(cl(f(A)))$ is an ωI -closed set containing A. Consequently, $\omega I - cl(A) \subseteq f^{-1}(cl(f(A)))$. Thus $f(\omega I - cl(A)) \subseteq f(f^{-1}(cl(f(A)))) \subseteq cl(f(A))$.

Conversely, suppose that (vii) holds for any subset A of (X, τ, I) . Let F be a closed subset of (Y, σ) . Then by assumption, i.e. $f(\omega I - cl(f^{-1}(F)) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$. $(\omega I - cl(f^{-1}(F)) \subseteq f^{-1}(F))$ and so $f^{-1}(F)$ is ωI -closed.

 $(vii) \Leftrightarrow (viii)$: Suppose that (vii) holds and B be any subset of (Y, σ) . Then replacing A by in $f^{-1}(B)$ in (vii), we obtain $f(\omega I - cl(f^{-1}(B)) \subseteq cl(f(f^{-1}(B)) \subseteq cl(B)) = cl(B)$ i.e $(\omega I - cl(f^{-1}(B)) \subseteq (f^{-1}cl(B))$.

*N. Chandramathi¹ and K. Bhuvaneswari²/On Øl -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

Conversely, suppose that (viii) holds. Let B=f(A) where A is a subset of (X, τ, I) . Then we have, $(\omega I - cl(A)) \subseteq (\omega I - cl(f^{-1}(B)) \subseteq f^{-1}(cl(f(A)))$ and so $f(\omega I - cl(A)) \subseteq (cl(f(A)))$.

Theorem: 3.6 If (X, τ, I) is a T-dense space and a function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is ωI -continuous, then the graph function $g: X \rightarrow X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is ωI -continuous.

Proof: Let f be ωI -continuous. Now let $x \in X$ and let W be any open set in $X \times Y$ containing g(x) = (x, f(x)). Then there exists a basic open set $U \times V$ such that $g(x) \subset U \times V \subset W$. Since f is ωI -continuous, there exists a ωI -open set U_1 in X such that $x \in U_1 \subset X$ and $f(U_1) \subset V$. Then by [4, Theorem 2.5]s $U_1 \cap U \in \omega IO(X, \tau)$ and $U_1 \cap U \subset U$, then $g(U_1 \cap U) \subset U \times V \subset W$. This shows that g is ωI -continuous.

Theorem: 3.7 A function f: $(X, \tau) \rightarrow (Y, \sigma, J)$ is ωI -continuous, if the graph function $g: X \rightarrow X \times Y$ defined by g(x) = (x, f(x)) for each $x \in X$ is ωI -continuous.

Proof: Suppose that g is ωI -continuous and let V be open set in Y containing f(x). Then $X \times V$ is open set in $X \times Y$ and by ωI -continuous of g, there exists a ωI -open set U containing x such that $g(U) \subset X \times V$. Therefore, we obtain $f(U) \subset V$. This shows that f is ωI -continuous.

Theorem: 3.8 Let $\{X_{\alpha} : \alpha \in \Delta\}$ be any family of ideal topological spaces. If f: $(X, \tau, I) \to (\prod_{\alpha \in \Delta} X_{\alpha}, \sigma)$ is a ωI -continuous function, then $P_{\alpha} \circ f : X \to X_{\alpha}$ is ωI -continuous for each $\alpha \in \Delta$, where P_{α} is the projection of $\prod X_{\alpha}$ onto X_{α} .

Proof: We will consider a fixed $\alpha_{\circ} \in \Delta$. Let $G_{\alpha_{\circ}}$ be an open set of $X_{\alpha_{\circ}}$. Then $(P_{\alpha_{\circ}})^{-1}(G_{\alpha_{\circ}})$ is open in $\prod X_{\alpha}$. Since f is ωI -continuous, $f^{-1}((P_{\alpha_{\circ}})^{-1}(G_{\alpha_{\circ}})) = (P_{\alpha_{\circ}} \circ f)^{-1}(G_{\alpha_{\circ}})$ is ωI -open in X. Thus, $P_{\alpha} \circ f$ is ωI -continuous.

Theorem: 3.9 For any bijection f: $(X, \mathcal{T}) \rightarrow (Y, \sigma, I)$, the following statements are equivalent:

(i) $f^{-1}: (Y, \sigma, I) \to (X, \tau)$ is ωI -continuous. (ii) f (U) is ωI -open in Y for every open set U in X.

(ii) f(U) is ωI -closed in Y for every closed set U in X.

Proof: The proof is trivial.

Definition: 3.7 A collection $\{A_{\alpha} : \alpha \in \nabla\}$ of ωI – open set in an ideal topological Space X is called a ωI -open cover of a subset B of X is $B \subset \bigcup \{A_{\alpha} : \alpha \in \nabla\}$ holds.

Definition: 3.8 An ideal topological space (X, τ, I) is called ω I -compact if for every ω I -open cover $\{W_{\alpha} : \alpha \in \Delta\}$ of (X, τ, I) there exists a finite subset Δ_{\circ} of Δ such that $(X - \bigcup \{W_{\alpha} : \alpha \in \Delta_{\circ}\}) \in I$.

Lemma: 3.1 [Newcomb, 1967]: For any function f: $(X, \tau, I) \rightarrow (Y, \tau)$, f(I) is ideal on Y.

Theorem: 3.10 The image of a ωI -compact space under a ωI -continuous surjective function is f(I) -compact. **Proof:** Let f: $(X, \tau, I) \to (Y, \tau,)$ be an ωI -continuous subjective function and $\{A_{\alpha} : \alpha \in \nabla\}$ be an open cover of Y. Then $\{f^{-1}(A_{\alpha}) : \alpha \in \nabla\}$ is an ωI -open cover of X. From the assumption, there exists a finite subset ∇_0 of ∇ such that $X - \bigcup \{f^{-1}(A_{\alpha}) : \alpha \in \nabla_0\} \in I$. Therefore, $Y - \bigcup \{A_{\alpha} : \alpha \in \nabla_0\} \in f(I)$ which shows that $(Y, \sigma, f(I))$ is f(I) -compact.

© 2011, IJMA. All Rights Reserved

*N. Chandramathi¹ and K. Bhuvaneswari²/On *OI* -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

Definition: 3.9 An ideal topological space (X, τ, I) is said to be ωI – connected if X cannot be written as the disjoint union of two non – empty ωI – open sets. A subset of is ωI – connected if it is ωI – connected as a subspace.

Definition: 3.10 An ideal topological space (X, τ, I) is called ωI -normal if for every pair of disjoint ωI -closed sets A and B of (X, τ, I) , there exist disjoint ωI -open sets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$

Theorem: 3.11 If f: $(X, \tau, I) \to (Y, \tau)$ is a ωI -continuous, closed injection and Y is normal, then X is ωI -normal.

Proof: Let F_1 and F_2 be disjoint ωI - closed subsets of X.Since f is closed and injective, are disjoint closed subsets of Y. Since Y is ωI - normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint ωI -closed sets V_1 and V_2 respectively. Hence $F_1 \subset f^{-1}(V_1), F_2 \subset f^{-1}(V_2)$, and $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$.Since f is ωI -continuous and $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are ωI -open in (X, τ, I) , we have (X, τ, I) is ωI -normal.

Theorem: 3.12 An ωI –continuous image of ωI –connected space is connected.

Proof: Let f: $(X, \tau, I) \to (Y, \tau)$ be a ωI – continuous function of a ωI –connected space X onto a topological space Y. If possible .Let Y be disconnected. Let A and B form a disconnected set of Y. Then A and B are clopen and $Y = A \cup B$, where $A \cap B = \phi$.since f is ωI –continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty ωI –closed sets in X. Also, $f^{-1}(V_1) \cap f^{-1}(V_2) = \phi$.Hence X is non ωI –connected, which is a contradiction. Therefore, Y is connected.

Theorem: 3.12 f: $(X, \tau, I) \to (Y, \sigma, J)$ and g: $(Y, \sigma, J) \to (Z, \eta)$ are functions. Then their composition $g \circ f: (X, \tau, I) \to (Z, \eta)$ is $\mathcal{A}I$ - continuous if f is $\mathcal{A}I$ - continuous and g is continuous.

Proof: Let W be any closed set in (Z, η) . Since g is continuous, $g^{-1}(W)$ is closed in (Y, σ) . Since f is ωI - continuous, then $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$ is ωI -closed in (X, τ, I) and hence $(g \circ f)$ is ωI -continuous.

Acknowledgement:

We, the authors thank the referee for his help in improving the quality of this paper.

References:

[1] A. Acikgoz and T. Noiri, S. Yuksel, on $\alpha - I$ –open sets and $\alpha - I$ –Continuous Functions Acta Math. Hungar, 105, (1-2) (2004), 27-37

[2] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math., 29 (1987), 375–382.

[3] N. chandramathi, K. Bhuvaneswari and S. Bharathi, on ωI –closed sets in ideal topological spaces, Proceedings of International Conference on Mathematics and computer science, ICMCS2011, Pg.No:334-338.

[4] N. chandramathi and K. Bhuvaneswari , ωI -closed sets via local function (submitted)

[5] E. Hatir and T. Noiri, on decompositions of continuity via idealization, Acta. Math. Hungar., 96 (2002), 341 - 349.

[6] E. Hatir and T. Noiri, on $\beta - I$ open sets and a decomposition of Almost-I- continuity, Bull. Malays Math. Sci. Soc. (2)), 29(1) (2006) 119-124.

[7] E. Hatir and T. Noiri, on semi-I –open sets and semi-I –Continuous Functions, Acta Math. Hungar, 107(4) (2005), 345 - 353.

*N. Chandramathi¹ and K. Bhuvaneswari²/On OI -continuous functions in Ideal topological spaces / IJMA- 2(9), Sept.-2011, Page: 1628-1635

[8] Janković, D., Hamlett, T. R., New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295-310.

[9] Janković, D.S and I. L. Reily, On semi Separation properties, Indian J.Pure and Appl.Math., 16(19850, 957-964

[10] Dontchev. J, Ganster. M and Noiri.T, Unified operation approach of generalized closed sets via topological ideals, Math. Japon, 49(3),395-401.1999

[11] A. Keskin and S. Yuksel, on **-spaces, JFS, VOL29, (2006), 12-24.

[12] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96.

[13] M. Khan and M. Hamza , I_{s*g} -closed sets in ideal topological spaces, Global Journal of Pure and applied Mathematics, ISSN 0973-1768 Volume 7, Number 1(2011), pp.89-99

[14] M. Khan and T. Noiri, On I_{s*g} -continuous functions in ideal topological spaces, European Journal of Pure and applied Mathematics, ISSN Volume 4, Number 3(2011),237-243 ISSN 1307-5543

[15] M. Navaneethakrishnan, J.Paulrajand D.Sivaraj, Ig-Normal and Ig -Regular spaces. Acta Math.Hunger. 2009

[16] Metin Akada \tilde{g} , on b-I –open sets and b-I –Continuous Functions, Internat. J. Math. & Math. Sci. Vol. 2007, Article ID75721, 13 pages.

[17] V. Renuka Devi, D. sivaraj and T. Tamizh Chelvam, Codense and completely condense ideals, Acta math. Hungarica 108(3)(20050, 197-205

[18] P. Sundaram and M. Sheik John, weakly closed sets and weak continuous maps in topological spaces, proc.82nd Indian Sci. Cong. Calcutta (1995), 49

[19] S. Yuksel, A. Acikgoz and T. Noiri, On δ – I - continuous functions, Turk J. Math., 29 (2005), 39-51.
