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ABSTRACT 
In this paper, Homotopy perturbation method is applied to solve some partial differential equations. Examples of 
PDEs are presented and give some useful help to solution of PDEs. 
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1. INTRODUCTION 
 
In recent years, many mathematicians have developed the new techniques to find exact and approximate solutions for 
linear and nonlinear partial differential equations which describe in different fields. Some important methods have been 
appeared like homotopy perturbation method which is analytic technique for solving linear and nonlinear problems. 
The first mathematician proposed this was Ji-Huan in 1999[1]. This method gives analytical exact and approximate 
solutions of nonlinear partial differential equations easily without transforming the equation or linearizing the problem 
with very good results. Some mathematician’s author has used the homotopy perturbation method for solving partial 
differential problem [2-10].  In this work, we represent the solution for partial differential equations by homotopy 
Perturbation method in linear, nonlinear and some type. 
 
2. ANALYSIS OF HE’S HOMOTOPY PERTURBATION METHOD  
 
To explain this method, we consider the following differential equation 

   r      ,0)()( Ω∈=− rfuDo                                                                                                                      (1) 
with the boundary conditions  

,  0,             r    o
uB u
n
∂  = ∈Γ ∂ 

                                                                                                                 (2) 

where oD  is a general differential operator, oB  is a boundary operator, )r(f  is a known analytical function and  Γ  

is the boundary of the domain Ω . In general, the operator oD  can be divided into a linear part L  and a non-linear 

part N . Eqn. (1) can therefore be written as 
 0)()()( =−+ rfuNuL                                                                                                                               (3) 
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By the homotopy technique, we construct a homotopy ℜ→× ]1,0[:)p,r(v Ω  that satisfies 

  .0)]()([)]()()[1(),( 0 =−+−−= rfvDpuLvLppvH o      (4) 

  .0)]()([)()()(),( 00 =−++−= rfvNpupLuLvLpvH      (5) 

where  p∈[0, 1] is an embedding parameter, and 0u   is an initial approximation of Eqn. (1) that satisfies the boundary 
conditions. From Eqns. (4) and (5), we have 

  0)()()0,( 0 =−= uLvLvH                                                                                                                        (6) 

0)()()1,( =−= rfvDvH o                                                                                                                           (7) 
When  p=0, Eqn. (4) and Eqn. (5) become linear equations. When p =1, they become non-linear equations. The process 
of changing p from zero to unity is that of 0)u(L)v(L 0 =− to 0)r(f)v(Do =− . We first use the embedding 
parameter p  as a “small parameter” and assume that the solutions of Eqns. (4) and (5) can be written as a power series 
in p : 

 ...vppvvv 2
2

10 +++=                                                                                                                              (8) 
 
Setting 1p =   results in the approximate solution of Eqn. (1): 

...vvvvlimu 2101p
+++==

→
                                                                                                                        (9) 

This series is convergent for most cases. 
 
However, the convergence rate depends on nonlinear operator. 

3. EXAMPLES 

Example 1: Consider the following linear PDEs 

  
xu

t
u

xx cos+=
∂
∂

                                                   (10) 

with initial condition  
)cos(sin2),0( xxxu +=                      (11) 

and a given solution   
  )1(cossin2),( ++= −− tt exexxtu .     
 
To solve Eqn.(10) by Homotopy perturbation method, we will have 
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Suppose that the solution of Eqn.(10) is the form 
 ...2

2
10 +++= upupuu                                                                                                                          (13) 

 
Substituting Eqn. (13) into Eqn. (12) and equating the coefficients of like power p, we will have the set of differential 
equations: 
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and so on. Solve the system of Eqns.(14) to get the solutions   

txxu )cossin2(1 +=   

!2
)cossin2(

2

2
txxu +−=                                    (15) 

!3
)cossin2(

3

3
txxu +=  

!4
)cossin2(

4

4
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Solution of Eqn. (10) will be derived by adding these terms, so  

............... ...),( 210 +++= uuutxu  

              

22
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)1(cossin2),( ++= −− tt exexxtu . 

 

Example 2: Consider the following nonlinear PDEs 

  
xuuu xt 2

2
−=                            (16) 

with initial condition 
5),0( =xu                         (17) 

and a given solution 
txthxtu tanh2sec5),( −= . 

 
To solve Eqn.(16) by Homotopy perturbation method, we will have 
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Suppose that the solution of Eqn.(16) is the form 
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Substituting Eqn. (19) into Eqn. (16) and equating the coefficients of like power p, we will have the set of differential 
equations: 
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and so on. Solve the system of Eqns. (20) to get the solutions   

xu 21 −=   
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tu −=                                                                                                        (21) 
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 and so on. Solution of Eqn. (16) will be derived by adding these terms, so  
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 txthxtu tanh2sec5),( −= .
  

Example 3: Consider the following  PDEs in second order 
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subject to the initial conditions 
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and a given solution  
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To solve Eqn.(22) by Homotopy perturbation method, we will have 
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Suppose that the solution of Eqn.(22) is the form 
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Substituting Eqn. (25) into Eqn. (22) and equating the coefficients of like power p, we will have the set of differential 
equations: 
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and so on. Solve the system of Eqns. (26) to get the solutions   
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and so on. Solution of Eqn. (22) will be derived by adding these terms, so  
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4. CONCLUSION  
 
In this paper, we used the homotopy perturbation method for solving some partial differential equations. We get the 
result is very effective and have an exact to find the solutions for the PDEs. Furthermore, HPM was successful 
implemented in approximating the solutions of nonlinear systems of PDEs. 
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