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ABSTRACT 
In the present article onset of convection in a horizontal layer of porous medium saturated with a Maxwell nanofluid is 
studied by linear analysis. The modified Darcy-Maxell nanofluid model is used to simulate the momentum equation in 
porous media. The nanofluid incorporates Brownian motion and thermophoresis.A Galerkin method has been 
employed to investigate the stationary and oscillatory convections, the stability boundaries for these cases are 
approximated by simple and useful analytical expressions. To investigate the stability of the system, parameters such as 
Nanopartical concentration Rayleigh number, Lewis number, modified diffusivity ratio, Vadasz number and relaxation 
are varied. It is found that for stationary convection Lewis number and modified diffusivity ratio stabilizes the system 
where as Nanopartical concentration Rayleigh number and porosity destabilizes the system. For oscillatory convection 
the thermal capacity ratio stabilizes the system while nanopartical concentration Rayleigh number, Lewis number, 
porosity and vadas number destabilizes the system.  
  
Keywords: Nanofluid, Porous medium, Natural convection Horizontal layer, Conduction and viscosity variation, 
Brownian motion and thermophoresis.  
 
 
Nomenclature 
 

BD  Brownian diffusion coefficient ( 2m s ), given by 

TD  Thermophoretic diffusion coefficient ( 2m s ), 
H  Dimensional layer depth ( m ) 
k   Thermal conductivity of the nanofluid (W/m K) 

mk  Overall thermal conductivity of the porous medium saturated by the nanofluid 
K  Permeability ( 2m ) 
Le

  
Lewis number 

AN  Modified diffusivity ratio 

BN  Modified particle density increment 
*p  Pressure (Pa)  

p  Dimensionless pressure, *
fp K µα

 
λ   non dimensional relaxation time 

 Va   Vadasz number  

aγ  non dimensional acceleration coefficient  

TRa
 

Thermal Rayleigh- Darcy number 
Rm  Basic-density Rayleigh number 
Rn  Concentration Rayleigh number 
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*t  Time (s) 

t  Dimensionless time, * 2
ft Hα

 
*T  Nanofluid temperature (K) 

T  Dimensionless temperature, 
* *

* *
c

h c

T T
T T

−
−

 
*

cT   Temperature at the upper wall (K) 
*

hT   Temperature at the lower wall (K) 

( ), ,u v w
 
Dimensionless Darcy velocity components ( )* * *, , mu v w H α (m/s) 

v    Nanofluid velocity (m/s) 
( ), ,x y z

 
Dimensionless Cartesian coordinate ( )* * *, ,x y z H ; z is the vertically upward   coordinate    

( )* * *, ,x y z  Cartesian coordinates 
 
Greek symbols 

mα  Thermal diffusivity of the porous medium 
ρ  Fluid density 

pρ  
Nanoparticle mass density 

σ  Thermal capacity ratio 
*φ  Nanoparticle volume fraction 

φ  Relative nanoparticle volume fraction,
* *

0
* *
1 0

φ φ
φ φ

−
−

 
µ  Viscosity of the fluid 
β  Thermal volumetric coefficient (K-1) 
v  Viscosity variation parameter 
ε   Porosity  
η   Conductivity variation parameter 
 
Superscripts 
*   Dimensional variable 
'    Perturbed variable 
 
Subscripts 
b  Basic Solution 
f  Fluid  
p  Particle 
 
1. INTRODUCTION 
 
A wide variety of industrial process involves the transfer of heat energy. Nanofluid is a new kind of heat transfer 
medium containing nanoparticle (1-100nm) suspended in a base fluid which can be water or an organic solvent. 
 
The transport properties of heat transfer can be enhanced by using nanofluid. Xuan and Li [1] reported that there is a 
39% increase in the heat transfer coefficient using nanofluid containing 2% (v/v) copper nanoparticles. Wen and Ding 
[2] witnessed a 40% enhancement in the heat transfer coefficient for a nanoflid containing 1.25% (v/v) alumina 
nanoparticles. 
 
The double diffusive convection instabilities in a horizontal porous layer was studied by Neild[3,4]. The linear stability 
analysis was extended by Taunton et al. [5], Tuner [6, 7]. The dissolution or precipitation of the solute effect the onset 
of convection was discussed by Richardson[8], Wan and Tan [9,10] study stability analysis of double diffusive 
convection of Maxwell fluid in a porous medium, they pointed out that the relaxation time of Maxwell fluid enhances 
the instability of the system. The Double diffusive convection of Oldroyd-B fluid in the porous media was studied by 
Malashetty [11, 12, 13]. 
 
We use the expressions of theory of mixtures to examine the effects of variation of thermal conductivity and viscosity 
with nanofluid particle fraction. The same approach was followed by Tiwari and Das [14] and is also followed in this 
article in combination with the cross-diffusion effects. The nanofluid is assumed to be diluted and so the nanofluid  
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volume fraction becomes very small. The basic solution is taken as a linear function of vertical coordinate. McKibbin 
and O’Sullivan [15, 16] and Leong and Lai [17, 18] studied the vertical heterogeneity (especially the case of horizontal 
layers). McKibbin [19], Nield [20] and Gounat and Caltagirone [21] carried out their studies to study the horizontal 
heterogeneity. Vadász [22], Braester and Vadász [23] and Rees and Riley [24] discussed some more general aspects of 
conductivity heterogeneity. 
 
In this paper we intend to perform a linear stability analysis of a nanofluid-saturated porous medium by regarding the 
nanofluid as a viscoelastic fluid. The Maxwell fluid model is employed to describe the rheological behavior of the 
nanofluid. 
 
2. ANALYSIS  
 
2.1. Conservation equation  
 
We select a coordinate frame in which the z-axis is aligned vertically upwards. We consider a horizontal porous layer 
saturated with a Maxwell nanofluid confined between the planes * 0z =  and *z H= .Asterisks are used to denote 
dimensional variables (previously an asterisk has not been needed because all the variables were dimensional). Each 
boundary wall is assumed to be impermeable and perfectly thermally conducting. The temperatures at the lower and 
upper wall are taken to be *

hT   and *
cT . The Oberbeck–Boussinesq approximation is employed. In the linear stability 

theory being applied here, the temperature change in the fluid is assumed to be small in comparison with *
cT . The 

conservation equation is 
* *. 0DV∇ =

                                                                                                                                                            
(1) 

 
If one introduces a buoyancy force and adopts the Boussinesq approximation and uses the modified Darcy model for a 
porous medium saturated with a Maxwell nanofluid can be written as  

( )
*

* * *
1 1* * *1 1 effD

D
V p g

Kt t t
µρλ λ ρ

ε
 ∂∂ ∂   + = + −∇ + −    ∂ ∂ ∂    

v
 
                                                                           (2) 

 
The thermal energy equation for a nanofluid can be written as  

 
( ) ( ) ( ) ( )

*
* * * *2 * * * * * * * * *

* *. .T
D m Bm f p

C

DTc c T k T c D T T T
t T

ρ ρ ε ρ φ
  ∂

+ ∇ = ∇ + ∇ ∇ + ∇ ∇  ∂    
v

  
                                 (3)

 
*

* * * *2 * *2 *
* *

1 . T
D B

C

DD T
t T
φ ϕ φ

ε
 ∂

+ ∇ = ∇ + ∇ ∂  
v

 
                                                                                                       (4)

 
 
we write * * * *( , , )D u v w=v .  
 
We assume that the temperature and the volumetric fraction of the nanoparticles are constant on the boundaries. Thus 
the boundary conditions are 

* * * * * *
00, , 0hw T T at zφ φ= = = =                                                                                                                     (5) 

* * * * * *
10, ,Cw T T at z Hφ φ= = = =                                                                                                                     (6) 

 
We recognize that our choice of boundary conditions imposed on *φ  is somewhat arbitrary. It could be argued that zero 
particle flux on the boundaries is more realistic physically, but then one is faced with the problem that it appears that no 
steady-state solution for the basic conduction equations is then possible, so that in order to make analytical progress it 
is necessary to freeze the basic profile for *φ , and at that stage our choice of boundary conditions is seen to be quite 
realistic. 
 
We introduce dimensionless variables as follows. We define  

* * * * 2( , , ) ( , , ) / , /mx y z x y z H t t Hα σ= =  
* * * *( , , ) ( , , ) / , /m mu v w u v w H p p Kα µα= =  

* * * *
0

* * * *
1 0

, ,C

h C

T T
T

T T
φ φ

φ
φ φ

− −
= =

− −
                                  

                                          
                                                

(7) 

where     
( )

,
( ) ( )

p mm
m

p f p f

ck
c c

ρ
α σ

ρ ρ
= =

          
                                                                                                                     (8) 
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Then Eq (1)-(6) take the form 

. 0∇ =v                                                                                                                                                                (9) 

ˆ ˆ ˆ1 0a z T z zp Rm Ra T Rn
t t

λ γ φ µ∂ ∂  + +∇ + − + + =  ∂ ∂  

v e e e v                                                                            (10)  

2. . .B A BN N NT T k T T T T
t Le Le

φ∂
+ ∇ = ∇ + ∇ ∇ + ∇ ∇

∂
v                                                                                             (11)  

2 21 1 1. AN T
t Le Le
φ φ φ

σ ε
∂

+ ∇ = ∇ + ∇
∂

v                                                                                                                  (12) 

0, 1, 0 0w T at zφ= = = =                                                                                                                            (13) 
0, 0, 1 1w T at zφ= = = =                                                                                                                            (14)  

Here m

B

Le
D
α

= ,
*

T
m

g KH TRa ρ β
µα

∆
= , 0 0[ (1 )]p

m

gKH
Rm

ρ φ ρ φ
µα

∗ ∗+ −
= , 

* *
1 0( )( )p

m

gKH
Rn

ρ ρ ϕ ϕ
µα

− −
= ,   

AN =
*

* *
1 0

,
( )

T

B c

D T
D T φ φ∗

∆

−
 BN = *

1 0

( )
( )

( )
p

f

c
c

ε ρ
ϕ ϕ

ρ
∗ − , effµ

µ
µ

= , 1
2

m

H
λα

λ
σ

= , a Va
εγ

σ
= ,

2PrVa
Da
ε

= , Pr
m

µ
ρα

= , 2

KDa
H

=  

 
The relaxation parameter is a dimensionless number used in reheology to characterize how fluid and material are. The 
smaller the relaxation parameter, the more fluid the material appears. The parameter λ  that relates to the relaxation 
time to the thermal diffusion time is of order one for most viscoelastic fluids. The value for relaxation parameter for 
dilute polymeric solution is most likely in the ranged [0.1,2]. The Prandtl number affects the stability of the porous 
system through the combined dimensionless group know as Vadasz number. The Vadasz number is also known as 
Darcy-Prandtl number in the literature. Eq (10) has been linearized by neglecting a term proportional to the product of 
π  and T. This assumption is likely to be valid in the case of small temperature gradients in a dilute suspension of 
nanoparticles. 
 
2.2. Basic solution 
 
We seek a time-independent quiescent solution of Eq (9)–(12) with temperature and nanoparticle volume fraction 
varying in the z-direction only that is a solution of the form 

v =0, T= bT  (z),  bφφ = (z) , ( )bp p z=  
 
Eq (11) and (12) reduce to 

2
2

2

.
( ) 0b b b bB A Bd T d dT dTN N N

Le dz dz Le dzdz
φ

+ + =                                                                                                          (15)    

2 2

2 0b b
A

d d T
N

dzdz
φ

+ =                                                                                                                                               (16) 

 
Using the boundary conditions (13) and (14)  

(1 )b A b A AN T N Z Nφ = − + − +                                                                                                                           (17)  
and substitution of this in to  Eq (15)  gives 

2

2

(1 )
0b bA Bd T dTN N

Le dZdZ
−

+ =                                                                        (18) 

 
The solution of Eq (18) satisfying Eq (13) and (14) is 

(1 ) (1 )/

(1 ) /

1
1

A B

A B

N N Z Le

b N N Le

eT
e

− − −

− −

−
=

−
                                                                               (19) 

 
The remainder of the basic solution is easily obtained by first substituting in Eq (23) to obtain bφ  and then using 
integration of Eq (10) to obtain bP .  
 
According to Buongiorno[25], for most nanofluids investigated so far Le/( ∗∗ − 01 φφ ) is large, of order 510 – 610 , and 

since the nanoparticle fraction decrement is typically no smaller than 310 this means so that Le is large, of order      
210 – 310 , while AN  is no greater than about 10. Then the exponents in Eq (18) and (19) are small and so to a good 

approximation one has 
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zTb −= 1                                                                                                                                                        (20)  

and so    b zϕ =
                                                                                                                                                               

(21) 
 
2.3. Perturbation solution 
 
We now superimpose perturbations on the basic solution. We write 

 '=v v , 'bp p p= + , 'bT T T= + , 'bϕ ϕ ϕ= +                                                                                                      (22)    
Substitute in Eq (9)–(12), and linearize by neglecting products of primed quantities. The following equations are 
obtained when Eq (20) and (21) are used. 

. ' 0∇ =v                                                                                                                                                                           (23) 

ˆ ˆ ˆ1 0a T z z zp Ra T Rm Rn
t t

λ γ φ µ
′∂ ∂  ′ ′ ′ ′+ ∇ + − + + + =  ∂ ∂  

v e e e v                                                                       (24) 

2 2' ' ' '' ' B A BN N NT T Tw k T
t Le z z Le z

ϕ∂ ∂ ∂ ∂ − = ∇ + − − ∂ ∂ ∂ ∂ 
                                                                                         (25)  

2 21 ' 1 1' ' 'ANw T
t Le Le
ϕ ϕ

σ ε
∂

+ = ∇ + ∇
∂

                                                                                                                 (26) 

' 0w = , ' 0T = , ' 0ϕ =  at 0=z  and at 1=z                                                                                                   (27) 
It will be noted that the parameter Rm is not involved in these and subsequent equations. It is just a measure of the basic 
static pressure gradient. 
 
The six unknowns 'u , 'v , 'w , 'p , 'T  , 'ϕ  can be reduced to three by operating on Eq (24) with zê curl curl and using 

the identity curl curl ≡grad div - 2∇  together with Eq (23). 
 
The result is 

( ) ( ){ } ( ){ }2 2 21 ' 1 ' 'a T H Hs s z w s Ra T Rnλ γ µ λ φ+ + ∇ = + ∇ − ∇                                                                             (28)  

here 2
H∇  is the two-dimensional Laplacian operator on the horizontal plane.       

 
The differential Eq (25)-(28) and boundary conditions constitute a linear boundary-value problem that can be solved 
using the method of normal modes. 
 
We write  

( ', ', ') [ ( ), ( ), ( )]exp( )w T W z z z st ilx imyϕ = Θ Φ + +                                                                                           (29) 
and substitute into the differential equations to obtain 

( ) ( ){ } ( ) ( )2 2 2 21 ( ) 1 1 0a Tz s s D W s Ra s Rnµ λ γ α λ α λ α+ + − + + Θ− + Φ =           (30)                                                             

( )2 2 2 .
( ) 0A A B BN N N NW k z D D D s D

Le Le Le
α + − + − − Θ− Φ = 

 
             (31)                                          

2 2 2 21 1( ) ( ) 0AN sW D D
Le Le

α α
ε σ

 − − Θ− − − Φ = 
 

                                                                                            (32)                                                    

0 , 0, 0 0 1W at Z and at Z= Θ = Φ = = =                                                                                                   (33) 
Where 

dD
dz

≡   and   2/1222 )( ml +=α                                                                                                                 (34) 

 
Thus α  is a dimensionless horizontal wave number. 
 
For neutral stability the real part of s is zero. Hence we now write ωis = , where ω  is real and is a dimensionless 
frequency.  
 
We now employ a Galerkin-type weighted residuals method to obtain an approximate solution to the system of          
Eq. (30)–(32). We choose as trial functions (satisfying the boundary conditions)

  , , ; 1, 2,3......p p pW pΘ Φ =                                                                                                                                 (35) 

write       W=
1

,
N

p p
p

A W
=
∑

1

N

p P
p

B
=

Θ = Θ∑  ,
1

N

p p
p

C
=

Φ = Θ∑                                                                                                  (36)   
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substitute into Eq (30)–(32), and make the expressions on the left-hand sides of those equations (the residuals) 
orthogonal to the trial functions, there by obtaining a system of 3N linear algebraic equations in the 3N unknowns 

, , , 1, 2,...p p pA B C p N= . The vanishing of the determinant of coefficients produces the eigen value equation for the 
system. One can regard TRa as the eigenvalue. Thus TRa is found in terms of the other parameters Trial function 
satisfying the above boundary condition can be chosen as  

sin ; 1,2,3......p p pW p z pπ= Θ = Φ = =
  

 
In the present case, where viscosity and conductivity variations are incorporated, the critical wave number is unchanged 
and the stability boundary becomes 

( )
( )( ) ( ) ( )( ) ( )

22

2

1 1 1 1 1
1

A
T a

Rn NJ s RnRa s s J J s J s s J s
J s Le Les
Le

ααγ λ λ λ
σ ελ α

σ

  = + + + + − + + − +      + + 
 

                     

where    2 2J π α= +   
 
3. LINEAR STABILITY ANALYSIS 
  
3.1 Stationary mode  
 
For the validity of principle of exchange of stabilities (i.e., steady case), we have 0s =  ( ). . 0r i r ii e s s is s s= + = = =  at 
the margin of stability. For a first approximation we take N=1. Then Rayleigh number at which marginally stable 
steady mode exists becomes. 

2 2 2

2

( )
T A

LeRa Rn Nπ α
εα

+  = − + 
 

.                                                                                                                (37) 

 
Finding the minimum as α  varies results in 

24T A
LeRa Rn Nπ
ε

 = − + 
 

.                                                                                                                             (38)        

with the minimum being attained at .πα =  We recognize that in the absence of nanoparticles we recover the well-
known result that the critical Rayleigh number is equal to 4 2π . Usually when one employs a single-term Galerkin 
approximation in this context one gets an overestimate by about 3% (e.g. 1750 instead of 1708 in the case of the 
standard Bénard problem) but in this case the approximation happens to give the exact result.  
 
3.2 Oscillatory Convection. 
 
We now set s iω=  where ( )( )Im 0rω ω ω= = in Eq (37) and clear the complex quantities from the denominator to 
obtain  

1 2TRa iω= ∆ + ∆  
 
For oscillatory onset ( )2 0 0iω∆ = ≠ and this gives a dispersion relation of the form (on dropping the subscript i )  

( ) ( )22 2
1 2 3 0b b bω ω+ + =                                                                                                                                 (39) 

 
Now Eq (39) with 2 0∆ = gives  

( )2
1 2T oRa a a aω= +                                                                                                                                         (40) 

Where 1 2,b b and 3b  and 0 1,a a  and 2a  and 1 2and∆ ∆  are not presented for brevity. 
 
We find the oscillatory neutral solution. It proceeds as follows. First determine the number of positive solution of (40). 
If there are none, then the minimum (over 2a  ) with 2ω  given by Eq (40) gives the oscillatory neutral Ralyeigh 
number. Since Eq (30) is quadratic in 2ω , it can give rise to more than one positive value of 2ω , it can give rise to 
more than one positive value of 2ω  for fixed value of the parameters , , ,ARn Ln N andσ λ . However, our numerical 
solution for the range of parameters considered here gives only one positive value of 2ω  indicating that there exists 
only one oscillatory neutral solution. The analytical expression for oscillatory Rayleigh number gives is minimized 
with respect to the wave number numerically, after substituting for 2ω  (>0) from  Eq. (40) for various values of 
physical parameters in order to know their effects ion the onset of oscillatory convection.  
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3.3 Heat and Nanoparticle Concentration Transport 
 
The thermal Nusselt number, ( )fNu t is defined as 

( )( )f
Heat transport by conduction convectionNu t

Heat transport by conduction
+

=
 
                      

                               
(41)                                                         

                 

2 /

0
2 /

0 0

( )
1

( )

a

a
B

z

T dx
Z
T dx
z

π

π

=

 ∂
 ∂ = +
 ∂
 

∂  

∫

∫
                                                           (42)  

 
Substituting expressions (20) and (21) in Eq (42) we get  

3( ) 1 2 ( )fNu t A tπ= −                                                                               (43)    
 
The nanoparticle concentration Nusselt number, Nuφ(t) is defined similar to the thermal Nusselt number. Following the 
procedure adopted for arriving at Nu(t), one can obtain the expression for Nuφ(t) in the form 

5 3( ) (1 2 ( )) (1 2 ( ))ANu t A t N A tφ π π= − + −                                                                                                          (44) 

0 2 4 6 8
0

40

80

120

160
(a)

Rn = 0.01
0.05

 

 α

RaT

ε = 0.9, Le = 200, 
 NA = -5,

0.1

0 2 4 6 8
0

40

80

120

160
(b)

Le = 50

200
100

 

 

Le = 500

α

ε = 0.9, Rn = -0.1, 
 NA = -5

RaT

 

0 2 4 6 8
60

65

70

75

80
(c)

 

 

RaT

α

NA = -10, -5, 0, 5, 10

ε = 0.9, Le = 200, 
 Rn = -0.1,

0 2 4 6 8
0

40

80

120

160

(d)

ε = 0.9, 1

ε = 0.5

α

 RaT

NA = -5, Rn = -0.1, 
 Le = 200,

ε = 5, 10, 15

 
Figure-1: Neutral curves on stationary convection for different values of (a) nanoparticle concentration Rayleigh 
number Rn (b) Lewis number Le (c) modified diffusivity ratio AN   (d) porsity ε   
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Figure-2: Neutral curves on oscillatory convection for different values of (a) nanoparticle concentration Rayleigh 
number Rn (b) Lewis number Le (d) porsity ε  (d) thermal capacity ratio  (e)Vadasz number Va 
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Figure-3:  Variation of Nusselt number Nu with  time for different values of  (a) Nanoparticle concentration Rayleigh 
number Rn, (b) Lewis number Le, (c) Modified diffusivity ratio AN (d) Vadasz number Va (e) relaxation time λ  
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Figure-4: Variation of Sherwood number Sh with time for different values of (a) Nanoparticle concentration Rayleigh 
number Rn, (b) Lewis number Le, (c) Modified diffusivity ratio AN   (d) Vadasz number Va (e) relaxation time λ  
 
RESULT AND DISCUSSIONS 
 
Fig.1a-d shows the effect of various parameters on the neutral stability curves for stationary convection for Rn = -0.1, 
Le = 200, AN  = -5, ε  = 0.9, with variation in one of the parameters. The effect of nanoparticle concentration Rayleigh 
number Rn is shown in Fig. 1a. It is shown that the thermal Rayleigh number decreases with increase in nanoparticle 
concentration Rayleigh number Rn, which shows that nanoparticle concentration Rayleigh number Rn destabilizes the 
system. It should be noted that the negative value of Rn indicates a bottom-heavy case, while a positive value indicates 
a top-heavy case. The effect of Lewis number Le on the thermal Rayleigh number is shown in Fig. 1b. One can see that 
the thermal Rayleigh number increases with increase in Lewis number, indicating that the Lewis number stabilizes the 
system. The effect of modified diffusivity ratio AN  on the thermal Rayleigh number is shown in Fig. 1c, it is shown in 
Fig. 1c that as AN  increases TRa  increases and hence AN  has a stabilizing effect on the system. From Fig. 1d, one can 
observe that as porosity ε  increases, thermal Rayleigh number decreases which means that the porosity advances the 
onset of convection. 
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Figure 2a-e displays the variation of thermal Rayleigh number for oscillatory convection with respect to various 
parameters. In Fig 2a it is seen that for negative values of Rn (bottom heavy case). The thermal Rayleigh number 
decreases as Rn increases which will delay the onset of convection. As the Lewis number Le increases the thermal 
Rayleigh number TRa  decreases as seen in Fig. 2b which imply that Lewis number Le destabilizes the system. From 
the picture 2c, one can reveal that the porosity ε  destabilizes the system for oscillatory convection, that is an increase 
in ε  decreases the thermal Rayleigh number. As the thermal capacity ratio σ  increases, the thermal Rayleigh number 
also increases as can be observed in Fig 2d, which implies that σ  has a stabilizing effect on the system for oscillatory 
convection. The effect of Vadasz number Va on thermal Rayleigh number is depicted in Fig 2e. from this figure one 
can see that as Va increases the thermal Rayleigh number decreases thus Va destabilizes the system. 
 
Fig 3a depicts the transient nature of Nusselt number on nanoparticle concentration Rayleigh number Rn. It is observed 
that as Rn increases Nu decreases showing a decrease in the heat transport. Form Fig 3b as Lewis number increases the 
Nu decreases indicating there is retardation on heat transport. In Fig 3c and d modified diffusivity ratio and Vadasz 
number enhance the heat transport. Fig 3e shows the effect of the viscoelastic parameter λ  here we find that with an 
increase in λ  there is an increase in heat transfer, which is similar to the result observed by J.C Umavati et.al [26]. 
 
From Fig 4a and d show that as nanoparticle concentration Rayleigh number Rn and Vadasz number increases the 
Sherwood number decreases this show suppression of mass transport. From Fig 5b and e shows the mass transport is 
enhanced for Lewis number and modified diffusivity ratio. In Fig 3e we find that that as viscoelastic parameter λ  
increases the mass transfer increases, which are similar to the result observed by J.C Umavati et.al [26]. 
 
CONCLUSIONS 
 
We consider linear stability analysis in a horizontal porous medium saturated with a Maxwell nanofluid heated from 
below and cooled from above, using modified Darcy-Maxwell model which incorporates the effects of Brownian 
motion along thermophoresis Linear analysis has been made using normal mode technique. We draw the following 
conclusions. 

(1) For stationary convection Lewis number Le and modified diffusivity ratio AN  have stabilizing effect while 
nanoparticle concentraton Rayleigh number Rn and porosity σ  destabilizes the system. 

(2) For oscillatory convection thermal capacity ratio stabilize the system while nanoparticle concentration 
Rayleigh number Rn, Lewis number Le, porosity σ  and Vadasz number Va destabilize the system. 

(3) The effect of time on transient number and Sherwood number is found to be oscillatory when t is small. 
However when t becomes very large both the transient Nusselt and Sherwood values approach to their steady 
state value. 
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