International Journal of Mathematical Archive-2(9), 2011, Page: 1608-1611 Available online through www.ijma.info ISSN 2229-5046

ON SOME SUMMATION-DIFFERENCE INEQUALITIES

Dr. K. L. Bondar*
P. G. Dept. of Mathematics, N. E. S. Science College, Nanded - 431605 (MS) India
E-mail: klbondar_75@rediffmail.com

(Received on: 24-08-11; Accepted on: 09-09-11)
ABSTRACT
In this paper we shall consider the equation

$$
f(t, \Delta x(t), x(t), F x(t))=0 ; \quad x(0))=x_{0}
$$

where $f: J \times R^{3} \rightarrow R$ and F be an operator from $J \rightarrow R$ into $J \rightarrow R$. We also discuss about over and under function of above equation and its δ - approximate solution.

Keywords: Difference Equation, Summation equation, Summation inequality, Under and over Function.

1. INTRODUCTION:

Agarwal [1], Kelley and Peterson [9] developed the theory of difference equations and difference inequalities. Some difference inequalities and comparison results are obtained by K. L. Bondar [2, 3]. Some summation and difference inequalities are obtained in K. L. Bondar [4, 5]. K. L. Bondar, V. C. Borkar, S. T. Patil [6, 7] and Dang H., Oppenheimer S.F.[8] obtained the existence and uniqueness results for difference equations. Some differential and integral inequalities are given in [10]. In this paper we shall consider the equation

$$
\begin{equation*}
f(t, \Delta x(t), x(t), F x(t))=0, \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

where $f: J \times R^{3} \rightarrow R$ and F be an operator from $J \rightarrow R$ into $J \rightarrow R$. We also discuss about over and under function of above equation and its δ - approximate solution.

2. PRELIMINARY NOTES

Let $J=\left\{t_{0}, t_{0}+1 \ldots t_{0}+a\right\}, t_{0} \geq 0, t_{0} \in R$, and E be an open subset of R. Consider the difference equations with an initial condition,

$$
\begin{equation*}
\Delta u(t)=g(t, u(t)), u\left(t_{0}\right)=u_{0} \tag{2}
\end{equation*}
$$

where $u_{0} \in E, u: J \rightarrow E, g: J \times E \rightarrow R$.

The function $\phi: J \rightarrow R$ is said to be a solution of initial value problem (2), if it satisfies

$$
\Delta \phi(t)=g(t, \phi(t)) ; \quad \phi\left(t_{0}\right)=u_{0} .
$$

The initial value problem is equivalent to the problem

$$
u(t)=u_{0}+\sum_{s=t_{0}}^{t-1} g(s, u(s))
$$

By summation convention $\sum_{s=t_{0}}^{t_{0}-1} g(s, u(s))=0$ and so $u(t)$ given above is the solution of (2).
Corresponding author: Dr. K. L. Bondar, *E-mail: klbondar_75@rediffmail.com

Dr. K. L. Bondar*/ On Some Summation-Difference Inequalities / IJMA- 2(9), Sept.-2011, Page: 1608-1611

3. MAIN RESULTS:

Theorem: 3.1 Assume that
(i) $f: J \times R^{3} \rightarrow R$ and $f(t, x, y, z)$ is nondecreasing in x for fixed (t, y, z) and nonincreasing in z for fixed (t, x, y);
(ii) the operator F maps from $J \rightarrow R$ into $J \rightarrow R$, and for any two functions $u_{1}, u_{2}: J \rightarrow R$, the inequality

$$
u_{1}(t) \leq u_{2}(t), \quad 0 \leq t \leq t^{*}, t^{*}>0, t^{*} \in J
$$

implies

$$
F u \leq F v, \text { for } t=t^{*} ;
$$

(iii) $v, w: J \rightarrow R$ and the inequalities

$$
\begin{aligned}
& f(t, \Delta v(t), v(t), F v(t)) \leq 0 \\
& f(t, \Delta w(t), w(t), F w(t)) \geq 0
\end{aligned}
$$

hold for $t>0, t \in J$, one of them being strict.
Then, $v(0)<w(0)$ implies

$$
\begin{equation*}
(t)<w(t), t \geq 0 . \tag{3}
\end{equation*}
$$

Proof: Assume that the set

$$
Z=[t \in J: v(t) \geq \mathrm{w}(t)]
$$

is nonempty. Let $t^{*}=\inf Z$. Then $t^{*}>0$, because $v(0)<w(0)$. Furthermore, we have

$$
\begin{align*}
& v\left(t^{*}\right)=w\left(t^{*}\right) \tag{4}\\
& v(t) \leq w(t), 0 \leq t \leq t^{*} \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta v\left(t^{*}\right) \geq \Delta w\left(t^{*}\right) \tag{6}
\end{equation*}
$$

It then follows from assumption (ii) that

$$
\begin{equation*}
v(t) \leq F w(t), \text { for } t=t^{*} \tag{7}
\end{equation*}
$$

The monotonicity of the function f now yields

$$
f\left(t^{*}, \Delta v\left(t^{*}\right), v\left(t^{*}\right), F v\right) \geq F\left(t^{*}, \Delta w\left(t^{*}\right), w\left(t^{*}\right), F w\right)
$$

because of the relations (4), (5), (6) and (7). This implies a contradiction in view of the strictness of one of the inequalities assumed in (iii). Consequently, the set Z is empty, and (3) is true. The proof is complete.

Definition: 3.2 A function $v: J \rightarrow R$ is said to be an under function with respect to equation (1), if it satisfies the inequality

$$
f(t, \Delta v(t), v(t), F v(t))<0
$$

On the other hand if v satisfies the inequality

$$
f(t, \Delta v(t), v(t), F v(t))<0
$$

then a function $v(t)$ is said to be an over function with respect to equation (1).
As a consequence of Theorem 3.1, we have the following result.

Dr. K. L. Bondar*/ On Some Summation-Difference Inequalities /IJMA- 2(9), Sept.-2011, Page: 1608-1611
Theorem: 3.3 Let $u(t), w(t): J \rightarrow R$ be under and over functions respectively with respect to (1) and $v(t)$ be a solution of (1) existing on J. Then,

$$
u(0)<v(0)<w(0)
$$

implies

$$
u(t)<v(t)<w(t), \quad t \geq 0 .
$$

Proof: As $\mathrm{u}(t)$ is an under function and $v(t)$ is a solution of (1) respectively, we have

$$
\begin{gathered}
f(t, \Delta u(t), u(t), F u(t))<0 \text { and } \\
f(t, \Delta v(t), v(t), F v(t))=0, \quad v(0)=0 .
\end{gathered}
$$

Thus if $u(0)<\mathrm{v}(0)$, then by Theorem 3.1, we have

$$
u(t)<v(t), t \geq 0 .
$$

Similarly using definition of solution, an over function of (1) and by Theorem 3.1 again we obtain

$$
v(t)<w(t), \mathrm{t} \geq 0
$$

Hence, $u(t)<v(t)<w(t), \quad t \geq 0$.
Definition: 3.4 Let $v: J \rightarrow R$. Then $v(t)$ is said to be a δ-approximate solution of the equation (1), if $v(t)$ satisfies the inequality

$$
|f(t, \Delta v(t), v(t), v(t), F v(t))| \leq \delta(t), t \in J, t \geq 0, \quad \text { where } \delta: J \rightarrow R_{+} .
$$

A result that gives an error estimation of the δ-approximate solution is the following.
Theorem: Let $v(t)$ be a δ-approximate solution of (1). Suppose further that

$$
f\left(t, x_{1}, y_{1}, F y_{1}\right)-f\left(t, x_{2}, y_{2}, F y_{2}\right) \geq g\left(t, x_{1}-x_{2}, y_{1}-y_{2}, \quad G\left(y_{1}-y_{2}\right)\right),
$$

$x_{1} \geq x_{2}, y_{1} \geq y_{2}$, where $g: J \times R^{3} \rightarrow R$, and G is an operator that maps $J \rightarrow R$ into $J \rightarrow R$. Assume that the function $g(t$, $x, y, z)$ is nondecreasing in x for fixed (t, y, z) and nonincreasing in z for (t, x, y), and for any two function $u, v: J \rightarrow R$, the inequality

$$
u(t) \leq v(t), \quad 0 \leq t \leq t^{*}, t^{*} \in J, t^{*}>0
$$

implies

$$
G u \leq G v \text { for } t=t^{*}
$$

Then, if $u(t)$ is any solution of (1) such that $u(0)=x_{0}$ and $\left|v(0)-x_{0}\right| \leq \rho_{0}$, we have

$$
\begin{gathered}
|v(t)-u(t)|<\rho(t), t \geq 0, \text { where } \rho(t)>0 \text { is increasing and satisfying } \\
g(t, \Delta \rho(t), \rho(t), G \rho)>\delta(t), t \in J .
\end{gathered}
$$

Proof: We shall first show that $v(t)-u(t)<\rho(t), t \geq 0$. Setting $z(t)=v(t)-u(t)$ and proceeding as in Theorem 3.1, we arrive at $t^{*}>0$ with the properties,

$$
\begin{aligned}
z\left(t^{*}\right) & =\rho\left(t^{*}\right) \\
\Delta z\left(t^{*}\right) & \geq \Delta \rho\left(t^{*}\right)
\end{aligned}
$$

and

$$
G z \leq G \rho, \quad t=t^{*}
$$

Dr. K. L. Bondar*/ On Some Summation-Difference Inequalities / IJMA- 2(9), Sept.-2011, Page: 1608-1611
Since $\rho\left(t^{*}\right)>0$ and increasing we have, $\Delta \rho\left(t^{*}\right)>0$ and so that $v\left(t^{*}\right) \geq u\left(t^{*}\right), \Delta v\left(t^{*}\right) \geq \Delta u\left(t^{*}\right)$. Hence

$$
\begin{aligned}
\delta\left(t^{*}\right) & \geq f\left(t^{*}, \Delta v\left(t^{*}\right), v\left(t^{*}\right), F v\right)-f\left(t^{*}, \Delta u\left(t^{*}\right), u\left(t^{*}\right), F u\right) \\
& \geq g\left(t^{*}, \Delta z\left(t^{*}\right), z\left(t^{*}\right), G z\right) .
\end{aligned}
$$

Now, using monotonicity property of g, it follows that

$$
\begin{aligned}
g\left(t^{*}, \Delta z\left(t^{*}\right), z\left(t^{*}\right), G z\right) & \leq g\left(t^{*}, \Delta \rho\left(t^{*}\right), \rho\left(t^{*}\right), G \rho\right) \\
& <\delta\left(t^{*}\right),
\end{aligned}
$$

which implies $\delta\left(t^{*}\right)<\delta\left(t^{*}\right)$. This absurdity proves

$$
v(t)-u(t)<\rho(t), t \geq 0
$$

A similar argument shows that $u(t)-v(t)<\rho(t), t \geq 0$. The theorem is therefore proved.

3. REFERENCES:

[1] R. Agarwal, Difference Equations and Inequalities, Morkel Dekkar, New York (1991).
[2] K. L. Bondar, Some scalar difference inequalities, Applied Mathematical Sciences, 5, No. 60, (2011), 2951 - 2956.
[3] K. L. Bondar, Some comparison results for first order difference equation, International Journal of Contemporary Mathematical Sciences, 6, No. 38, (2011), 1855 - 1860.
[4] K. L. Bondar, Infinite systems of difference inequalities, Vishwabharati, 2, Issue 2, (2011), 71-75.
[5] K. L. Bondar, Some summation inequalities reducible to difference inequalities, International Journal of Contemporary Mathematics, 2, No. 1, (2011).
[6] K. L. Bondar, V.C. Borkar and S.T. Patil, Existence and uniqueness results for difference phi-Laplacian, boundary value problems, ITB Journal of Science, 43(A), No.1, (2011), 51 - 58.
[7] K. L. Bondar, V. C. Borkar and S.T. Patil, Some existence and uniqueness results for difference boundary value problems, Bulletin of pure and applied sciences, 29(F), No. 2, (2010), 295-301.
[8] Dang H. and Oppenheimer S. F., Existence and uniqueness results for some nonlinear boundary value problems. J. Math. Anal. Appl. 198, (1996), $35-48$.
[9] Kelley and Peterson, Difference equations, Academic Press (2001).
[10] V. Laxmikantham and S. Leela, Differential and Integral inequalities Theory and application, Academic Press (1969).

