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ABSTRACT 
This is the first paper for the application of homotopy analysis method (HAM) in boundary layer flow of nanofluids on 
stretching sheet. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. 
The system of nonlinear equations is solved using HAM. An analytical solution is presented which depends on the 
Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb and thermophoresis parameter Nt. The 
variation of the reduced Nusselt and reduced Sherwood numbers with Nb and Nt is also presented in tabular forms. 
The effects of various parameters on the stream function, temperature distribution and volume fraction of nanofluid are 
also discussed. 
 
Keywords: Mathematical modeling, Boundary layer, Nanofluid, Stretching sheet, Brownian motion, Thermophoresis, 
Homotopy analysis method. 
 
 
1. INTRODUCTION 
 
The nanofluid past a stretching sheet is an important problem in many engineering processes with applications in 
industries such as extrusion, melt-spinning, the hot rolling, wire drawing, glass-fiber production, manufacturing of 
plastic and rubber sheets, cooling of a large metallic plate in a bath, which may be an electrolyte, etc [1]. Nanofluid 
flows are also very useful in many applications in heat transfer, fuel cells, pharmaceutical process and hybrid-power 
engine, domestic refrigerator, chiller, heat exchange in grinding machine and boiler flow gas temperature reduction. 
Various flow of a nanofluid past a stretching sheet work has been done, as is evident from Table 1. 
 
Crane [2] discussed two-dimensional incompressible boundary layer flow of a Newtonian fluid caused by the stretching 
of an elastic flat sheet. Crane obtained an exact solution of this two-dimensional Navier–Stokes equations. Nanofluid is 
first utilized by Choi [3]. Some numerical and experimental studies on nanofluids include thermal conductivity [4] and 
convective heat transfer [4–9]. Buongiorno[10] and Kakaç and Pramuanjaroenkij[11] made a comprehensive survey of 
convective transport in nanofluids.  
 
Khan and Pop [16] have used the model of Kuznetsoz and Nield[17] to study the fundamental work on the boundary 
layer flow of nanofluid over a stretching sheet. Makinde and Aziz [18] extended the work of Khan and Pop [16] for 
convective boundary conditions. Ma et al. [19] have developed a hybrid approach that combines the Lattice Boltzmann 
model for fluid with a Brownian dynamics model for the nanoparticles.     
 
Wang [20] discussed the partial slip effects on the planer stretching flow. of late, Noghrehabadi et al.[21]investigated 
the development of the slip effects on the boundary layer flow and heat transfer over a stretching sheet. Surana et al. 
[22] have used K-version finite element method to solve the viscoelastic flow through the parallel plates. 
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Makinde and Aziz [18] conducted a numerical study of boundary layer flow of a nanofluid past a stretching sheet with 
convective boundary condition. Mustafa et al. [23] investigated stagnation point flow of a nanofluid towards a 
stretching sheet. Khan and Pop [16]. studied the boundary layer flow of a nanofluid past a stretching sheet with a 
constant surface temperature. Recently, Noghrehabadi et al. [21] investigated the effect of partial slip condition on the 
flow and heat transfer of nanofluids past stretching sheet, with prescribed constant wall temperature. This problem is 
solved by using Runge-Kutta-Fehlberg scheme with shooting method. Bidin and Nazar [24], Ishak[25] and Nadeem et 
al., [26] numerically examined the flow and heat transfer over an exponentially stretching surface with thermal 
radiation. Elbashbeshy [27] numerically examined the flow and heat transfer over an exponentially stretching surface 
considering wall mass suction. 
 
The heat and mass transfer problem with laminar flow of the nanofluids over a stretching surface has been studied 
[17].To the best of our knowledge, no rigorous analytical expressions for the stream function, temperature distribution 
and volume fraction of nanofluid for all values of parameters have been previously reported. In this manuscript, the 
approximate analytical expressions for the stream function, temperature distribution and volume fraction of nanofluid  
using  homotopy  analysis  method is presented for the first time.  

 

 
Figure-1: physical model and coordinate system [28]. 

 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 
The basic equation for steady two-dimensional boundary layer of a nanofluid past a stretching surface is given in ref 
[16]. The dimensionless, nonlinear coupled ordinary differential equation in boundary layer flow of nanofluid is given 
below [16]: 

0'f''ff''' f 2 =−+           (1) 

0'θN'θ'Nb'θf''θ
Pr
1 2=+++ tφ

        (2)
 

0''θ
Nb
Nt'Le'' =++ φφ

                       (3)
 

where, φθ and,f  represents, the stream function, temperature distribution and volume fraction of nanofluid 
respectively. The boundary conditions are, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,10,0,1,0,1,0 =∞==∞==∞== φφθθ 0'f0'f0 f                               (4) 
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Here Pr, Le, Nb  and Nt  denote the Prandtl number, the Lewis number, the Brownian motion parameter and the 
thermophoresis parameter, respectively. It is important to note that this boundary value problem reduces to the classical 
problem of flow and heat and mass transfer due to a stretching surface in a viscous fluid when Nb and Nt are zero in 
Eqs. (2) and (3).The reduced Nusselt number and reduced Sherwood number are calculated by the following equations, 
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( )1 2Re Re 0/
xduced Nusselt number Nuθ' ,−= = −    
1 2 'Re Re (0)/

xduced Sherwood number Sh φ−= = −                                                             (6) 

where, ( )x/νxuRe wx =  is the local Reynolds number based on the stretching velocity ( )xuw .  

 
3. THE APPROXIMATE ANALYTICAL EXPRESSION OF STREAM FUNCTION, TEMPERATURE AND 
NANOPARTICLE VOLUME FRACTION USING HAM 
 
The homotopy analysis method is a semi-analytical technique to solve nonlinear problems. This method was introduced 
by Liao [12]. Unlike other analytic techniques, this method is independent of small/large physical parameters. The 
HAM provides a simple way to guarantee the convergence of solution series in minimum number of iterations. The 
basic concept of this method is given in Appendix-A. By solving the nonlinear equations (1) to (4) using the HAM, the 
approximate analytical expression of the stream function, temperature distribution and volume fraction of nanofluid can 
be obtained as follows: 

( ) ηe1ηf −−=                          (8) 

( ) ( ) ( )

η)Pr2(e10A             
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where the constant Ai, and Bi  are given by (C26) and (C30).The temperature distribution function using two iterations 
become 
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The derivative of   temperature distribution becomes
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When 0=η the above equation becomes,
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Also, when Nb = 0 and Nt = 0, 
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The volume fraction of nanofluid using two iterations become 
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 The derivative of the equation becomes 
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(16) 

When 0=η the above equation becomes,

 

( ) ( )1LeNb
NtPrhNtPrLehNbLeNbhLeNbLe0'

32

+
++++

−=  φ                  (17)

 

 
This boundary value problem reduces to the classical problem of flow and heat and mass transfer due to a stretching 
surface in a viscous fluid when Nb and Nt are zero in Eqs. (2) and (3). The boundary value problem for φ  then 
becomes ill-posed and is of no physical significance.

 

 
4. NUMERICAL SIMULATION 
 
The nonlinear differential eqns (1-4) are also solved by numerical methods. The function bvp4c in Matlab software, 
which is a function of solving two-point boundary value problems (BVPs) for ordinary differential equations is used to 
solve this system. This Matlab program is given in appendix E. The numerical solution is compared with approximate 
analytical solution obtained by Homotopy analysis method for 1010 ≤≤ LeandPr . 
 
5. RESULTS AND DISCUSSION 
 
Equations (8) to (10) are the new approximate analytical expression of the stream function, temperature distribution and 
volume fraction of nanofluid interms of the parameters Prandtl number, the Lewis number, the Brownian motion 
parameter and the thermophores, respectively. 
 
Fig.2 presents the stream function f and velocity ' f versus boundary layer co-ordinateη . From the Fig.2, it is observed 
that stream function is always increasing function whereas the velocity profile ' f is always a decreasing function. 
Also the stream function and velocity profile reaches the steady state value when .4=η In Fig.3 the temperature 
distribution function is compared with simulation results for various values of parameters.  A good agreement between 
analytical and numerical results is noted. 
 
The effect of the parameters Pr, Le, Nb and Nt on the temperature distribution are shown in Fig.4.From the Fig it is 
observed that temperature decreases as Prandtl number Pr and Lewis number Le increases. It is also noted  that 
temperature distribution has no significant effect due to Thermophoresis parameter Nt and Brownian motion parameter 
Nb. Analytical expressions of nanoparticle volume fraction is compared with simulation results in Fig.5for various 
values of the parameters. Satisfactory agreement is noted between the analytical and simulation results. 
 
The influence of the parameters Le, Pr, Nb and Nt on nanoparticle volume fraction is shown in the Fig.6. The Lewis 
number is the ratio of thermal diffusion to mass diffusion which inturn becomes inversely proportional to mass 
diffusion, given thermal diffusion is constant. An increasing Lewis number is equivalent to decreasing mass diffusion 
or nanoparticle volume fraction. The nanoparticle volume fraction decreases with increase in Lewis number Le or 
decrease in the Prandl number Pr.  
 
Fig.7 depicts the effect of parameters Nb or Nt on the reduced nusselt number ( )0'θ− and reduced Sherwood number

( )0'φ− . From the Figs, it is inferred that reduced Sherwood number decreases when Nb increases. Fig.8. presents the 
comparison of analytical expression of stream function f, temperature distribution θ and nanoparticle volume fraction φ
with numerical results. 
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The analytical solution represented by (13) to (16) contains the auxiliary parameter h. The region where the distribution 
of θ and ϕ versus h is a horizontal line is known as the convergence region for the corresponding function. The h curves 
of θ (Pr =1, Le = 5, Nt = Nb = 0.1) and ϕ (Pr =1, Le = 5, Nt = Nb = 0.1) are plotted in Fig.9. This figure clearly 
indicates that the valid region of h is about −0.77. Similarly we can find the value of the convergence-control parameter 
h for different values of the parameters. 
 
Our analytical results for reduced Nusselt number ( )0'θ−  is compared with previous results khan.et al. [16], wang.     
et al. [13] and Golra and Sidawi et al.[14] in Table.2. Also, the variation of reduced Nusselt number and Sherwood 
number for various values of Nb and Nt with Pr=10 and Le=10 is presented in the Table.2. From the Table it is 
observed that the Nur is a decreasing function whereas Shr is increasing function for all values of parameters. From the 
table it is also inferred that our results give satisfactory agreement with previous results. 
 
6. CONCLUSIONS 
 
Two dimensional steady state boundary layer flow of nanofluid past a stretching sheet is discussed. HAM is used to 
find the analytical expression of the stream function, temperature distribution and volume fraction of nanofluid. It is 
demonstrated that the obtained results are in good agreement with the numerical results. In this study the effect of the 
parameters Prantl number, Lewis number, Brownian motion and Thermophoresis parameter on the temperature 
distribution and nanoparticle volume fraction is demonstrated. The Prandtl number Pr and the Lewis number Le have 
reverse effect on both the temperature distribution and the volume fraction. The behavior of Brownian motion and 
Thermophoresis parameter on the fluid temperature and concentration profile is insignificant. 

 
NOMENCLATURE 
 

BD  Brownian diffusion coefficient 
xRe  Local Reynolds number 

TD  Thermophoretic diffusion coefficient Sh  Local Sherwood number 

( )ηf  Dimensionless stream function T Fluid temperature 

Pr Prandtl number 
wT  Temperature at the stretching surface 

Le Lewis number 
∞T  Ambient temperature 

Nb Brownian motion parameter vu,  Velocity components along x- and y-axes 
Nt Thermophoresis parameter 

wu  Velocity of the stretching sheet 

Nu Nusselt number yx,  Cartesian coordinates (x-axis is aligned 
along the stretching surface and y-axis is 
normal to it) 

 
GREEK SYMBOLS 
 
α  Thermal diffusivity 
( )ηφ  Rescaled nanoparticle volume fraction 

η  Similarity variable 
( )ηθ  Dimensionless temperature 

υ  Kinematic viscosity of the fluid 
( ) fcρ  Heat capacity of the fluid 

( )ρρc  Effective heat capacity of the nanoparticle material 

 
Table-1: Contribution of the various flow of a nanofluid past a stretching sheet 

Author Reference Flow Analytical / numerical 
Khan et al. International Journal of Heat And 

Mass Transfer, 53 (2010)   2477-2483. Laminar fluid flow Implicit finite-difference               
method 

Crane et. al Journal ofApplied Mathematics And 
Physics (Zamp), 21, 645-647. Boundary layer flow Shooting method 

Mania et.al Applied Nano Science, (2014) 4, 761-
767. 

Laminar flow 

 
Variational finite element 

method 
Mahata et al. Journal of Applied Fluid Mechanics, 9 

(2016), 4, 1977-1989. Boundary layer flow Spectral relaxation method 
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Besthapu et al. Journal ofApplied Mathematics And 
Physics, 2015, 3, 1580-1593. 

Mixed convection magneto 
hydrodynamic flow 

Implicit finite difference 
method 

Mohamed et al. Journal of Mechanical Engineering, 63 
(2017), 2, 119-128. MHD flow Transform method 

 
Abu baker et al. 

Indian Journal of Science And 
Technology, 9(31), Aug (2016), 0974-

5645. 
Nanofluid flow Shooting technique 

 
Abel et al. 

International Journal of Physics And 
Mathematical Sciences, 5 (2015), 4, 

25-35. 

Laminar 2d boundary  layer 
flow 

 

Similarity transformation 
 

Nield et al. International Journal of Heat And 
Mass Transfer, 52(2009), 5792-5795. 

Convective boundary layer 
flow 

Porus medium the darcy 
model 

Kuznetsov et al. International Journal of Thermal 
Sciences, 77(2014), 126-129. 

Boundary layer flow of a 
nanofluid A revised model 

Takhar et al. Acta Mechanica 146(2001), 59-71. Laminar boundary layer 
flow 

Implicit finite difference 
method 

Ferdows et al. Acta University. Sapientiae, 
Mathematica, 9, 1 (2017), 140-161. MHD boundary layer flow Runge-kutta  sixth order 

iteration 
Ibrahim et al. 

Computers & Fluids, 75 (2013), 1–10. 
MHD boundary layer flow 

and heat transfer of 
ananofluid 

Fourth order runge–kutta 
method, similarity 

transformation 
Lavanya et al. Asian Journal of Science And 

Technology, 
7,(2016), 4, 2815-2824. 

Laminar, two dimensional, 
steady/unsteady, free/mixed 

convection flow 

Runge-kutta fourth order , 
shooting technique 

Mansur et al. 
 Journal of Applied Mathematics, 2014, 

Article Id 907152, 7 Pages. 

(MHD) boundary layer 
flow of a nanofluid past a 

stretching 

Shooting method 
 

 
Table-2: Comparison of various results for the reduced Nusselt number ( )0'θ− when Nb=Nt=0 for Le=0. 

 
Pr 

Our Results 
Eqn(14) 

Nb = Nt = 0 

Khan[16] 
 

Wang[13] Golraand Sidawi[14] 

0.07 0.0662 0.0663 0.0656 0.0656 
0.20 0.1696 0.1691 0.1691 0.1691 
0.70 0.4592 0.4539 0.4539 0.5349 
2.00 0.9114 0.9113 0.9114 0.9114 
7.00 1.8769 1.8954 1.8954 1.8905 

20.00 3.3968 3.3539 3.3539 3.3539 
70.00 6.4746 6.4621 6.4622 6.4622 

 
Table-3.(a): Comparison of reduced Nusselt number ( )0'θ−=Nur  for various values of Nb and Nt when Pr =10 and 

Le=10 with previous results. Eqn (13) is used for our results. 
 

Nt 
Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5 

Khan[16] Our 
results 
Eq.(14) 

Khan[16] Our 
Results 
Eq.(14) 

Khan[16] Our 
Results 
Eq.(14) 

Khan[16] Our 
Results 
Eq.(14) 

Khan[16] Our 
Results 
Eq.(14) 

0.1 0.9524 0.9524 0.5056 0.5051 0.2522 0.2522 0.1194 0.1194 0.0543 0.0543 
0.2 0.6932 0.6936 0.3654 0.3651 0.1816 0.1816 0.0859 0.0859 0.0390 0.0390 
0.3 0.5201 0.5200 0.2731 0.2731 0.1355 0.1355 0.0641 0.0641 0.0291 0.0291 
0.4 0.4026 0.4023 0.2110 0.2118 0.1046 0.1046 0.0495 0.0495 0.0225 0.0225 
0.5 0.3211 0.3215 0.1681 0.1689 0.0833 0.0833 0.0394 0.0394 0.0179 0.0179 
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Table- 3(b): Comparison of reduced Sherwood number ( )0'Shr φ−= for various values of Nb and Nb when Pr =10 

and Le=10 with previous results. Eq.(17) is used for our results. 
 

Nt 
Nb=0.1 Nb=0.2 Nb=0.3 Nb=0.4 Nb=0.5 

Khan[16] Our 
Results 
Eq.(17) 

Khan[16] Our 
Results 
Eq.(17) 

Khan[16] Our 
Results 
Eq.(17) 

Khan[16] Our 
Results 
Eq.(17) 

Khan[16] Our 
Results 
Eq.(17) 

0.1 2.1294 2.1293 2.3819 2.3820 2.4100 2.4100 2.3997 2.3997 2.3836 2.3836 
0.2 2.2740 2.2745 2.5152. 2.5152 2.5150. 2.5150 2.4807 2.4807 2.4468 2.4468 
0.3 2.5286 2.5288 2.6555 2.6554 2.6088 2.6088 2.5486 2.5486 2.4984 2.4984 
0.4 2.7952 2.7956 2.7818 2.7817 2.6876 2.6878 2.6038 2.6038 2.5399 2.5399 
0.5 3.0351 3.034 2.8883 2.8883 2.7519 2.7518 2.6483 2.6483 2.5731 2.5731 

 

 
Figure-2: Comparison of analytical expression of stream function f (Eqn. (8)) and the velocity profile f ’with the 
numerical results. 

 
Figure-3: Comparison of analytical expression of temperature (Eqn. (9)) with numerical results. 
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Figure-4: Effect of the various parameters on the temperature distribution θ. 

 

 
Figure-5: Comparison of analytical expression of volume fraction (Eqn (10)) with numerical results. 
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Figure-6: Effect of various parameters on nanoparticle volume fractionφ . 

 
Figure-7: Effect of parameters on reduced Nusselt number ( )0' θ− and reduced Sherwood number ( )0' φ−  
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Figure-8: Comparison of analytical expression of stream function f , temperature distribution θ and  nanoparticle 

volume fraction φ  with numerical results. 

 
Figure-9: Validity Region of h curve of θ and φ  

 

 
Figure-10: Sensitivity analysis for evaluating the influence of the concentration of temperature distribution in Eqn. (9) 
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Figure-11: Sensitivity analysis for evaluating the influence of the concentration of nanoparticle volume fraction in 
Eqn.(10) 
 
APPENDIX A: Basic idea of Homotopy Analysis Method 
 
In order to show the basic idea of HAM, we consider a linear or nonlinear equation in a general form: 

N[u(t)] = 0;                                                                  (A1) 

where N  is a nonlinear operator ( )tu  is an unknown function, t is independent variable. Let ( )tu0 denote an initial 

approximation of the solution of equation, h a nonzero auxiliary parameter, ( )tH a nonzero auxiliary function and L
an auxiliary linear operator. For simplicity, we ignore all boundary or initial conditions, which can be treated in the 
similar way. By means of the HAM, we first construct the so-called zero-th order deformation equation.  

p)]; (t;phH(t)N[  (t)]u- p) (t;p)L[ - (1 0 ϕϕ =                                                           (A2) 

where [ ]1,0p∈  is the embedding parameter, ( )p;tϕ is an unknown function. It is obvious that when the embedding 
parameter 0p = and 1p = , it holds 

u(t); = 1) (t; (t);u = 0) t; 0 ϕϕ(                                (A3) 

respectively. Thus as p  increases from 0 to 1, ( )pt;ϕ varies from the initial guesses ( )0;tϕ to the equation ϕ ( )1;t of 
equation. Expanding ( )p;tϕ in Taylors series with respect to p , we have 

( )∑
+∞

=
+=

1
0 ,)();(

m

m
m ptutuptϕ                                                            (A4) 

Where m
0

1 (t; p)( )
m! p

m

m
p

u t φ

=

 ∂
=  ∂ 

                                 (A5) 

 
The convergence of the series (A4) depends upon the auxiliary parameter h . If it is convergent at 1p = , one has 

(t);u (t)u  u(t) m0 ∑
+∞

=
+=

1m
                   (A6) 

 
This must be one of the solutions of the original nonlinear equation. Define the vectors 

}{ )(.....)(),( ,1,0 tututuu n=
→

                   (A7) 

Differentiating the zero-order deformation Eq. (A1) m-times with respect to p and then dividing them by !m and finally 
setting 0p = , we get the following mth-order deformation equation.  

[ ] 
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−− 11 )()()( mmmmm uthHtutuL χ                                             (A8) 

where     ( ) 1-mp

p) (t;

∂
∂

−
=






ℜ

−→

−
ϕN

m
u

m

mm

1

1 !1
1

     
             (A9) 



R. Angel Joya, J. Visuvasamb, V. Rajendranc and L. Rajendran*b / 
Theoretical Analysis of Flow of Nanofluid over a Stretching Surface / IJMA- 9(1), Jan.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       106  

and 





>
≤

=
1m,1
,1m,0

mχ  

 
Operating the inverse operation of 1L− on the both sides of Eq. (A8), we have 













ℜ+=

→

−
−

− 1
1

1 )()()( mmmmm utHhLtutu χ                                           (A10) 

 
In this way, it is easy to obtain ( ) ( ) ...;; 21  tutu one after another; finally, we get an exact solution of the original 
equation. 

)t(u)t(u
m

m∑
+∞

=
=

0
                                             (A11) 

 
For the convergence of the above method we refer the reader to Liao [15]. If Eq. (A1) admits unique solution, then this 
method will produce the unique solution. If Eq. (A1) does not possess a unique solution, the HAM will give a solution 
among many other possible solutions.   
 
APPENDIX B: Analytical solution of stream function f 
 
Analytical solution of eqn (1) 

0f'''ff'''f 2 =−+                                                (B1) 
 
The homotopy analysis method for the equations (B1) can be constructed as follows: 

( ) ( ) ( )2f'''ff'''fph'f'''fp1 −+=−−                                (B2) 
 
The approximate solution of the equations (B2) is as follows:                 

..........pfpfff 2
210 +++=                                                                                                    (B3) 

where p is the embedding parameters and ],[p 10= . Substituting (B3) in (B2) and equating the like coefficients of p 
on both sides we get, 
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 With the boundary conditions, 

0)(,0)(,0)0(

0)(,0)(,0)0(
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                                   (B5) 

 
Solving  the eqns (B4) and using  (B5) , 

( )

00
00
1

2

1

0

=
=

−−=

)(f
)(f

exp)(f ηη

                                                                   (B6) 

 
Substituting in (B3) and taking the limit as p tends to 1, 

( )ηη −−= exp1)(f                                                     (B7) 
 
 
 
 
 



R. Angel Joya, J. Visuvasamb, V. Rajendranc and L. Rajendran*b / 
Theoretical Analysis of Flow of Nanofluid over a Stretching Surface / IJMA- 9(1), Jan.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       107  

 
APPENDIX C: Analytical expression of temperature θ  and nanoparticle volume fraction φ  by solving the 
equations (2) and (3) using HAM 
 
Analytical solution of (2) and (3) using HAM. 
 
Substituting ( )ηf(η −−= exp1) in the eqn (2) and (3) we get,  

0'NtPr''NbPr'ePr'Pr'' 2 =++−+ − θφθθθθ η                  (C1) 

0''
Nb
Nte'Le'Le'' =






+−+ − θφφφ η                    (C2) 

 
The homotopy analysis method for the equations (C1) and (C2) can be written as follows: 
( ) ( ) ( )( )2PrPrexpPrPrPr1 θ'Ntφ'θ'Nbθ'ηθ'θ''phθ'θ''p ++−−+=+−               (C3) 

( ) ( ) ( )( )'')Nb/Nt(exp'Le'Le''ph'Le''p θηφφφφφ +−−+=+−1                (C4) 
 
The approximate solution of the equations (C1) and (C2) are as follows:                 

..........2
210 +++= pp θθθθ                                                                                                                   (C5) 

...........2
210 +++= pp φφφφ                                                                                                                   (C6) 

where p is the embedding parameters and ]1,0[=p . Substituting (C5) and (C6) in (C3) and (C4) and equating the like 
coefficients of p on both sides we get, 
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0Le:p '
0

''
0

0 =+ φφ                      (C10) 

( )( )'''''''''''' )Nb/Nt(expLeLehLeLe:p 00000011

1 θηφφφφφφφ +−−+=−−+               (C11) 

( )( )'''''''''''' )Nb/Nt(expLeLehLeLe:p 11111122

2 θηφφφφφφφ +−−+=−−+               (C12) 
 With the boundary conditions, 

0)(,1)0( 00 =∞= θθ                      (C13) 

0)(,0)0( 11 =∞= θθ                    (C14) 

0)(,0)0( 22 =∞= θθ                   (C15) 
010 00 =∞= )( ,)( φφ                    (C16) 

000 11 =∞= )(,)( φφ                   (C17) 

000 22 =∞= )(,)( φφ                   (C18) 
 
Solving the eqn (C7) and using boundary conditions (C13) we get, 

( ) ( )ηηθ Prexp0 −=                    (C19) 
 
Solving the eqn (C10) and using boundary conditions (C16) we get, 

( ) ( )0 exp Leϕ η η= −                                                                                                                                             (C20) 

Substituting for ( )ηθ0 and ( )ηφ0  
in (C8) and using boundary conditions (C14) we get, 
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Substituting for ( )ηθ0 and ( )ηφ0  

in (C11) and using boundary conditions (C17) we get, 

( ) ( ) ( )( ) ( )
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Substituting for ( )ηθ0 , ( )ηφ0 , ( )ηθ1 and ( )ηφ1  in (C9) and  using boundary conditions (C15) we get, 
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By taking the constants A, B, C, D and E are defined as
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( )( )22 hLe1LePrhNbPrhE ++=
  

Substituting in (C5) and taking the limit as p tends to 1 we get  
( ) ( ) ( ) ( )ηθηθηθηθ 210 ++=                                 (C24) 
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where
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the temperature distribution is given in (9).  
 
Substituting for ( )ηθ0 , ( )ηφ0 , ( )ηθ1 and ( )ηφ1 in (C12) and  using boundary conditions (C18) we get, 
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where the constants F, G, H, I, J, K and L  are defined as   
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Substituting in (C6) and taking the limit as p tends to 1 we get  

( ) ( ) ( ) ( )ηφηφηφηφ 210 ++=                                 (C28) 
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By taking 
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the concentration profile is given in (10) 
 
APPENDIX D:  Determining the validity region of h 
 
The analytical solution represented by (13), (14), (15) and (16) contains the auxiliary parameter h , which gives the 
convergence region and rate of approximation for homotopy analysis method. The analytical solution should converge. 
It should be noted that the auxiliary parameter h controls the convergence and accuracy of the solution series. In order 
to define region such that the solution series is independent of h , a multiple of h curves are plotted. The region where 
the distribution of θ and ϕ versus h is a horizontal line is known as the convergence region for the corresponding 
function. The common region among concentrations is known as the overall convergence region. To study the 
influence of h on the convergence of solution, the h curves of θ (Pr =1, Le = 5, Nt=Nb=0.1) and ϕ (Pr =1, Le = 5, 
Nt=Nb=0.1) are plotted in Figure 9. This figure clearly indicates that the valid region of h is about (−0.77). Similarly we 
can find the value of the convergence-control parameter h for different values of constant parameters. 
 
APPENDIX E: MATLAB program to find the numerical solution of eqns(1)-(4). 
 
function sol = ex7 
ex7 init=bvp init(linspace(0,10,11),[0 1 0 1 -1 1 -2.5]); 
sol=bvp4c(@ex7ode,@ex7bc,ex7init) 
end 
function dydx=ex7 ode(x,y) 
Pr=1; 
Le=5; 
Nt=0.1; 
Nb=0.1; 
dydx=[ 
y(2) 
y(3) 
    -y(1)*y(3)+y(2)*y(2) 
y(5) 
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    (-y(1)*y(5)-Nb*y(7)*y(5)-Nt*y(5)*y(5))*Pr 
y(7) 
    -Le*y(1)*y(7)-Nt/Nb*(-y(1)*y(5)-Nb*y(7)*y(5) 
    -Nt*y(5)*y(5))*Pr 
    ]; 
end 
function res=ex7bc(ya,yb) 
res=[ya(1) 
ya(2)-1 
yb(2) 
ya(4)-1 
yb(4) 
ya(6)-1 
yb(6)]; 
end 
 
To be typed in the command window 
solution=ex7 
   x=solution.x; 
y=solution.y; 
y1=solution.y(1,:); 
y4=solution.y(4,:); 
y6=solution.y(6,:); 
 
Plot(x,y1,'r',x,y4,'g',x,y6,’b’); 
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