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ABSTRACT 
In this paper, we introduce new concepts, namely regular*-connectedness and regular*-compactness using regular*-
open sets. We investigate their basic properties and also discuss their relationships with already existing concepts of 
connectedness and compactness. 
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1. INTRODUCTION 
 
In 1974, Das[2] defined the concept of semi-connectedness in topological spaces and investigated its properties. 
Compactness is one of the most important, useful and fundamental concepts in topology. In 1981, Dorsett [3] 
introduced and studied the concept of semi-compact spaces. Since then, Hanna and Dorsett [6], Ganster[5] investigated 
the properties of semi-compact spaces. S.PasunkiliPandian[12] introduced semi*-pre-compact spaces and investigated 
their properties. S.PiousMissier and A.Robert[16] introduced and studied semi*-α connectedness and semi*-α 
compactness in topological spaces. The authors [13], have defined regular*-open sets and regular*-closed sets and 
investigated their properties. 
 
In this paper, we introduced the concept of regular*-connected spaces and investigate their basic properties. We also 
discuss their relationship with already existing concepts namely connectedness, pre-connectedness and regular-
connectedness. Further we define regular*-compact spaces and investigate their properties. 

 
3. PRELIMINARIES 
 
Throughout this paper X, Y will always denote topological spaces. If A is a subset of the space X, Cl(A) and Int(A) 
dente the closure and the interior of A respectively. 
 
Definition 2.1: [7] A subset A of a topological space (X, τ) is called  

(i) generalized closed (briefly g-closed) if Cl(A)⊆U whenever A⊆U and U is open. 
(ii) generalized open (briefly g-open) if X\A is g-closed in X. 

 
Definition 2.2: [6] Let A be a subset of X. Thegeneralized closure of A is defined as the intersection of all g-closed 
sets containing A, and is denoted by Cl*(A). 
 
Definition 2.3: [13] A subset A of a topological space (X, τ) is  

(i) Regular*-open (resp. pre-open, regular open) if A=Int(Cl*(A)) (resp. A⊆Int(Cl(A)), A=Int(Cl(A))). 
(ii) Reguler*-closed (resp. pre-closed, regular closed) if A=Cl(Int*(A)) (resp. Cl(Int(A))⊆A, A=Cl(Int(A)). 
(iii) regular*-regular if it is both regular*-open and regular*-closed. 
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Definition 2.4: Let A be a subset of X. Then the regular*-closure of A is defined as the intersection of all regular*-
closed sets containing A and is denoted by r*Cl(A). 
 
Theorem 2.5:  (i) Every regular-open set is regular*-open. (ii) Every regular*-open set is open. (iii) Every regular*-
open set is pre-open. 
 
Definition 2.6: If A is subset of X, then the regular*-frontier of Ais defined by r*Fr(A)=r*Cl(A)\r*Int(A). 
 
Theorem 2.7: Let A is a subset of X. Then A is regular*-regular, then r*Fr(A)=ϕ. 
 
Theorem 2.8: If A is a subset of X, then  

(i) r*Cl(X\A)=X\r*Int(A) 
(ii) r*Int(X\A)=X\r*Cl(A). 
(iii) A is regular*-closed then r*Cl(A)= A. 

 
Definition 2.9: A topological space X is said to be connected (resp. semi-connected, semi*-connected, pre-connected, 
regular-connected) if X cannot be expressed as the union of two disjoint nonempty open (resp. semi-open, semi*-open, 
pre-open, regular-open) sets in X. 
 
Definition 2.10: A subset A of a topological space (X, τ) is called clopen if it is both open and closed in X. 
 
Theorem 2.11: A topological space X is connected if and only if the only clopen subsets of X are ϕ and X. 
 
Definition 2.12: A collection B of open (resp. semi-open) sets in X is called an open (resp. semi-open) cover of A⊆X if 
A⊆⋃{𝑈𝛼: 𝑈𝛼 ∈ 𝑩}holds. 
 
Definition 2.13: A space X is said to be compact (resp. semi-compact) if every open (resp. semi-open) cover of X has a 
finite sub cover. 
 
Definition 2.14: A function f:X→Y is said to be  

(i) regular*-continuous if 𝑓−1(𝑉) is regular*-open in X for every open set V in Y. 
(ii) contra-regular*-continuous if 𝑓−1(𝑉) is regular*-closed in X for every open set V in Y. 
(iii) regular*-irresolute if 𝑓−1(𝑉) is regular*-open in X for every regular*-open set V in Y. 
(iv) contra-regular*-irresolute if 𝑓−1(𝑉) is regular*-closed in X for every regular*-open set V in Y. 
(v) strongly regular*-irresolute if 𝑓−1(𝑉) is open in X for every regular*-open set V in Y. 
(vi) regular*-open if f(U) is regular*-open in Y for every open set U in X. 
(vii) regular*-closed if f(F) is regular*-closed in Y for every closed set F in X. 
(viii) pre-regular*-open if f(U) is regular*-open in Y for every regular*-open set U in X. 
(ix) pre-regular*-closed if f(F) is regular*-closed in Y for every regular*-closed set F in X. 
(x) regular*-totally continuous if f -1(V) is clopen in X for every regular*-open set V in Y. 
(xi) totallyregular*-continuous if f -1(V) is regular*-regular in X for every open set V in Y. 

 
Theorem 2.15: Let  f : X→Y  be a function. Then 

(i) f is regular*-continuous if and only if f -1(F) is regular*-closed in X for every closed set F in Y. 
(ii) f is regular*-irresolute if and only if f -1(F) is regular*-closed in X for every regular*-closed set F in Y. 
(iii) f is contra-regular*-continuous if and only if f -1(F) is regular*-open in X for every closed set F in Y. 
(iv) f is contra-regular*-irresolute if and only if f -1(F) is regular*-open in X for every regular*-closed set F in Y. 
(v) f is regular*-totally continuous if and only if f -1(F) is clopen in X for every regular*-closed set F in Y. 

 
3. REGULAR*-CONNECTED SPACES 
 
Definition 3.1: A topological space X is said to be regular*-connectedif X cannot be expressed as the union of two 
disjoint non-empty regular*-open sets in X. 
 
Theorem 3.2:  

(i) Every regular*-connected space is regular-connected. 
(ii) Every connected space is regular*-connected. 
(iii) Every pre-connected space is regular*-connected. 

 
Proof: Follows from Theorem 2.5 and Definitions. 
 
Remark 3.3: It can be seen that the converse of each of the statement in Theorem 3.2 is not true. 
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Definition 3.4: The sets A and B in a topological space X are said to be regular*-separated if 
 A∩r*Cl(B)=r*Cl(A)∩B=ϕ. 
 
Theorem 3.5: For a topological space X, the following statements are equivalent: 

(i) X is regular*-connected. 
(ii) X cannot be expressed as the union of two disjoint non-empty regular*-closed sets in X. 
(iii) The only regular*-regular subsets of X are ϕ and X itself. 
(iv) Every regular*-continuous function of X into a discrete space Y is constant. 

 
Proof:  
(i)⇒(ii): Let X be a regular*-connected space. Suppose X=A∪B, where A and B are disjoint non-empty regular*-closed 
sets. Then A=X\B and B=X\A are disjoint non-empty regular*-open sets in X. This is a contradiction to X is regular*-
connected. This proves (ii). 
 
(ii)⇒(i): Assume that X cannot be expressed as the union of two disjoint non-empty regular*-closed sets in X. Suppose 
X=A∪B, where A and B are disjoint non-empty regular*-open sets. Then A=X\B and B=X\A are disjoint non-empty 
regular*-closed sets in X. This is a contradiction to (ii). 
 
(i)⇒(iii): Suppose X is a regular*-connected space. Let A be non-empty proper subset of X that is regular*-regular. 
Then X\A is a non-empty regular*-open and X = A∪(X\A). This is a contradiction to X is regular*-connected. 
 
(iii)⇒(i): Suppose X = A∪B where A and B are disjoint non-empty regular*-open sets. Then A = X\B is regular*-
closed. Thus A is a non-empty proper subset that is regular*-regular. This is a contradiction to (iii). 
 
(iii)⇒(iv): Let f be a regular*-continuous function of the regular*-connected space X into the discrete space Y. Then for 
each y∈Y, f -1({y}) is a regular*-regular set of X. Since X is regular*-connected, f -1({y}) = ϕ or X. If f -1({y}) = ϕ for 
all y∈Y, then f fails to be a function. Therefore f -1({y0}) = X for a unique y0∈Y. This implies f(x)={y0} and hence f is a 
constant function. 
 
(iv)⇒(iii): Let U be a regular*-regular set in X. Suppose U ≠ ϕ, We claim that U = X. Otherwise, choose two fixed 

points y1 and y2 in Y. Define f:X→Y such that  𝑓(𝑥) = � 𝑦1   𝑖𝑓𝑥 ∈ 𝑈
𝑦2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� Then for any open set V in Y, f -1(V) equals U if 

V contains y1 but not y2, equals X\U if V contains y2 but not y1, equals X if V contains both y1 and y2 and equals ϕ 
otherwise. In all the cases f -1(V) is regular*-open in X. Hence f is a non-constant regular*-continuous function of X into 
Y. This is a contradiction to our assumption. This proves that the only regular*-regular subsets of X are ϕ and X. 
 
Theorem 3.6: Let f: X→Y be a regular*-continuous bijection and X be regular*-connected. Then Y is connected. 
 
Proof: Let f: X→Y be a regular*-continuous bijection and X be regular*-connected. Let V be a clopen subset of Y. By 
definition 2.14(i) f -1(V) is regular*-open and by Theorem 2.15(i) f -1(V) is regular*-closed and hence f -1(V) is regular*-
regular in X. Since X is regular*-connected, by Theorem 3.5 f -1(V) = ϕ or X. Hence V = ϕ or Y. This proves that Y is 
connected. 
 
Theorem 3.7: Let f: X→Y be a regular*-irresolute bijection. If X is regular*-connected, so is Y. 
 
Proof: Let f: X→Y  be a regular*-irresolute bijection and let X be regular*-connected. Let V be a subset of Y that is 
regular*-regular in Y. By Definition 2.14(iii) and by Theorem 2.15(ii), f -1(V) is regular*-regular in X. Since X is 
regular*-connected, f -1(V) = ϕ or X. Hence V = ϕ or Y. This proves that Y is regular*-connected. 
 
Theorem 3.8: Let f: X→Y be a pre-regular*-open and pre-regular*-closed bijection. If Y is regular*-connected, so is X. 
 
Proof: Let A be a subset of X that is regular*-regular in X. Since f is both pre-regular*-open and pre-regular*-closed, 
f(A) is regular*-regular in Y. Since Y is regular*-connected, f(A) = ϕ or Y. Hence A = ϕ or X. Therefore by Theorem 
3.5, X is regular*-connected. 
 
Theorem 3.9: Iff: X→Y  is a regular*-open and regular*-closed bijection and Y is regular*-connected, then X is 
connected. 
 
Proof: Let A be a clopen subset of X. Since f is regular*-open, f(A) is regular*-open in Y. Since f is regular*-closed, 
f(A) is regular*-closed in Y. Hence f(A) is regular*-regular in Y. Since Y is regular*-connected, by Theorem 3.5,       
f(A) = ϕ or Y. Hence A = ϕ or X. Therefore by Theorem 2.11, X is connected. 
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Theorem 3.10: If there is a regular*-totally continuous function from a connected space X onto Y, then the only 
regular*-open sets in Y are ϕ and Y. 
 
Proof: Let f be a regular*-totally continuous function from a connected space X onto Y. Let V be any regular*-open set 
in Y. Since f is regular*-totally continuous, f -1(V) is clopen in X. Since X is connected, by Theorem 2.11,f -1(V) = ϕ or 
X. This implies V = ϕ or Y. 
 
Theorem 3.11: If f: X→Y is a strongly regular*-continuous bijectinand Y is a space with atleast two points, then X is 
not regular*-connected. 
 
Proof: Let y∈Y. Then f -1({y}) is a non-empty proper subset that is regular*-regular in X. Hence by Theorem 3.5, X is 
not regular*-connected. 
 
Theorem 3.11: Let f: X→Y  be a contra-regular*-continuous surjection and X be regular*-connected. Then Y is 
connected. 
 
Proof: Let f: X→Y be a contra-regular*-continuous surjection and X be regular*-connected. Let V be a clopen subset 
of Y. By Definition 2.14(ii) and Theorem 2.15(iii), f -1(V) is regular*-regular in X. Since X is regular*-connected,           
f -1(V) = ϕ or X. Hence V = ϕ or Y. This proves that Y is connected. 
 
4. REGULAR*-COMPACT SPACES 
 
Definition 4.1: A collection 𝓐of regular*-open sets in X is called a regular*-open cover of a subset B of X if             
B ⊆ ∪ {𝑈𝛼: 𝑈𝛼 ∈ 𝓐}holds. 
 
Definition 4.2: A space X is said to be regular*-compact if every regular*-open cover of X has a finite subcover. 
 
Definition 4.3: A subset B of X is said to be regular*-compact relative to X if for every regular*-open cover 𝓐 of B, 
there is a finite sub collection of 𝓐 that covers B. 
 
Remark 4.4: Every finite topological space is regular*-compact. 
 
Theorem 4.5:  

(i) Every compact space is regular*-compact. 
(ii) Every regular*-compact space is regular-compact. 
(iii) Every pre-compact space is regular*-compact. 

 
Proof: Follows from Theorem 2.5 and Definitions. 
 
Theorem 4.6: Every regular*-closed subset of a regular*-compact space X is regular*-compact relative to X. 
 
Proof: Let A be a regular*-closed subset of a regular*-compact space X. Let 𝓑 be a regular*-open cover of A. Then 
∪{X\A} is a regular*-open cover of X. Since X is regular*-compact, this cover contains a finite sub cover of X and 
hence contains a finite sub collection of 𝓑 that covers A. This shows that A is regular*-compact relative to X. 
 
Theorem 4.7: A space X is regular*-compact if and only if for every family of regular*-closed sets in X which has 
empty intersection has a finite sub family with empty intersection. 
 
Proof: Suppose X is regular*-compact and {Fα: 𝛼 ∈ ∆} is a family of regular*-closed sets in X such that ∩
{𝐹𝛼: 𝛼 ∈ ∆} = 𝜙. Then ∪ {𝑋\𝐹𝛼: 𝛼 ∈ ∆} is a regular*-open cover for X. Since X is regular*-compact, this cover has a 
finite sub cover {X\Fα1, X\Fα2,……., X\Fαn}. That is X =∪{Fαi: i=1,2,…..,n}. On taking the complements on both sides 
we get ⋂ 𝐹𝛼𝑖

𝑛
𝑖=1 = 𝜙. Conversely, suppose that every family of regular*-closed sets in X which has empty intersection 

has a finite sub family with empty intersection. Let {Uα: 𝛼 ∈ ∆} be a regular*-open cover for X. Then ∪ {𝑈𝛼: 𝛼 ∈ ∆} =
𝑋. Taking the complements, we get ∩ {𝑋\𝑈𝛼: 𝛼 ∈ ∆} = 𝜙. Since X\Uα is regular*-closed for each 𝛼 ∈ ∆, by the 
assumption, there is a finite sub family{X\Uα1, X\Uα2, ……, X\Uαn} with empty intersection. That is ⋂ (𝑋\𝑈𝛼𝑖) = 𝜙𝑛

𝑖=1 . 
Taking the complements on both sides, we get ⋃ 𝑈𝛼𝑖 = 𝑋𝑛

𝑖=1 . Hence X is regular*-compact. 
 
Theorem 4.8: Let f: X→Y be a regular*-irresolute bijection. If X is regular*-compact, then so is Y. 
 
Proof: Let f: X→Y be a regular*-irresolute bijection and X is regular*-compact. Let {Vα} be a regular*-open cover for 
Y. Then {f -1(Vα)} is a cover of X by regular*-open sets. Since X is regular*-compact, {f -1(Vα)} contains a finite sub 
cover namely, {f -1(Vα1), f -1(Vα2), ……, f -1(Vαn)}. Then {Vα1, Vα2,……,Vαn} is a finite sub cover for Y. Then Y is 
regular*-compact. 
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Theorem 4.9: Let f: X→Y be a regular*-continuous bijection and X be regular*-compact.Then Y is compact. 
 
Proof: Let f: X→Y be a regular*-continuous bijection and X is regular*-compact. Let {Vα} be an open cover for Y. 
Then {f -1(Vα)} is a cover of X by regular*-open sets. Since X is regular*-compact, {f -1(Vα)} contains a finite sub cover 
namely, {f -1(Vα1), f -1(Vα2), ……, f -1(Vαn)}. Then {Vα1, Vα2,……,Vαn} is a finite sub cover for Y. Then Y is compact. 
 
Theorem 4.10: Let f: X→Y be a pre-regular*-continuous injection. If Y is regular*-compact, then so is X. 
 
Proof: Let {Vα} be a regular*-open cover for X.Then {f(Vα)} is a cover of Y by regular*-open sets. Since Y is regular*-
compact, {f(Vα)} contains finite sub cover, namely {f(Vα1), f(Vα2),…….,  f(Vαn)}. Then {Vα1, Vα2,……,Vαn} is a finite sub 
cover for X. Therefore X is regular*-compact. 
 
Theorem 4.11: If f: X→Y be a regular*-open injection and Y is regular*-compact, then X is compact. 
 
Proof: Let {Vα} be an open cover for X.Then {f(Vα)} is a cover of Y by regular*-open sets. Since Y is regular*-
compact, {f(Vα)} contains finite sub cover, namely {f(Vα1), f(Vα2),…….,  f(Vαn)}. Then {Vα1, Vα2,……,Vαn} is a finite sub 
cover for X. Therefore X is regular*-compact. 
 
Theorem 4.12: Let f: X→Y be a contra-regular*-continuous function and Y be T1. If X is regular*-compact, then the 
range of f is finite. Further if Y is infinite, f cannot be onto. 
 
Proof: Since Y is T1, for each𝑦 ∈ 𝑌, {y} is closed in Y. Since f is contra-regular*-continuous, by Theorem f -1({y}) is 
regular*-open in X. Therefore {f -1({y}): y∈Y} is a regular*-open cover for X. Since X is regular*-compact, There are 
y1, y2,……,yn in Y such that {f -1({yi}): i=1,2,……,n} is a cover of X by regular*-open sets. Therefore       
∪{f -1({yi}): i=1,2,……,n} = X, that is f -1({y1, y2,….., yn}) = X. This impliesf(X) = {y1, y2,…..,yn}. Thus the range of f is 
finite. If Y is infinite, f(X) ≠ Y. Hence f cannot be onto.  
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