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ABSTRACT
In this paper the approximate functional equation for eiesf)(%+ it) due to E.C. Titchmarash has been analysed. A

minor simplification of the above equation has been obtained. New forms of the above equation in a similar way are
derived.
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INTRODUCTION

One of the important theories in the study of complex analysis is the theory of Riemann zeta function. In 1921 and
subsequently, Hardy and title wood [5,6,7] developed the approximate functional equation for the Riemann zeta
function. They regarded the functional equation as a “Compromise” between the series expansion $(s) = Y—n"°
and the functional equation $(s) = x(s)$(1 — s) [1, 2, 3]. This paper contains, the approximate functional equation
as given by E.C.Titchmarsh in his book, “The theory of the Riemann zeta-function” published in 1951 [10, 11, 12].

This paper is useful to understand and further simplify a theory of E.C.Titchmarsh on the mean square of |$5(% + it)|.

DEFINITION OF $(s): The Riemann zeta function $(s) has its origin in the identity expressed by the two formulae
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where p runs through all primes and s is a complex variable s = o + it

-1

Theorem: Let f(x) be a real function with continuous derivatives upto the third order. Let f'(x) be steadily decreasing
ina<x<band f(b) =a,f'(a) =p. Let x, be defined by f'(x,) =V<a<V<p> Let 2md, < f'(x) <
A2y, |f"(x)| < A2s. Then
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The general form of the approximate functional equation
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Where $(s) = x(s)$ (1-S), the functional equation y(S) = 2
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We use (1) with an extra factor g(n) in the sum and if we ignore error terms for the moment. Then
ezrti(f(xv)_va}

. _mi
N a<n<p g ~ 7% Za<vsﬁW 9(x,)

Taking g(u)=u"7, f (u) = tlz%
PO @) =5
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tlog (xy) .. —2mv?
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X t \
V=g flxy)

We have a = f'(b) =ﬁ' B=r@ =i
9(xy) = (x;/)_a
=G’

and consider the functional equation $H(s) = y(s)$(1 — s) where
25 1gSsec (%)

) and I, any fixed stripa <o < fast - o

x(s) =

Replacing a, b by x, N and i by —i we obtain
1
H(8)=Tnsx s + X(8) Tnsy 55 + 0 + 0 < |tl7Y? 1 > for 0< 5 < 1

This is known as the approximate functional equation

As a special case of the approximate functional equation we have the following theorem

A i 1 . cos(01—tlog n) —
Theorem: We have e® § (E + lt) = 22?:117 +0(t~V4%)
where
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Proof: Consider the approximate functional equation (3)
1
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We get
1 . 1 . 1 1 1 1
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1 . 1, . 1
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This can also be put into another form which is sometimes useful, we have

<1+'t (1 it) =1
r(z+ie)alz-u)=

Then |X(§+ i =1

Letd =6(t) = —(%) arg )((%+ it) then
-26 =arg)(<%+it >
X (% + it) = |)((% + it|e~20=¢120

We have e < 2+ it >= [ x(1/2+it)] 2 § (5 + it
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Now y(s) = e
2
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We have £(s) = (1/2_s(s — D)m T ()$(s)

Then € < % +it >= G) < %+ it >< %-1— it — 1> nCPEHOT {(%) (% + it)}s;“> G + it)

1 it .
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Using (9) & (11) in (7). We get
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Where () =¢ (% + it)
Thus the function e $ (% + It) is real for real t and from (7), we have

e (% + it) =19 (% + it) |

(12)

Multiplying (5) by e, we get
e’ $ (% + it) = e’ z Rl g olf, o200 z ot 4 O(t_%)
nsx nsx .
zelfy n 2t 4e 0y a2 L 0(tTY)
= B Pn Vil 4 5, e~ OnY2nit 4 0(£7)
= Zsele P in~ 4 eon7int] + 007
= Ynsx [eien_l/zelo‘qn_it + e_ien_l/Zel"g”it] + O(t_%)
=Y n 2 [ei(e—tlog n) 4 o—i(6-tlog n)] n O(t_%)
= Znsen 2[2 cos(0 = tlogn)] +0 (¢ 74)
= 2)nex n‘%[cos(& —tlogn)] + 0 (f%)
= 251, n”2[cos(8 — tlogn] + 0(¢™)
> e s ELICY (13)
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Where m=[x] and 6 = —1/2 arg X(% + it)
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Taking logarithm on both sides of (8) and applying
logT'(c + it) = (a +it— %) logit — it +§(log2n) +0 (%) (14)

We get
logy G+it) itlogm + logl’ (———) lo F(— —)
= |t|ogn+{ G—g) —2>< log(—i;t) > +(%) + log2m + 0(%)}—{<i+%—%> log(i;t)
it

- (E) + <l> log 2 + 0(1)}
2) " \2 t ,
n, 2r 0= {(=5+75)108(3)

= itlogm + {< _Tl N % > log (_%) + (%) + (E) log - %) + %10g2n + 0(%)}
g - () to(-£) - (£ ton () + (2)+ 3oz + 0 () (o (2) - (¢ on ()

it2—12o0g2r+0(12)

= itlogm — —log <G Ye~im/2>(it/2)log<(t/2)e ~"/2 > +< £> +( )log < (t) 7 > — (lz—t) log <

(:)ez >+(5 )+0()
= itlogm — ( ){log( ) + loge™™/2} — ( ){log( ) + loge ™2} + ( ) ( ) [log( ) + loge'™/?}
- (it/2) {log(t2)+log e/} + (3) + 0(3)

-'“09”—(z)log(-)—(%)(—%)—(;)log(é)—(%)( D+ ()ioe() + () (F)
()12 (5)- () () +o®
= itlogr — (; )1og( ) +im/8) — (it/2)log (t/2) — tm/4 + it + (1/8)log (t/2) + in/8 — (it/2)log (t/2)
+(tw/4) + 0(1/0)
:itlogn+i—”—itlog(5)+it+0(1)
argx <; lyit>= tlogn+——tlog( )+t+0( -) —t+——t{log( ) logn}+0(%)
=t+Z—tlog(=)+00)

But-20 = arg)((% +it)

6 = (—%) {t +%— tlog (%)} + 0(%)
2 () o0
= (U2) log (t2m) — £ =X+ 0()

We can replace 8 by 0, = (g) log (%) - % — /8

With an error

O[Zm {cos (68—t logn)—(cos6,—tlog n)}]

0 6+6 \/ﬁ
— O[Zm sm( )sm {\/H——tlog n}]
= O[ZR, =
t1/4
= O[]
= O(t—3/4) (15)

The theorem now follows using (15) in (14).

Remark: We can replace 6 by 0,this in the other special form of the approximate functional equation in a similar way.
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