Volume 9, No. 1, Jan. - 2018 (Special Issue)

International Journal of Mathematical Archive-9(1), 2018, 87-92 JMAAvailable online through www.ijma.info ISSN 2229 - 5046

PREMA S1 & JAYANTHI D2

Department of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India.

E-mail: 1premaparameswaran14@gmail.com & 2jayanthimathss@gmail.com

ABSTRACT

In this paper we introduce intuitionistic fuzzy completely γ generalized continuous mappings. We investigate some of their properties. Also we provide some characterization of intuitionistic fuzzy completely γ generalized continuous mappings.

Keywords: Intuitionistic fuzzy sets, intuitionistic fuzzy topology, intuitionistic fuzzy γ generalized continuous mappings, intuitionistic fuzzy completely γ generalized continuous mappings.

Subject classification code: 03F55, 54A40.

1. INTRODUCTION

Atanassov [1] introduced the idea of intuitionistic fuzzy sets. Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Prema, S and Jayanthi, D [9] introduced intuitionistic fuzzy γ generalized continuous mappings. In this paper we introduce the notion of intuitionistic fuzzy completely γ generalized continuous mappings and study some of their properties. We provide some characterizations of intuitionistic fuzzy completely γ generalized continuous mappings.

2. PRELIMINARIES

Definition 2.1: [1] An intuitionistic fuzzy set (IFS for short) A is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$

where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS (X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$.

Definition 2.2: [1] Let A and B be two IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X \}$. Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- (c) $A^c = \{\langle x, \nu_A(x), \mu_A(x) \rangle : x \in X\},\$
- (d) A U B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X$ },
- (e) $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{-} = \langle x, 0, 1 \rangle$ and $1_{-} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) 0_{\sim} , $1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (iii) $\cup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$.

International Journal of Mathematical Archive- 9(1), Jan. - 2018

87

CONFERENCE PAPER

Completely y- generalized continuous mappings in intuitionistic fuzzy topological spaces / IJMA- 9(1), Jan.-2018, (Special Issue)

In this case the pair (X, τ) is called the intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [8] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy γ generalized closed set (IF γ GCS for short) if γ cl(A) \subseteq U whenever A \subseteq U and U is an IF γ OS in (X, τ) .

The complement A^c of an IF γ GCS A in an IFTS (X, τ) is called an intuitionistic fuzzy γ generalized open set (IF γ GOS for short) in X.

Definition 2.5: [9] A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is called an intuitionistic fuzzy γ generalized continuous (IF γ G continuous for short) mapping if $f^{-1}(V)$ is an IF γ GCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.6: [8] An IFTS (X,τ) is an intuitionistic fuzzy γ_{γ} $T_{1/2}$ $(IF\gamma_{\gamma}T_{1/2}$ in short) space if every $IF\gamma GCS$ is an $IF\gamma CS$ in X.

Definition 2.7: [3] An intuitionistic fuzzy point (IFP in short), written as $p_{(\alpha,\beta)}$, is defined to be an IFS of X given by $p_{(\alpha,\beta)}(x) = \begin{cases} (\alpha,\beta) & \text{if } x=p, \\ (0,1) & \text{otherwise.} \end{cases}$

An intuitionistic fuzzy point $p_{(\alpha,\beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.8: [6] Let X and Y be two IFTSs. Let $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and $B = \{\langle y, \mu_B(y), \nu_B(y) : y \in Y \}$ be IFSs of X and Y respectively. Then A x B is an IFS of X x Y defined by $(A \times B) (x, y) = \langle (x, y), \min(\mu_A(x), \mu_B(y)), \max(\nu_A(x), \nu_B(y)) \rangle$.

Definition 2.9: [6] Let $f_1: X \to Y_1$ and $f_2: X_2 \to Y_2$. The product $f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2$ is defined by $(f_1 \times f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$ for every $(x_1, x_2) \in X_1 \times X_2$.

Definition 2.10: [4] Let X and Y be two non empty sets and f: $X \to Y$ be a function. If $B = \{\langle y, (\mu_B(y), \nu_B(y) / y \in Y \rangle\}$ is an IFS in Y, then the *preimage* of B under f is denoted and defined by $f^{-1}(B) = \{\langle x, f^{-1}(\mu_B)(x), f^{-1}(\nu_B)(x) / x \in X \rangle\} \text{ where } f^{-1}(\mu_B)(x) = \mu_B(f(x)) \text{ for every } x \in X.$

3. Completely γ generalized continuous mappings in intuitionistic fuzzy topological spaces

In this section we introduce intuitionistic fuzzy completely γ generalized continuous mappings and study some of their properties.

Definition 3.1: A mapping $f: (X, \tau) \to (Y, \sigma)$ is said to be an intuitionistic fuzzy completely γ generalized continuous (IF completely γ G continuous for short) mapping if $f^{-1}(V)$ is an IFRCS in X for every IF γ GCS V in Y.

Theorem 3.2: Every IF completely γG continuous mapping is an IF continuous mapping[4] but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS [8], V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IFCS in X. Since every IFRCS is an IFCS, $f^{-1}(V)$ is an IFCS in X. Hence f is an IF continuous mapping.

Example 3.3: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.2_a, 0.3_b), (0.8_a, 0.7_b) \rangle$ and $G_3 = \langle y, (0.2_u, 0.3_v), (0.8_u, 0.7_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$ are IFTs on X and Y respectively.

Define a mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

$$\begin{split} & \text{IF}\gamma O(X) = \{0_{\sim},\,1_{\sim},\,\mu_a \in [0,1],\,\mu_b \in [0,1],\,\nu_a \in [0,1],\,\nu_b \in [0,1] \text{ either } \nu_a < 0.2 \text{ or } \nu_b < 0.3,\,\nu_a \geq 0.5 \text{ whenever } \nu_b \geq 0.5,\\ & 0 \leq \mu_{a+}\nu_a \leq 1 \text{ and } 0 \leq \mu_{b+}\nu_b \leq 1\}. \end{split}$$

Then IF γ C(X) = {0~, 1~, $\mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]$ / either $\mu_a < 0.2$ or $\mu_b < 0.3, \mu_a \ge 0.5$ whenever $\mu_b \ge 0.5, \ 0 \le \mu_{a+}\nu_a \le 1$ and $0 \le \mu_{b+}\nu_b \le 1$ }.

© 2018, IJMA. All Rights Reserved

$$\begin{split} & \text{IF}\gamma O(Y) = \{0_{\sim},\,1_{\sim},\,\boldsymbol{\mu}_{\!u} \in [0,\,1],\,\boldsymbol{\mu}_{\!v} \,\boldsymbol{\epsilon} \,[0,\,1],\,\boldsymbol{\nu}_{\!u} \,\boldsymbol{\epsilon} \,[0,\,1],\,\boldsymbol{\nu}_{\!v} \,\boldsymbol{\epsilon} \,[0,\,1]/\,\,\,0 \leq & \boldsymbol{\mu}_{\!u} + \,\boldsymbol{\nu}_{\!u} \,\leq 1 \,\,\text{and}\,\,0 \leq & \boldsymbol{\mu}_{\!v} + \,\boldsymbol{\nu}_{\!v} \,\leq 1 \} \\ & \text{IF}\gamma C(Y) = \{0_{\sim},\,1_{\sim},\,\boldsymbol{\mu}_{\!u} \,\boldsymbol{\epsilon} \,[0,\,1],\,\boldsymbol{\mu}_{\!v} \,\boldsymbol{\epsilon} \,[0,\,1],\,\boldsymbol{\nu}_{\!u} \,\boldsymbol{\epsilon} \,[0,\,1],\,\boldsymbol{\nu}_{\!v} \,\boldsymbol{\epsilon} \,[0,\,1]/\,\,\,0 \leq & \boldsymbol{\mu}_{\!u} + \,\boldsymbol{\nu}_{\!u} \,\leq 1 \,\,\text{and}\,\,0 \leq & \boldsymbol{\mu}_{\!v} + \,\boldsymbol{\nu}_{\!v} \,\leq 1 \} \end{split}$$

Then f is an IF continuous mapping, but not an IF completely γG continuous mapping, since G_3^c is an IF γGCS in Y, but $f^{-1}(G_3^c) = \langle x, (0.8_a, 0.7_b), (0.2_a, 0.3_b) \rangle$ is not an IFRCS in X as $cl(int((f^{-1}(G_3^c)) = cl(G_1) = G_1^c \neq f^{-1}(G_3^c))$.

Theorem 3.4: Every IF completely γG continuous mapping is an IF semi continuous mapping [7] but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IFSCS in Y. Since every IFRCS is an IFSCS, $f^{-1}(V)$ is an IFSCS in Y. Hence f is an IF semi continuous mapping.

Example 3.5: In Example 3.3, f is an IF semi continuous mapping, but not an IF completely γG continuous mapping.

Theorem 3.6: Every IF completely γG continuous mapping is an IF pre continuous mapping [7] but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IFPCS in X. Since every IFRCS is an IFPCS, $f^{-1}(V)$ is an IFPCS in X. Hence f is an IF pre continuous mapping.

Example 3.7: In Example 3.3, f is an IF pre continuous mapping, but not an IF completely γ G continuous mapping.

Theorem 3.8: Every IF completely γG continuous mapping is an IF α continuous mapping [7] but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IF αCS in Y. Since every IFRCS is an IF αCS , $f^{-1}(V)$ is an IF αCS in Y. Hence f is an IF αCS in Y.

Example 3.9: In Example 3.3, f is an IF α continuous mapping, but not an IF completely γ G continuous mapping.

Theorem 3.10: Every IF completely γG continuous mapping is an IF γG continuous mapping [9] but not conversely in general.

Proof: Let $f: (X, \tau) \to (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IFVGCS in V. Then $f^{-1}(V)$ is an IFVGCS in V. Since every IFRCS is an IFVGCS, V is an IFVGCS in V. Hence V is an IFVGCS in V.

Example 3.11: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.5_a, 0.3_b), (0.5_a, 0.7_b) \rangle$, $G_3 = \langle y, (0.2_u, 0.3_v), (0.8_u, 0.7_v) \rangle$ and $G_4 = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_3, G_4, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

 $IF\gamma O(X) = \{0_{\sim}, \ 1_{\sim}, \ \mu_a \in [0,1], \ \mu_b \in [0,1], \ \nu_a \in [0,1], \ \nu_b \in [0,1]/ \ \text{either} \ \nu_a < 0.5 \ \text{or} \ \nu_b < 0.3, \ \nu_a \geq 0.6 \ \text{whenever} \ \nu_b \geq 0.6, \ \nu_a = 0.5 \ \text{whenever} \ \nu_b > 0.3, \ 0 \leq \mu_{a+}\nu_a \leq 1 \ \text{and} \ 0 \leq \mu_{b+}\nu_b \leq 1\}.$

IF γ C(X) = {0, 1, $\mu_a \in [0, 1], \mu_b \in [0, 1], \nu_a \in [0, 1], \nu_b \in [0, 1]$ / either $\mu_a < 0.5$ or $\mu_b < 0.3, \mu_a \ge 0.6$ whenever $\mu_b \ge 0.6$, $\mu_a = 0.5$ whenever $\mu_b \ge 0.3, 0 \le \mu_{a+}\nu_a \le 1$ and $0 \le \mu_{b+}\nu_b \le 1$ }.

 $IF\gamma O(Y) = \{0_{\sim}, 1_{\sim}, \mu_u \in [0, 1], \mu_v \in [0, 1], \nu_u \in [0, 1], \nu_v \in [0, 1]/\ 0 \le \mu_u + \nu_u \le 1 \text{ and } 0 \le \mu_v + \nu_v \le 1\}$

IF γ C(Y) = {0, 1, $\mu_0 \in [0, 1], \mu_v \in [0, 1], \nu_u \in [0, 1], \nu_v \in [0, 1] / 0 \le \mu_0 + \nu_u \le 1$ and $0 \le \mu_v + \nu_v \le 1$ }

Then f is an IF γ G continuous mapping, but not an IF completely γ G continuous mapping, since G_3^c is an IF γ GCS in Y, but $f^1(G_3^c) = \langle x, (0.8_a, 0.7_b), (0.2_a, 0.3_b) \rangle$ is not an IFRCS in X as $cl(int((f^{-1}(G_3^c)) = cl(G_1) = G_1^c \neq f^{-1}(G_3^c))$.

Theorem 3.12: Every IF completely γG continuous mapping is an IF γ continuous mapping [5] but not conversely in general.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IF γGCS in Y. Since every IFRCS is an IF γGCS in Y. Hence f is an IF γGCS in Y. Hence f is an IF γGCS in Y.

Example 3.13: In Example 3.3, f is an IF γ continuous mapping, but not an IF completely γ G continuous mapping.

Theorem 3.14: Every IF completely γG continuous mapping is an IFSP continuous mapping [12] but not conversely in general.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFCS in Y. Since every IFCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IFSPCS in X. Since every IFRCS is an IFSPCS, $f^{-1}(V)$ is an IFSPCS in X. Hence f is an IFSP continuous mapping.

Example 3.15: In Example 3.3, f is an IFSP continuous mapping, but not an IF completely γG continuous mapping.

Theorem 3.16: Every IF completely γG continuous mapping is an IFa γG continuous mapping [10] but not conversely in general.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be an IF completely γG continuous mapping. Let V be an IFRCS in Y. Since every IFRCS is an IF γGCS , V is an IF γGCS in Y. Then $f^{-1}(V)$ is an IFRCS and hence is an IF γGCS in X. Thus f is an IF γGCS continuous mapping.

Example 3.17: In Example 3.11, the mapping f is an IFa γ G continuous mapping, but not an IF completely γ G continuous mapping.

The relation between various types of intuitionistic fuzzy continuity is given in the following diagram. In this diagram 'cts.' means continuous and IFcom. γ G cts. means IF completely γ G continuous.

The reverse implications are not true in general in the above diagram.

Theorem 3.18: If $f: (X, \tau) \to (Y, \sigma)$ is an IF completely γG continuous mapping then $\gamma cl(f^{-1}(A)) \subseteq f^{-1}(cl(A))$ for every IF γ OS $A \subseteq Y$.

Proof: Let A be an IF γ OS in Y. Then cl(A) is an IFRCS in Y. Hence cl(A) is an IF γ GCS in Y. By hypothesis, $f^{-1}(cl(A))$ IFRCS in X and thus an IF γ CS in X. Therefore γ cl($f^{-1}(A)$) $\subseteq \gamma$ cl($f^{-1}(cl(A))$) = $f^{-1}(cl(A))$.

Theorem 3.19: Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following are equivalent:

- (i) f is an IF completely γG continuous mapping
- (ii) $f^{-1}(V)$ is an IFROS in X for every IF γ GOS V in Y
- (iii) for every IFP $p_{(\alpha,\beta)} \in X$ and for every IF γ GOS B in Y such that $f(p_{(\alpha,\beta)}) \in B$ there exists an IFROS in X such that $p_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$

Proof:

(i) \Leftrightarrow (ii): is obvious as $f^{-1}(A^c) = (f^{-1}(A))^c$.

(ii) \Rightarrow (iii): Let $p_{(\alpha,\beta)} \in X$ and $B \subseteq Y$ such that $f(p_{(\alpha,\beta)}) \in B$. This implies $p_{(\alpha,\beta)} \in f^{-1}(B)$. Since B is an IF γ GOS in Y, by hypothesis $f^{-1}(B)$ is an IFROS in X. Let $A = f^{-1}(B)$. Then $p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \in f^{-1}(B) = A$. Therefore $p_{(\alpha,\beta)} \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$. This implies $f(A) \subseteq B$.

(iii) \Rightarrow (ii): Let B \subseteq Y be an IF γ GOS. Let $p_{(\alpha,\beta)} \in X$ and $f(p_{(\alpha,\beta)}) \in B$. By hypothesis, there exists an IFROS C in X such that $p_{(\alpha,\beta)} \in C$ and $f(C) \subseteq B$. This implies $C \subseteq f^1(f(C)) \subseteq f^1(B)$. Therefore $p_{(\alpha,\beta)} \in C \subseteq f^1(B)$. That is

© 2018, IJMA. All Rights Reserved

Completely y- generalized continuous mappings in intuitionistic fuzzy topological spaces / IJMA- 9(1), Jan.-2018, (Special Issue)

$$f^{^{-1}}(B) = \bigcup_{\mathbf{p}_{(\alpha,\beta)} \in f^{^{-1}}(B)} p_{(\alpha,\beta)} \subseteq \bigcup_{\mathbf{p}_{(\alpha,\beta)} \in f^{^{-1}}(B)} C \subseteq f^{^{-1}}(B) \text{. This implies } f^{^{-1}}(B) = \bigcup_{\mathbf{p}_{(\alpha,\beta)} \in f^{^{-1}}(B)} C \text{. Since the union IFROSs is an } \mathbf{p}_{(\alpha,\beta)} \in \mathbf{p}_{(\alpha,\beta)} = \mathbf{p}_{(\alpha,\beta)} = \mathbf{p}_{(\alpha,\beta)} \in \mathbf{p}_{(\alpha,\beta)} = \mathbf{p$$

IFROS, f⁻¹(B) is an IFROS in X. Hence f is an IF completely γG continuous mapping.

Theorem 3.20: If a mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF completely γG continuous mapping then for every IFP $p_{(\alpha,\beta)} \in X$ and for every IFN [11] A of $f(p_{(\alpha,\beta)})$, there exists an IFROS $B \subseteq X$ such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$.

Proof: Let $p_{(\alpha,\beta)} \in X$ and let A be an IFN of $f(p_{(\alpha,\beta)})$. Then there exists an IFOS C in Y such that $f(p_{(\alpha,\beta)}) \in C \subseteq A$. Since every IFOS is an IF γ GOS, C is an IF γ GOS in Y. Hence by hypothesis, $f^{-1}(C)$ is an IFROS in X and $p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \subseteq f^{-1}(C) \subseteq f^{-1}(A)$ and therefore $p_{(\alpha,\beta)} \in f^{-1}(C)$. Now let $f^{-1}(C) = B$. Therefore $p_{(\alpha,\beta)} \in G$ is $f^{-1}(A) = G$.

Theorem 3.21: A mapping $f: (X, \tau) \to (Y, \sigma)$ is an IF completely γG continuous mapping then for every IFP $p_{(\alpha,\beta)} \in X$ and for every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IFROS $B \subseteq X$ such that $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq A$.

Proof: Let $p_{(\alpha,\beta)} \in X$ and let A be an IFN of $f(p_{(\alpha,\beta)})$. Then there exists an IFOS C in Y such that $f(p_{(\alpha,\beta)}) \in C \subseteq A$. Since every IFOS is an IF γ GOS, C is an IF γ GOS in Y. Hence by hypothesis, $f^{-1}(C)$ is an IFROS in X and $p_{(\alpha,\beta)} \in f^{-1}(C)$. Now let $f^{-1}(C) = B$. Therefore $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$. Thus $f(B) \subseteq f(f^{-1}(A)) \subseteq A$. That is $f(B) \subseteq A$.

Theorem 3.22: A mapping f: $(X, \tau) \to (Y, \sigma)$ is an IF completely γG continuous mapping then $\operatorname{int}(\operatorname{cl}(f^{-1}(\operatorname{int}(B)))) \subseteq f^{-1}(B)$ for every IFS B in Y.

Proof: Let $B \subseteq Y$. Then int(B) is an IFOS in Y and hence an IF γ GOS in Y. By hypothesis, $f^{-1}(int(B))$ is an IFROS in X. Hence $int(cl(f^{-1}(int(B)))) = f^{-1}(int(B)) \subseteq f^{-1}(B)$.

Theorem 3.23: For any two IF completely γG continuous functions $f_1, f_2 : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y \times Y, \sigma \times \sigma)$ is also an IF completely γG continuous function where $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, is also an IF completely γG continuous function where $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$, the function $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$ for every $(f_1, f_2) : (X, \tau) \to (Y, \sigma)$.

Proof: Let A x B be an IF γ GOS in Y x Y.

```
\begin{split} \text{Then } (f_1\,,\,f_2)^{-1}\,(A\,x\,B)\,(x) &= (A\,x\,B)\,(f_1\,(x),\,f_2\,(x)) \\ &= \langle x,\,\min(\mu_A\,(f_1\,(x)),\,\mu_B\,(f_2\,(x))),\,\max(\nu_A\,(f_1\,(x)),\,\nu_B\,(f_2\,(x)))\rangle \\ &= \langle x,\,\min(f_1^{\,\,-1}(\mu_A)(x),\,f_2^{\,\,-1}(\mu_B)(x)),\,\max(f_1^{\,\,-1}\,(\nu_A)\,(x),\,f_2^{\,\,-1}\,(\nu_B)\,(x))\rangle \\ &= (f_1^{\,\,-1}\,(A)\,\cap\,f_2^{\,\,-1}\,(B))\,(x). \end{split}
```

Since f_1 and f_2 are IF completely γG continuous functions, $f_1^{-1}(A)$ and $f_2^{-1}(B)$ are IFROSs in X. Since intersection of IFROSs is an IFROS, $f_1^{-1}(A) \cap f_2^{-1}(B)$ is an IFROS in X. Hence (f_1, f_2) is an IF completely γG continuous mappings.

Theorem 3.24: A mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is an IF completely γG continuous mapping then the following are equivalent:

- (i) For any IF γ GOS A in Y and for any IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)})_q$ A then $p_{(\alpha,\beta),q}$ int($f^{-1}(A)$).
- (ii) For any IF γ GOS A in Y and for any IFP $p_{(\alpha,\beta)} \in X$, if $f(p_{(\alpha,\beta)})_q$ A then there exists an IFOS B such that $p_{(\alpha,\beta)} \in X$ and $f(B) \subseteq A$.

Proof:

(i) \Rightarrow (ii): Let $A \subseteq Y$ be an IF γ GOS and let $p_{(\alpha,\beta)} \in X$. Let $f(p_{(\alpha,\beta)})_q$ A. Then (i) implies that $p_{(\alpha,\beta)}$ q int($f^{-1}(A)$), where int($f^{-1}(A)$) is an IFOS in X. Let $B = int(f^{-1}(A))$. Since $int(f^{-1}(A)) \subseteq f^{-1}(A)$, $B \subseteq f^{-1}(A)$. Then $f(B) \subseteq f(f^{-1}(A)) \subseteq A$.

(ii) \Rightarrow (i): Let $A \subseteq Y$ be an IF γ GOS and let $p_{(\alpha,\beta)} \in X$. Suppose $f(p_{(\alpha,\beta)})_q A$, then by (ii) there exists an IFOS B in X such that $p_{(\alpha,\beta)} = A$ and $p_{(\alpha,\beta)} = B$ and $p_{(\alpha,\beta)} = B$ and $p_{(\alpha,\beta)} = B$ and $p_{(\alpha,\beta)} = B$ in X is $p_{(\alpha,\beta)} = B$ in X

Theorem 3.25: The composition of any two IF completely γG continuous mapping is an IF completely γG continuous mapping in general.

Proof: Let $f: X \to Y$ and $g: Y \to Z$ be any two IF completely γG continuous mappings. Let B be an IF γGOS in Z. Since g is an IF completely γG continuous mapping, $g^{-1}(B)$ is an IF γGOS in Y. Since every IFROS is an IF γGOS , $g^{-1}(B)$ is an IF γGOS in Y. Since f is an IF completely γG continuous mapping, $f^{-1}(g^{-1}(B)) = (g \circ f)^{-1}(B)$ is an IFROS in X. Hence $g \circ f$ is an IF completely γG continuous mapping.

© 2018, IJMA. All Rights Reserved

Theorem 3.26: Let $f: X \to Y$ and $g: Y \to Z$ be any two functions. Then

- g f is an IF completely γG continuous mapping if f is an IF completely γG continuous mapping and g is an IFγG irresolute mapping.
- (ii) $g \circ f$ is an IF γG continuous mapping if f is an IF completely γG continuous mapping and g is an IF γG continuous mapping.

Proof:

- (i) Let B be an IF γ GOS in Z. Snce g is an IF γ G irresolute mapping, $g^{-1}(B)$ is an IF γ GOS in Y. Also, since f is an IF completely γ G continuous mapping, $f^{-1}(g^{-1}(B))$ is an IFROS in X. Since $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$, $g \circ f$ is an IF completely γ G continuous mapping.
- (ii) Let B be an IFOS in Z. Since g is an IF γ G continuous mapping, g $^{-1}(B)$ is an IF γ GOS in Y. Also, since f is an IF completely γ G continuous mapping, f $^{-1}(g^{-1}(B))$ is an IF γ GOS in X. Hence f $^{-1}(g^{-1}(B))$ is an IF γ GOS in X. From the fact that $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$, it follows that $(g \circ f)$ is an IF γ G continuous mapping.

4. REFERENCES

- 1. Atanassov, K., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, (1986), 87-96.
- Coker, D., An Introduction to Intuitionistic Fuzzy Topological Space, Fuzzy Sets and Systems, (1997), 81-89.
- Coker, D., and Demirci, M., On Intuitionistic Fuzzy Points, Notes on Intuitionistic Fuzzy Sets, (1995), 79-84.
- 4. Gurcay, H., Coker, D. and Haydar, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Mathematics, (1997), 365 378.
- 5. Hanafy, I.M., Intuitionistic fuzzy γ-continuity, Canad. Math. Bull., XX, (2009), 1-11.
- 6. Hanafy, I.M., and El-Arish, Completely continuous functions in intuitionistic fuzzy topological spaces, Czechoslovak Mathematical Journal, (2003), 793-803.
- 7. Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, International Journal of Mathematics and Mathematical Sciences, (2005), 3091–3101.
- 8. Prema, S. and Jayanthi, D., On intuitionistic fuzzy γ generalized closed sets, Global Journal of Pure and Applied Mathematics, (2017), 4639-4655.
- 9. Prema, S. and Jayanthi, D., Intuitionistic fuzzy γ generalized continuous mappings, Advances in Fuzzy Mathematics, (2017), 991-1006.
- 10. Prema, S. and Jayanthi, D., Intuitionistic fuzzy almost γ generalized continuous mapping (submitted).
- 11. Seok Jong Lee and Eun Pyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean math. Soc. (2000), 63 76.
- 12. Young Bae Jun and seok Zun Song., Intuitionistic fuzzy semi-pre open sets and Intuitionistic fuzzy semi-pre continuous mappings, Jour. of Appl. Math & computing, (2005), 465-474.

Source of support: Proceedings of UGC Funded International Conference on Intuitionistic Fuzzy Sets and Systems (ICIFSS-2018), Organized by: Vellalar College for Women (Autonomous), Erode, Tamil Nadu, India.