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ABSTRACT 
In this paper, p-splitting, p-admissible, s-splitting and s-admissible topologies on the sets p−C(Y, Z) and s−C(Y, Z) are 
defined and their properties explored. exponential functions are introduced in function spaces and s-splitting and s-
admissible topologies defined on s-C(Y, Z) compared using these mappings. 
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1. INTRODUCTION 
 
Let X, Y and Z be topological spaces, the set of all continuous functions from Y to Z is denoted by C(Y, Z). This set 
when given a topology τ forms the function space Cτ(Y,Z). For any function h : X × Y → Z which is continuous in Y for 
each fixed x ∈ X, there is an associated map h∗ : X → Cτ(Y,Z). The function h∗ is defined as follows, h∗(x) = hx, where        
hx(y) = h(x, y) for every y ∈ Y (Fox [3]). Arens and Dugundji [1] defines a topology τ defined on C(Y, Z) to be splitting, 
if the continuity of the mapping h implies the continuity of the mapping h∗. Topology τ defined on C(Y, Z) is said to be 
admissible, if the continuity of the mapping h∗ implies the continuity of the mapping h. The latter is also defined, if the 
evaluation mapping e: Cτ(Y, Z) × Y → Z defined by e(f, y) = f(y) is continuous. For the bitopological spaces (Y, τ1, τ2) 
and (Z, δ1, δ2) introduced by Kelly [4], the following sets of continuous functions have been defined. The set i−C(Y, Z) 
of all i-continuous functions for i=1,2, the set p−C(Y,Z) of all pairwise continuous functions and the set s−C(Y, Z) of all 
supremum continuous functions (Muturi et.al [6] and Dvalishvili [2]). In this paper, we generalize bitopological 
concepts to function spaces defined on bitopological space and introduce p-splitting, p-admissible, s-splitting and        
s-admissible topologies on the set p−C(Y, Z) and s−C(Y, Z). exponential functions are also defined on function spaces 
and and s-splitting and s-admissible topologies defined on the set s−C(Y, Z) compared. 
 
2. PRELIMINARIES 
 
The following definition are important in this work. 
 
Definition 2.1: (Pervin [5]). A function f : (Y,τ1,τ2) → (Z,δ1,δ2), is said to be pairwise continuous (p-continuous) if the 
induced functions f : (Y,τ1) → (Z,δ1) and f : (Y,τ2) → (Z,δ2) are continuous. 
 
Definition 2.2: (Muturi et al. [6]). A subset A of a bitopological space (Y,τ1∨τ2) is called a supremum-open set or 
simply s-open set if A = U1∪U2, where U1 ∈ τ1 and U2 ∈ τ2. 
 
Definition 2.3: (Muturi et al. [6]). A function f : (Y,τ1∨τ2) → (Z,δ1∨ δ2), is said to be s-continuous, if the inverse image 
of each s-open subset of Z is s-open in Y . 
 
Definition 2.4: The set of all pairwise continuous functions from the bitopological space (Y,τ1,τ2) to the bitopological 
space (Z,δ1,δ2) is denoted by p−C(Y,Z), and the set of all supremum continuous function from the bitopological space 
(Y,τ1 ∨ τ2) to the bitopological space (Z,δ1 ∨ δ2) is denoted by s−C(Y,Z). 
 
Definition 2.5: The sets of the form S((U,V),(A,B))p = {f ∈ p−C(Y,Z) : f(U) ⊂ V and f(A) ⊂ B} for U open in τ1, V open 
in δ1, A open in τ2 and B open in δ2, defines the subbasis for the open-open topology on the set p−C(Y,Z). 
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3. PAIRWISE SPLITTING AND PAIRWISE ADMISSIBLE TOPOLOGIES DEFINED ON THE SET          
    p−C(Y, Z) 
 
In this section, we explore pairwise splitting and pairwise admissible topologies defined on the set p−C(Y, Z). 
 
Proposition 3.1: The function h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) is pairwise continuous in Y for each fixed x ∈ X, if the 
functions h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) are continuous in Y for each fixed x ∈ X. 
 
Proof: Let h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed       
x ∈ X, then the functions hx : (Y, τ1) → ( Z, δ1) and hx : (Y, τ2) → ( Z, δ2) are continuous. By definition of pairwise 
continuity, the function hx : (Y, τ1, τ2) → ( Z, δ1, δ2) is continuous for each x ∈ X. Since hx(y) = h(x, y) and                     
h(x) (y) = h(x, y), then hx(y) = h(x)(y), implying that the function h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) is continuous in Y 
for each fixed x ∈ X.  
 
Proposition 3.2: The function h∗ : (X, σ) → p−Cω(Y, Z) is pairwise continuous, if the functions h∗ : (X, σ) → 1−Cς(Y, Z) 
and h∗ : (X, σ) → 2−Cζ(Y, Z) are continuous, where h : (X, σ)×(Y, τi) → (Z, δi) for i = 1,2. 
 
Proof: Let h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions. Then for each fixed x ∈ X, the 
functions hx : (Y, τ1) → (Z, δ1) and hx : (Y, τ2) → (Z, δ2) are continuous. By definition of pairwise continuity, the function     
hx : (Y, τ1, τ2) → (Z, δ1, δ2) is continuous for each x ∈ X. Since hx = h∗(x), then the function h∗ : (X, σ) → p−Cω(Y, Z) is 
continuous. 
 
From the above propositions, we introduce the following definitions. 
 
Definition 3.3: A topology ω on p−C(Y, Z) is said to be pairwise splitting (p-splitting) if the continuity of the functions 
h : (X, σ) × (Y, τ1) → ( Z, δ1) and h : (X, σ) × (Y, τ2) → ( Z, δ2) in Y for each fixed x ∈ X, implies that of                             
h∗ : (X,σ) → p−Cω(Y,Z). 
 
Definition 3.4: A topology ω on p−C(Y, Z) is said to be pairwise admissible (p-admissible) if the continuity of the 
functions h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) implies that of h : (X, σ) × (Y, τ1, τ2) → (Z, δ1, δ2) in Y for 
each fixed  x ∈ X. 
 
Theorem 3.5: Let h : (X, σ) × (Y, τ1) → (Z, δ1) and h : (X, σ) × (Y, τ2) → (Z, δ2) be continuous functions, then the 
compact open topology ω defined on p−C(Y, Z) is pairwise splitting. 
 
Proof: Let h : (X, σ)×(Y, τ1) → (Z, δ1) and h : (X, σ)×(Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed x ∈ X, 
and let x0 ∈ X such that h∗(x0) ∈S((U, V)(A, B))p, where S((U, V)(A,B))p is open in p−C(Y, Z). Then h∗(x0) ∈ S(U, V)1 and 
h∗(x0) ∈ S(A, B)2, implying that x0 × U ⊂ h−1(V) and x0 × A ⊂ h−1(B). Since U and A are compact, then by tube lemma 
there exist an open set W neighbourhood of x0  such that W × U ⊂ h−1(V) and W × A ⊂ h−1(B), this implies that         
h∗(W) ⊂ S(U, V)1 and h∗(W) ⊂ S(A, B)2, implying further that h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) are 
continuous functions. By proposition 3.2, the function h∗ : (X, σ) → p−Cω(Y, Z) is continuous and by definition 3.3, 
topology ω is pairwise splitting on p−C(Y, Z).  
 
Theorem 3.6: Let h∗ : (X, σ) → 1−Cς(Y, Z) and h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions, then the compact open 
topology ω defined on p−C(Y, Z) is pairwise admissible for locally compact spaces (Y, τ1) and (Y, τ2). 
 
Proof: Let ς and ζ be compact open topologies on 1 ( , )C Y Z−   and 2 ( , )C Y Z−  respectively such that the evaluation 

functions :1 ( , )e C Y Z Y Zς− × →  and : 2 ( , )e C Y Z Y Zς− × →  are continuous. Let h∗ : (X, σ) → 1−Cς(Y, Z) and  
h∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions and i : (Y, τ1) → (Y, τ1) and i : (Y, τ2) → (Y, τ2) be identity functions, 
then e ◦ (h∗ × i) : (X, σ) × (Y, τ1) → (Z, δ1) and e ◦ (h∗ × i) : (X, σ) × (Y, τ2) → (Z, δ2) are continuous functions. By 
proposition 3.1, the function e◦(h∗×i) : (X, σ)×(Y, τ1, τ2) → (Z, δ1, δ2) is continuous in Y for each fixed x ∈ X and by 
definition 3.4, topology ω defined on p−C(Y, Z) is pairwise admissible.  
 
Remark 3.7: From theorem 3.5 and theorem 3.6, we conclude that τ on p−C(Y, Z) is p-splitting or p-admissible 
topology if ς and ζ are splitting or admissible topologies on 1−C(Y, Z) and 2−C(Y, Z) respectively. 
 
4. SUPREMUM SPLITTING AND SUPREMUM ADMISSIBLE TOPOLOGIES DEFINED ON THE SET          
    s-C(Y, Z) 
 
In this section, supremum splitting and supremum admissible topologies are introduced on the set s−C(Y, Z). 
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Definition 4.1: A topology τ on s−C(Y, Z) is said to be supremum splitting (s-splitting) if the continuity of the functions               
f : (X, σ) × (Y, τ1) → (Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) in Y for each fixed x ∈ X, implies that of f ∗ : (X, σ) → 
s−Cτ(Y, Z). 
 
Definition 4.2: A topology τ on s−C(Y, Z) is said to be supremum admissible (s-admissible) if the continuity of the 
functions f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z), implies that of f : (X, σ) × (Y, τ1 ∨ τ2) → (Z,δ1∨ δ2) in Y 
for each fixed x ∈ X. 
 
Proposition 4.3: The function f : (X, σ) × (Y, τ1 ∨ τ2) → (Z, δ1 ∨ δ2) is continuous if the functions f : (X, σ) × (Y, τ1) →  
(Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) are continuous. 
 
Proof: Let the functions f : (X, σ) × (Y, τ1) → (Z, δ1) and f : (X, σ) × (Y, τ2) → (Z, δ2) be continuous in Y for each fixed     
x ∈ X. then the associated functions fx : (Y,τ1) → (Z, δ1) and fx : (Y, τ2) → (Z,δ2) defined by fx(y) = f(x, y), are continuous 
∀x ∈ X. From theorem 3.1 [6], it follows that the function fx : (Y, τ1 ∨ τ2) → (Z, δ1 ∨ δ2) is s-continuous ∀x ∈ X. Since 
fx(y) = f(x, y) and f(x)(y) = f(x, y), then fx(y) = f(x)(y) and hence f : (X, σ)×(Y, τ1∨τ2) → (Z, δ1∨δ2) is continuous in Y for 
each fixed x ∈ X. 
 
Proposition 4.4: The function f ∗ : (X, σ) → s−Cτ(Y, Z) is continuous if the functions f ∗ : (X, σ) → 1−Cς(Y, Z) and                                      
f ∗ : (X, σ) → 2−Cζ(Y, Z) are continuous. 
 
Proof: Let f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z) be a continuous functions, then for the functions           
f : (X, σ)×(Y, τ1) → ( Z, δ1) and f : (X, σ) × (Y, τ2) → ( Z, δ2), the associated functions fx : (Y, τ1) → ( Z, δ1) and                       
fx : (Y, τ2) → (Z, δ2) defined by fx = f ∗(x), ∀x ∈ X are continuous. From theorem 3.1 [6], it follows that the function         
fx : (Y, τ1∨τ2) → ( Z, δ1∨ δ2) is s-continuous ∀x ∈ X. Since fx = f ∗(x), then the function f ∗ :(X,σ) → s−C(Y,Z) is 
continuous. 
 
Theorem 4.5: A compact open topology τ is s-splitting if the continuity of the functions f : (X, σ)×(Y, τ1) → (Z, δ1) and   
f : (X, σ)×(Y, τ2) → (Z, δ2) implies continuity of the function f ∗ : (X, δ) → s−Cτ(Y, Z). 
 
Proof: Let f : (X, σ)×(Y, τ1) → (Z, δ1) and f : (X, σ)×(Y, τ2) → (Z, δ2) be continuous functions in Y for each fixed x ∈ X. 
Then from proposition 4.3, the function f : (X, σ)×(Y, τ1∨τ2) → (Z, δ1∨δ2) is continuous. Let x0 ∈ X and S(U,V)s be open 
in s−Cτ(Y, Z), then f ∗(x0) ∈ S(U, V)s, implying that x0 × U ⊂ f −1(V). Since U is compact, then by tube lemma, there exist 
an open set W neighbourhood of x0 such that W × U ⊂ f −1(V). This implies that  f ∗(W) ⊂ S(U,V)s, implying further that  
f ∗ : (X, σ) → s−Cτ(Y, Z) is continuous functions. By definition 4.1, topology 𝜏 is s-splitting on s−C(Y, Z).  
 
Theorem 4.6: Let f ∗ : (X, σ) → 1−Cς(Y, Z) and f ∗ : (X, σ) → 2−Cζ(Y, Z) be continuous functions, then the compact open 
topology τ defined on s−C(Y, Z) is s-admissible for locally compact spaces (Y, τ1) and (Y, τ2). 
 
Proof: Let ς and ζ be compact open topologies on 1−C(Y, Z) and 2−C(Y, Z) respectively, and let f ∗ : (X, σ) → 1−Cς(Y,Z) 
and f ∗ : (X, σ) → 2−Cζ(Y, Z) be a continuous functions, then by proposition 4.4, the function f ∗ : (X, σ) → s−Cτ(Y, Z) is 
continuous. Let i : (Y, τ1 ∨ τ2) → (Y, τ1 ∨ τ2) be an identity function and let e : s−Cτ(Y, Z) × (Y, τ1∨ τ2) → (Z, δ1∨ δ2) be 
an evaluation mapping. Since τ is compact open topology, then the evaluation mapping e is continuous and the 
composite mapping e◦(f ∗×i) : (X, σ) × (Y, τ1 ∨ τ2) → ( Z, δ1 ∨ δ2) is also continuous in Y for each fixed x ∈ X. By 
definition 4.2, topology τ is s-admissible.  
 
Remark 4.7: From theorem 4.5 and theorem 4.6, we note that if ς and ζ are splitting or admissible topologies on 
1−C(Y,Z) and 2−C(Y,Z) respectively, then τ on s−C(Y,Z) is s-splitting or s-admissible topology. 

 
5. EXPONENTIAL MAPPINGS DEFINED ON FUNCTION SPACES 
 
Let (X, σ), (Z, δ1∨δ2) be arbitrary spaces and let (Y, τ1∨τ2) be locally compact Hausdorff space. 
 
Definition 5.1: Consider the exponential mapping Λ : C(X × Y,Z) → C(X,s − Cϕ(Y, Z)), defined by Λ(f)(x)(y) = f(x, y) 
for each f ∈ C(X × Y,Z), x ∈ X and y ∈ Y . A topology ϕ on s−C(Y, Z) is called  s-splitting topology if Λ is a continuous 
function with respect to ϕ. 
 
Definition 5.2: Consider the exponential mapping Λ−1 : C(X, s−Cϕ(Y, Z)) → C(X × Y,Z), defined by Λ−1((g)(x, y)) = 
g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X × Y . A topology ϕ on s−C(Y, Z) is called s-admissible topology if 
the function Λ−1 is continuous with respect to ϕ. 
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Proposition 5.3: The function Λ−1 ◦ Λ : C(X × Y, Z) → C(X × Y, Z) is continuous. 
 
Proof: Observe that (Λ−1 ◦ Λ(f))(x, y) = Λ−1(Λ(f))(x, y) = Λ(f)(x)(y) = f(x, y). Implying that Λ−1◦Λ(f) = f, hence Λ−1◦Λ is 
an identity function. 
 
Proposition 5.4: The function Λ ◦ Λ−1 : C(X, s−Cϕ(Y, Z)) → C(X, s−Cϕ(Y, Z)) is continuous. 
 
Proof: Observe that (Λ◦Λ−1(f))(x)(y) = Λ(Λ−1(f))(x)(y) = Λ−1(f)(x, y) = f(x)(y). Implying that Λ ◦ Λ−1(f) = f, hence          
Λ ◦ Λ−1 is an identity function.  
 
Remark 5.5:  From proposition 5.3 and proposition 5.4, it follows that Λ is a homeomorphism. 
 
Proposition 5.6: The function i : C(X, s−Cϕ1(Y, Z)) → C(X, s−Cϕ2(Y, Z)) is continuous if and only if ϕ2 ⊂ ϕ1. 
 
Proof: The function i is continuous if and only if S(W, S(U,V )) ∈ ϕ2 implies that i−1(S(W, S(U,V ))) ∈ ϕ1, but i is an 
identity function, therefore i−1(S(W, S(U, V))) = S(W, S(U, V)). Hence i is continuous if and only if S(W, S(U, V)) ∈ ϕ2 
implies S(W, S(U, V)) ∈ ϕ1.  
 
Theorem 5.7: The following statements are true; 

(i) Let ϕ1 be s-splitting topology on s−C(Y, Z) and let ϕ2 ⊂ ϕ1, then ϕ2 is also s-splitting topology on s−C(Y, Z). 
(ii) Let ϕ1 be s-admissible topology on s−C(Y, Z) and let ϕ1 ⊂ ϕ2, then ϕ2 is also s-admissible topology on s−C(Y, Z). 
(iii) Let ϕ1 be s-splitting topology on s−C(Y, Z) and let ϕ2 be admissible topology on s−C(Y, Z), then ϕ1 ⊂ ϕ2. 

 
Proof: 

(i) Let ϕ1 be s-splitting topology, then by definition 5.1 the function Λ : C(X × Y, Z) → C(X,s−Cϕ1(Y, Z)), defined by 
Λ(f)(x)(y) = f(x, y) for each f ∈ C(X × Y, Z), x ∈ X and y ∈ Y , is continuous with respect to ϕ1. Let ϕ2 be any other 
topology such that ϕ2 ⊂ ϕ1, then by proposition 5.6, the function i : C(X, s−Cϕ1(Y, Z)) → C(X, s−Cϕ2(Y, Z)) is 
continuous. Now the composite function i ◦ Λ : C(X × Y, Z) → C(X, s−Cϕ2(Y, Z)) is continuous with respect to 
ϕ2, implying that ϕ2 is also s-splitting topology. 

(ii) Let ϕ1 be s-admissible topology, then by definition 5.2 the function Λ−1 : C(X, s−Cϕ1(Y, Z)) → C(X ×Y, Z) 
defined by Λ−1((g)(x, y)) = g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X×Y , is continuous with respect 
to ϕ1. Let ϕ1 ⊂ ϕ2, then by proposition 5.6, the function i : C(X, s−Cϕ2(Y, Z)) → C(X, s−Cϕ1(Y, Z)) is continuous. 
Now the composite function Λ−1◦i : C(X, s−Cϕ2(Y, Z)) → C(X ×Y, Z) is continuous with respect to ϕ2. Hence ϕ2 is 
also s-admissible topology. 

(iii) Let ϕ1 be s-splitting topology, then by definition 5.1 the function Λ : C(X × Y, Z) → C(X, s−Cϕ1(Y, Z)), defined 
by Λ(f)(x)(y) = f(x, y) for each f ∈ C(X × Y, Z), x ∈ X and y ∈ Y, is continuous with respect to ϕ1. Let ϕ2 be           
s-admissible topology, then by definition 5.2 the function Λ−1 : C(X, s−Cϕ1(Y, Z)) → C(X × Y, Z) defined by 
Λ−1((g)(x, y)) = g(x)(y) where g ∈ C(X, s−Cϕ(Y, Z)) for each (x, y) ∈ X × Y, is continuous with respect to ϕ1. Now 
the composite function Λ◦Λ −1 : C((X, σ), s−Cϕ2(Y, Z)) → C((X, σ), s−Cϕ1(Y, Z)) is continuous by proposition 5.6, 
implying that ϕ1 ⊂ ϕ2.  
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