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ABSTRACT 
In this article we generalize the complement for all types of graphs and we proved some primary results on 
complement of graphs.  
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1. INTRODUCTION  
 
There are various types of graphs depending upon the number of vertices, number of edges, interconnectivity, and their 
overall structure. We will discuss only a complement of graphs in this chapter. Note that the edges in graph-I are not 
present in graph-II and vice versa. Hence, the combination of both the graphs gives a final graph of ‘n’ vertices. 
 
1.1. Definition: A graph ‘G’ is defined as G = (V, E) Where V is a set of all vertices and E is a set of all edges in the 
graph. 
 
Example: 

 
In the above example, AB, AC, CD, and BD are the edges of the graph. Similarly, A, B, C, and D are the vertices of the 
graph. 
 
1.2. Definition:  A graph having no edges is called a Null Graph. 
 
Example:    

 
1.3. Definition:  A simple graph with ‘n’ mutual vertices is called a complete graph and it is denoted by ‘Kn’. In the 
graph, a vertex should have edges with all other vertices, and then it is called a complete graph. 
 
In other words, if a vertex is connected to all other vertices in a graph, then it is called a complete graph. 
 
Example: In the following graphs I and II, each vertex in the graph is connected with all the remaining vertices in the 
graph except by itself 
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1.4. Definition: Let H be a graph with vertex set V(H) and edge set E(H), and similarly let G be a graph with vertex set 
V(G) and edge set E(G). Then, we say that H is a subgraph of G if V(H)⊆ ( V(G) and E(H)⊆ ( E(G). In such a case, we 
also say that G is a subgraph of H. 
 
Example: Last four graphs are sub graphs for first graph in the below diagram. 

 
 
1.5. Definition: The union of 2 simple graphs G1 = ( V1 , E1 )  and G2 = ( V2 , E2 ) is the simple graph G = ( V , E) with 
vertex set V = V1  ∪V2 and edge set E = E1  ∪ E2 .  The union is denoted by G1  ∪G2  .  
 
Example:       
                           

                                 
                                        Graph G1                                                                      Graph G2 

 
G1 ∪ G2 Graph 

 
1.6. Definition: The intersection of graphs G1 = (V1, E1 )  and G2 = (V2, E2 ) is the  graph G = (V, E) with vertex set      V 
= V1  ∩ V2 and edge set E = E1  ∩ E2 .  The intersection is denoted by G1  ∩G2.  
 
Example:               

 
1.7. Definition: The complement of a graph G is the graph having the same vertex set as G such that two vertices are 
adjacent if and only the same two vertices are non-adjacent in G. We denote the complement of a graph G by Gc or G1 

or G  
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Example:  

 
 
1.8. Notation: Since the complete graph on n vertices has 2nc  edges, it follows that if G is a graph on n vertices with 

m edges, then Gc is also a graph on n vertices but with 2nc − m edges. 
 
2. OUR APPROACH ON COMPLEMENT OF GRAPHS 
 
2.1. Lemma: Let G be a graph and H is a subgraph of G with the same vertices set of G then Hc is also subgraph of G. 
 
The subgraphs with the same vertices set of graph G contains only its complement. So every subgraph of graph G has 
may not have its complement. 
 
2.2. Theorem: Let G be a graph and H is a subgraph of G with the same vertices set of G then G = H∪Hc 

 
Proof: Let G be a graph with vertices set V and edges set E. H be a subgraph of G with vertices set V and edges set E1 
then Hc has with the same vertices set V and edges set E2 which is different from E1. Since all the edges of E contained 
in any one of the edge sets E1 and E2,   E = E1  ∪ E2. Therefore, G = H∪Hc.  
 
Example: 

 
 
2.3. Theorem: Let G be a graph and H is a subgraph of G with the same vertices set of G then H∩Hc is null graph 
 
Proof: Let G be a graph with vertices set V and edges set E. H be a subgraph of G with vertices set V and edges set E1 

then Hc has with the same vertices set V and edges set E2 which is different from E1 implies  E1  ∩ E2 is empty set. So, 
H∩Hc has vertices set V and no edges. H∩Hc is null graph. 
 
Example: Consider the above example    

 
 
2.4. Notations:  
1) The complement of graph G is null graph and null graph complement is graph G. G and null graphs are improper 
subgraphs of graph G. 
2) Let G be a graph and H is a subgraph of G with the same vertices set of G then (Hc)c = H. 
3) Let G be graph with subgraphs H1, H2, H3,…., Hn then (H1

  ∪ H2  ∪ H3  ∪ …..∪ Hn)c = H1
c  ∩ H2

c
  ∩ H3

c
  ∩ …..∩ Hn

c 

4) Let G be graph with subgraphs H1, H2, H3,…., Hn then (H1
  ∩ H2  ∩ H3  ∩ …..∩ Hn)c = H1

c  ∪ H2
c
  ∪ H3

c
  ∪ …..∪Hn

c. 
5) Observe that the trivial graph on 1 vertex and no edges is clearly self-complement. 
 
Similarly, we can prove the following theorems  
 
2.5. Theorem: Let G be graph with all possible n proper subgraphs H1, H2, H3,…., Hn then G = H1

c  ∪ H2
c
  ∪ H3

c
  ∪ 

…..∪ Hn
c. 
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2.6. Theorem: Let G be graph withal possible n proper subgraphs H1, H2, H3,…., Hn then H1

c  ∩ H2
c
  ∩ H3

c
  ∩ …..∩ 

Hn
c is null graph. 
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