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ABSTRACT 
We established some common fixed point theorems satisfying integral type mapping in fuzzy metric space. In fact we 
proved following fixed point theorems in fuzzy metric spaces 
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1. INTRODUCTION  
 
Probabilistic functional analysis has emerged as one  of  the  important  mathematical  disciplines  in  view  of  its  role  
in analyzing Probabilistic  models  in  the  applied  sciences.  The  study  of  fixed  point  of  random  operator  forms  a  
central  topic  in  this  area.  Random  fixed  point  theorem  for contraction  mappings  in  Polish  spaces  and  random  
Fixed  point  theorems  are  of  fundamental  importance  in  probabilistic  functional analysis. The concept of Fuzzy-
random-variable was introduced as an analogous notion to random variable in order to extend statistical analysis to 
situations when the outcomes of some random experiment are fuzzy sets. But in contrary to the classical statistical 
methods no unique definition has been established before the work of Volker, Volker [22]. He presented set theoretical 
concept of fuzzy-random-variables using the method of general topology and drawing on results from topological 
measure theory and the theory of analytic spaces. No results in fixed point are introduced in fuzzy random spaces. In 
the present paper we are introducing the fuzzy random spaces and proving a common fixed point theorem. 
 
In this present chapter we prove some common fixed point theorems in fuzzy random metric space by using the concept 
of β- compatible mapping. First we give some basic and important definitions related to this chapter.  
 
Definition 1.1:  Let  X  be any set.  A  fuzzy  set  in  X  is  a  function  with  domain  X  and  values  in  [0,1]. 
 
Definition 1.2: A binary operation  ⋆ ∶ [0,1] × [0,1] → [0,1] is continuous t −norm if  ⋆  is satisfying the following  
conditions: 
1.2 (a)  ⋆  is commutative and associative, 
1.2 (b)  ⋆  is continuous, 
1.2 (c)  a ⋆ 1 = a  for all  a ∈ [0,1]  
1.2 (d) a ⋆ b ≤  c ⋆ d  whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0,1]  
Examples of  t − norm   are  a ⋆ b = min  {a, b} and a ⋆ b = ab. 
 
Definition 1.3: A triplet  (X, M,⋆)  is a fuzzy metric space whenever  X  is an  arbitrary  set,  ⋆  is  continuous  t −norm  
and  M  is  fuzzy  set  on  X × X × [0,∞+)  satisfying,  for   every  x, y, z ∈ X   and  s , t >  0,  the following  condition: 
1.3 (a) M(x, y, t) > 0 
1.3 (b) M(x, y, 0) = 0   
1.3 (c) M(x, y, t)  = 1  iff x = y  
1.3 (d) M(x, y, t) = M(y, x, t)  
1.3 (e) M(x, y, t)  ⋆  M(y, z, s) ≤ M(x, z, t + s)  
1.3 (f) M(x, y,∙):  (0,∞+) → [0,1] is  continuous.  
 
We note that, M(x, y, t)  can be realized as the measure of nearness between  x  and  y with respect  to t.  It is known 
that M(x, y,∙) is non decreasing for all  x, y ∈ X.  Let   M(x, y,⋆) be a fuzzy metric   space for  t >  0,  the   open   ball   

B(x, r, t) = {y ∈ X:  M(x, y, t) > 1 − r}.   
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Now, the collection  {B(x, r, t): x ∈ X, 0 < 𝑟 < 1, 𝑡 > 0}  is a neighborhood system for a topology τ  on X induced by 
the fuzzy metric M. This topology is Housdroff and   first countable. 
 
Example 1.4: Let (X, d) be a metric space. Define a ⋆ b = min{a, b} and M(x, y, t) = t

t+d(x,y)
 for all x, y ∈ X and all 

t > 0. Then (X, M,⋆) is a fuzzy metric space. It is called the fuzzy metric space induced by d. 
 
Definition 1.5: A sequence {xn}  in a fuzzy metric space (X, M,⋆)  is said to be a converges to  x  iff for each ε > 0   
and each  t > 0,   n0 ∈ N such that  M(xn, x, t)  > 1 − ε  for all  n ≥ n0.  
 
Definition 1.6: A sequence {xn}  in a fuzzy metric space (X, M,⋆)  is said to be a Cauchy sequence converges to x iff   
for each  ε > 0 and each   t > 0,   n0 ∈ N such   that  M(xm, xn, t) > 1 − ε  for all  m, n ≥ n0.  
 
A fuzzy metric space (X, M,⋆) is said to be complete if every Cauchy sequence in it converges to a point in it. 
 
Definition 1.7: Self mapping A and S of a fuzzy metric space (X, M,⋆) are said to be compatible if and only if  
M(ASxn, SAxn, t) → 1 for all t >  0, where {xn} is a sequence in X such that Sxn, Axn  →  p for some p ∈ X as n → ∞. 
 
Definition 1.8: Self map A and S of a fuzzy metric space (X, M,⋆) are said to be compatible of type (β) if and only if  
M(AAxn, SSxn, t) → 1 for all t > 0, where {xn} is a sequence in X such that Sxn, Axn  →  p for some p ∈ X as n → ∞. 
 
Definition 1.9: Two maps A and B from a fuzzy metric space (X, M,⋆) into itself are said to be weakly compatible if 
they commute at their coincidence points i.e., Ax = Bx  implies ABx = BAx  for some x ∈  X. 
 
Remark 1.10: The concept of compatible map of type (β) is more general then the concept of compatible map in fuzzy 
metric space.  
 
Definition 1.11: Let A and S be two self maps of a fuzzy metric space (X, M,⋆)  then A and S is said to be a weakly 
commuting if M(ASxn, SAxn, t) ≤ M(Sxn, Axn, t)    for all  x ∈  X . 
 
It can be seen that commuting maps (ASx = SAx ∀ x ∈ X) are weakly compatible but converse is not true. 
 
Lemma 1.12: In a fuzzy metric space (X, M,⋆)  limit of a sequence is unique. 
 
Lemma 1.13: Let (X, M,⋆) be a fuzzy metric space. Then for all  x, y ∈ X M(x, y,  . ) is a non decreasing function. 
 
Lemma 1.14: Let (X, M,⋆) be a fuzzy metric space. If there exists k ∈ (0,1) such that for all x, y ∈ X,   

M(x, y, kt) ≥ M(x, y, t) ∀t > 0, 𝑡ℎ𝑒𝑛 𝑥 =  𝑦. 
 
Lemma 1.15: Let {xn} be a sequence in a fuzzy metric space (X, M,⋆). If there exists a number k ∈ (0,1) such that  
  M(xn+2, xn+1, kt) ≥  M(xn+1, xn , t)  ∀   t >  0  𝑎𝑛𝑑  𝑛 ∈  N  
Then {xn} is a Cauchy sequence in X. 
 
Lemma 1.16: The only t − norm ⋆ satisfying r ⋆ r = r for all r ∈ [0,1] is the minimum t − norm that is 

a ⋆ b = min{a, b}  for all  a, b ∈ [0,1]. 
 
In this chapter, (Ω,Σ) denotes a measurable space. ω ∶ Ω →  X is  a measurable selector. X is any non empty set.* is 
continuous t-norm, M is a fuzzy set in X2  × [0,∞), then (X,Ω, M,⋆) is said to be randomized fuzzy metric spaces 
shortly ad  R.F.M.S  if followings are true. 
for   every  ξx , ξy , ξz ∈ X   and  s , t >  0,  the following  condition: 
1.16(a) M(ω(x),ω(y), t)  > 0 
1.16 (b) M(ω(x),ω(y), 0) = 0   
1.16 (c) M(ω(x),ω(y), t) = 1 iff ω(x) = ω(y)  
1.16 (d) M(ω(x),ω(y), t) = M(ω(y),ω(x), t)  
1.16 (e) M(ω(x),ω(y), t)  ⋆ M(ω(y),ω(z), s)  ≤ M(ω(x),ω(z), t + s)  
1.16 (f) M(ω(x),ω(y),∙) ∶  (0,∞+) →   [0,1] is  continuous.  
 
Lemma 1.17: Let (X, M,Ω,⋆) be a ramdom fuzzy metric space. Then for all  ω(x),ω(y) ∈ X M(ω(x),ω(y),  . ) is a non 
decreasing function. 
 
Lemma 1.18: Let (X, M,Ω,⋆) be a ramdom fuzzy metric space. If there exists k ∈ (0,1) such that for all ω(x),ω(y) ∈ X,   

 M(ω(x),ω(y), kt) ≥ M(ω(x),ω(y), t)    
for all t >  0, 𝑡�𝑒𝑛 ω(x ) =  ω(y). 
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Lemma 1.19: Let {xn} be a sequence in a random fuzzy metric space (X, M,Ω,⋆). If there exists a number k ∈ (0,1) 
such that  

M(ω(xn+2),ω(xn+1), kt) ≥ M(ω(xn+1),ω(xn) , t)  ∀   t > 0  𝑎𝑛𝑑  𝑛 ∈  N   
Then {ω(xn)} is a Cauchy sequence in X. 
 
2. MAIN THEOREM  
 
Theorem 2.1: Let (X, M,Ω,⋆) be a complete random fuzzy metric space and let A, B, S, T, P and Q be mappings from X 
into itself such that the following conditions are satisfied: 
2.1(a)  P(X) ⊂ ST(X) and  Q(X) ⊂ AB(X), 
2.1 (b)  AB = BA, ST = TS, PB = BP, QT = TQ, 
21 (c) either P or AB is continuous, 
2.1 (d)  (P, AB)  is compatible of type (β)  and (Q, ST)  is weak  compatible, 
2.1 (e) there exists k ∈ (0,1) such that for every ω(x),ω(y) ∈ X and  t >  0 

 ∫ ξ(v)M2(Pω(x),Qω(y),kt)
0  dv ≥ ∫ ξ(v)W(ω(x),ω(y),t)  

0  dv 

W(ω(x),ω(y), t) =  min�
M2(ABω(x), STω(y), t),
M2(Pω(x), ABω(x), t),
M2(Qω(y), STω(y), t) ,

�  

Where  ξ ∶   [0 , +∞] →  [0 , +∞]  is  a  lebgesgue  integrable  mapping  which  is  summable  on each  compact  subset  
of  [0 , +∞], non  negative,  and such that,  ∀  ε > 0, ∫ ξ(v)ε

0  dv > 0. Then A, B, S, T, P and Q have a unique common 
fixed point in X. 
 
Proof: Let x0 ∈ X, then from 2.1(a) we have x1, x2 ∈ X such that Pω(x0) = STω(x1)  and   Qω(x1) = ABω(x2) 
Inductively, we construct sequences {ω(xn)} and {ω(yn)}  in X such that  for n ∈ N 

Pω(x2n−2) =  STω(x2n−1) = ω(y2n−1)  and  Qω(x2n−1) = ABω(x2n) = ω(y2n) 
 
Step-1: Put  ω(x) =   ω(x2n ) and  ω(y) = ω(x2n+1) in 2.1 (e) then we have 

 ∫ ξ(v)M2(Pω(x2n),Qω(x2n+1),kt)
0  dv ≥ ∫ ξ(v)W(ω(x2n),ω(x2n+1),t)  

0  dv 

W(ω(x2n),ω(x2n+1), t)  =    min�
M2(ABω(x2n), STω(x2n+1), t),

M2(Pω(x2n), ABω(x2n), t),
M2(Qω(x2n+1), STω(x2n+1), t),

�   

 ∫ ξ(v)M2(ω(y2n+1),ω(y2n+2),kt)
0  dv ≥  ∫ ξ(v)W(ω(y2n+1),ω(y2n+2),t)  

0  dv 

W(ω(y2n+1),ω(y2n+2), t) = min�
M2(ω(y2n),ω(y2n+1), t),
M2(ω(y2n+1),ω(y2n), t),

M2(ω(y2n+2),ω(y2n+1), t) ,
�   

  ∫ ξ(v)M2(ω(y2n+1),ω(y2n+2),kt)
0  dv ≥ ∫ ξ(v)

min�
M2(ω(y2n),ω(y2n+1),t),
M2(ω(y2n+2),ω(y2n+1),t)

�  

0  dv   
 
From Lemma .1.13  and  1.14  we have 

 ∫ ξ(v)M2(ω(y2n+1),ω(y2n+2),kt)
0  dv ≥ ∫ ξ(v)M2(ω(y2n),ω(y2n+1),t)  

0  dv 
 
Since  ξ(v)  is Lesbesgue integrable function so that  

 M2(ω(y2n+1),ω(y2n+2), kt) ≥ M2(ω(y2n),ω(y2n+1), t)  
That is  
  M(ω(y2n+1),ω(y2n+2), kt) ≥ M(ω(y2n),ω(y2n+1), t)  
 
Similarly we have 
  M(ω(y2n+2),ω(y2n+3), kt) ≥ M(ω(y2n+1),ω(y2n+2), t)  
 
Thus we have 
  M(ω(yn+1),ω(yn+2), kt) ≥ M(ω(yn),ω(yn+1), t)  
  M(ω(yn+1),ω(yn+2), t) ≥ M �ω(yn),ω(yn+1), t

k
�  

  M(ω(yn),ω(yn+1), t) ≥ M �ω(y0),ω(y1), t
kn
� →  1  as  n →  ∞,  

and hence M(ω(yn),ω(yn+1), t) →   1  as n →   ∞ for all  t > 0. 
 
For each ϵ > 0  𝑎𝑛𝑑  𝑡 > 0,  we can choose n0 ∈ N such that  
  M(ω(yn),ω(yn+1), t) > 1 − ϵ  for all  n > n0.  
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For any m, n ∈ N  we suppose that  n0 ≥ n. Then we have 

M(ω(yn),ω(ym), t) ≥ M �ω(yn),ω(yn+1), t
m−n

� ⋆ M �ω(yn+1),ω(yn+2), t
m−n

� ⋆ … .⋆  �ω(ym−1),ω(ym), t
m−n

� 
M(ω(yn),ω(ym), t) ≥  (1 − ϵ ) ⋆  (1 − ϵ ) ⋆ … … ⋆  (1 − ϵ )(m − n)times  
M(ω(yn),ω(ym), t) ≥  (1 − ϵ )  

 
And hance {ω(yn)}  is a Cauchy sequence in X. 
 
Since (X, M,Ω,⋆) is complete, {ω(yn)} converges to some point ω(z) ∈ X. Also its subsequences converges to the same 
point ω(z) ∈ X. 
That is  

{Pω(x2n+2)} → ω(z)  and  {STω(x2n+1} → ω(z)                                                         2.1(i)  
  
{ Qω(x2n+1)} → ω(z)  and  { ABω(x2n)} → ω(y2n)                                                         2.1(ii) 

 
Case-1: Suppose AB is continuous  
 
Since AB is continuous, we have 

(AB)2ω(x2n) →  ABω(z)  and  ABPω(x2n) →  ABω(z)  
As (P, AB)  is compatible pair of type (β),  we have 

M(PPω(x2n), (AB)(AB)ω(x2n), t) = 1, for all t > 0 
 
Or                        M(PPω(x2n), ABω(z), t) = 1  
 
Therefore,           PPω(x2n) → ABω(z).  
 
Step-2: Put ω(x)  = (AB)ω(x2n)   and  ω( y) = ω(x2n+1)   in 6.3.1(e) we have 

 ∫ ξ(v)M2(P(AB)ω(x2n,Qω(y,kt)
0  dv ≥ ∫ ξ(v)W(P(AB)ω(x2n,Qω(y,kt)  

0  dv 

W(P(AB)ω(x2n), Qω(y), t) = min�
M2(AB(AB)ω(x2n), STω(x2n+1), t),

M2(P(AB)ω(x2n), AB(AB)ω(x2n), t),
M2(Qω(x2n+1), STω(x2n+1), t) ,

�  

Taking n → ∞ we get 
 ∫ ξ(v)M2(P(AB)ω(x2n),Qω(y),kt)
0  dv ≥ ∫ ξ(v)W(P(AB)ω(x2n),Qω(y),t)  

0  dv 

M2�(AB)ω(z),ω(z), kt� ≥ min�
M2�(AB)ω(z),ω(z), t�,

M2�(AB)ω(z), (AB)ω(z), t�,
M2�(AB)ω(z),ω(z), t� ,

�  

  

 ∫ ξ(v)M2�(AB)ω(z),ω(z),kt�  
0  dv ≥ ∫ ξ(v)

min�
M2�(AB)ω(z),ω(z),t� ,
M2�(AB)ω(z),ω(z),t�

�  

0  dv 
 
That is form the property of ξ(v) we have 
    M�(AB)ω(z),ω(z), kt� ≥ M�(AB)ω(z),ω(z), t�     
 
Therefore by lemma 1.14 we have 
  ABω(z ) = ω(z).                                                                                                                            2.1(iii)  
 
Step-3: Put  ω(x ) = ω(z ) and  ω(y ) =   ω(x2n+1)  in 2.1(e) we have 

 ∫ ξ(v)M2(Pω(z),Q ω(x2n+1),kt)  
0  dv ≥  ∫ ξ(v)W(Pω(z),Q ω(x2n+1),t)  

0  dv 

W(Pω(z), Q ω(x2n+1), t) = min�
M2(ABω(z), ST ω(x2n+1), t),

M2(Pω(z), ABω(z), t),
M2(Qω(x2n+1), STω( x2n+1), t),

� 

 
Taking  n →   ∞  and using equation .2.1 (i) we have 

 ∫ ξ(v)M2(Pω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)W(Pω(z),ω(z),t)  

0  dv 

W(Pω(z),ω(z), t) ≥ min�
M2(ABω(z),ω(z), t),

M2(Pω(z), ABω(z), t),
M2(ω(z),ω(z), t),

� 

 
So that     M2(Pω(z),ω(z), kt) ≥ M2(Pω(z),ω(z), t)  
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And hance   M(Pω(z),ω(z), kt) ≥ M(Pω(z),ω(z), t)   
 
Therefore by using lemma 1.14, we get  Pω(z)  = ω(z)   
 
So we have  ABω(z ) = Pω(z) = ω(z).  
 
Step-4: Putting  ω(x) = Bω(z)  and  ω(y) = ω(x2n+1)  in   2.1(e), we get 

 ∫ ξ(v)M2(PBω(z),Qω(x2n+1),kt)  
0  dv ≥ ∫ ξ(v)W(PBω(z),Qω(x2n+1),t)  

0  dv 

W(PBω(z), Qω(x2n+1), t) = min�
M2(ABBω(z), STω(x2n+1), t),

M2(Qω(x2n+1), STω(x2n+1), t),
M2(PBω(z), ABBω(z), t),

�   

As BP = PB  and AB = BA, so we have 
P(Bω(z))  =  B(Pω(z)) = Bω(z)  and  (AB)�Bω(z)� = (BA)�Bω(z)� = B(ABω(z)) = Bω(z)).  
 
Taking  n → ∞ and using 6.3.1(i) we get 

 ∫ ξ(v)M2(PBω(z),Qω(x2n+1),kt)  
0  dv ≥ ∫ ξ(v)W(PBω(z),Qω(x2n+1),t)  

0  dv 

 ∫ ξ(v)M2(Bω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)W(Bω(z),ω(z),t)  

0  dv 

W(Bω(z),ω(z), t) = min�
M2(Bω(z),ω(z), t),

M2(Bω(z), Bω(z), t),
M2(ω(z),ω(z), t),

�  

 
So we have    M2(Bω(z),ω(z), kt) ≥  M2(Bω(z),ω(z), t)  
 
That is   M(Bω(z),ω(z), kt) ≥  M(Bω(z),ω(z), t)  
 
Therefore by Lemma 1.14 we have  Bω(z)  = ω(z)  
 
And also we have   ABω(z) = ω( z ) implies  Aω(z) = ω(z)  
 
Therefore 

  Aω(z) = Bω(z) = Pω(z) = ω(z).                                                        2.1 (iv) 
 
Step–5: As  P(X) ⊂ ST(X)  there exists u ∈ X such that 
  ω(z) = Pω(z) = STω(u)  
 
Putting ω(x) = ω(x2n) and  ω(y) = ω(u) in 6.3.1(e) we get 

 ∫ ξ(v)M2(Pω(x2n),Qω(u,)kt)  
0  dv ≥ ∫ ξ(v)W(Pω(x2n),Qω(u),t)  

0  dv 

W(Pω(x2n), Qω(u), t) = min�
M2(ABω(x2n), STω(u), t),
M2(Pω(x2n), ABω(x2n), t),

M2(Qω(u), STω(u), t),
�  

 
Taking n → ∞  and using 6.3.1(i) and 6.3.1(ii) we get 

 ∫ ξ(v)M2(ω(z),Qω(u),kt)  
0  dv ≥ ∫ ξ(v)W(ω(z),Qω(u),t)  

0  dv 

W(ω(z), Qω(u), t) = min�
M2(ω(z), STω(u), t),

M2(ω(z),ω(z), t),
M2(Qω(u), STω(u), t),

�  

 
So we have  M2(ω(z), Qω(u), kt) ≥  M2(ω(z), Qω(u), t)  
 
That is   M(ω(z), Qω(u), kt) ≥ M(ω(z), Qω(u), t)  
 
Therefore by using Lemma 1.13 we have  Qω(u) = ω(z)  
 
Hence STω(u) = ω(z) = Qω(u). 
 
Hence (Q, ST)  is weak compatible, therefore, we have 

QSTω(u) = STQω(u) 
 
Thus   Qω(z) = STω(z). 
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Step–6: Putting  ω(x) = ω(x2n) and  ω(y) = ω(z) in 6.3.1(e) we get 

 ∫ ξ(v)M2(Pω(x2n),Qω(z),kt)  
0  dv ≥ ∫ ξ(v)W(Pω(x2n),Qω(z),t)  

0  dv 

W(Pω(x2n), Qω(z), t) = min�
M2(ABω(x2n), STω(z), t),
M2(Pω(x2n), ABω(x2n), t),

M2(Qω(z), STω(z), t),
�   

 
Taking n → ∞  and using 6.3.1(ii) and step 5 we get 

 ∫ ξ(v)M2(ω(z),Qω(z),kt)  
0  dv ≥ ∫ ξ(v)W(ω(z),Qω(z),t)  

0  dv 

W(ω(z), Qω(z), t) = min�
M2(ω(z), STω(z), t),

M2(ω(z),ω(z), t),
M2(Qω(z), STω(z), t),

�  

 
That is   M2(ω(z), Qω(z), kt) ≥ M2(ω(z), Qω(z), t)  
 
And hence   M(ω(z), Qω(z), kt) ≥ M(ω(z), Qω(z), t)  
 
Therefore by using Lemma 1.13 we get  Qω(z) = ω(z).  
 
Step–7: Putting ω(x) = ω(x2n)  and ω(y ) = Tω(z)  in 3.1(e) we get 

 ∫ ξ(v)M2(Pω(x2n),QTω(z) ,kt)  
0  dv ≥ ∫ ξ(v)W(Pω(x2n),QTω(z) ,t)  

0  dv 

W(Pω(x2n), QTω(z ), t) = min�
M2(ABω(x2n), STTω(z) , t),
M2(Pω(x2n), ABω(x2n), t),
M2(QTω(z), STTω(z), t),

�  

 
As  QT = TQ and  ST = TS we have  QTz = TQz = Tz    
 
And  ST(Tω(z))  = T(STω(z)) = TQω(z) = Tω(z).  
 
Taking n → ∞  we get 

 ∫ ξ(v)M2(ω(z),Tω(z) ,kt)  
0  dv ≥ ∫ ξ(v)W(ω(z),Tω(z) ,t)  

0  dv 

W(ω(z), Tω(z) , t) = min�
M2(ω(z), Tω(z), t),
M2(ω(z),ω(z), t),

M2(Tω(z), Tω(z), t),
�  

 
And hence  M2(ω(z), Tω(z ), kt) ≥ M2(ω(z), Tω(z) , t)  
 
Therefore   M(ω(z), Tω(z) , kt) ≥ M(ω(z), Tω(z) , t)   
 
Therefore by Lemma 1.13 we have   Tω(z) = ω(z)  
 
Now STω(z) = Tω(z) = ω(z)  implies  Sω(z) = ω(z). 
 
Hence  

Sω(z) = Tω(z) = Qω(z) = ω(z)                                                         2.1(v) 
 
Combining 2.1(iv) and 2.1(v) we have 

Aω(z) = Bω(z) = Pω(z) = Sω(z) = Tω(z) = Qω(z)  = ω(z) 
 
Hence z is the common fixed point of A, B, S, T, P and Q. 
 
Case-II: suppose P is continuous 
 
As P is continuous  

 P2ω(x2n)  → Pω(z) and  P(AB)ω(x2n) → Pω(z)  
 
As (P,AB)  is compatible pair of type  (β),  

 M(PPω(x2n), (AB)(AB)ω(x2n), t) = 1  forall  t > 0  
 
Or   M(Pω(z), (AB)(AB)ω(x2n), t) = 1 
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Therefore   (AB)2x2n → Pz. 
 
Step-8: Putting ω(x)  =  Pω(x2n)  and  ω(y) = ω(x2n+1) in 2.3.2(e) then we get 

 ∫ ξ(v)M2(PPω(x2n),Qω(x2n+1),kt)  
0  dv ≥ ∫ ξ(v)W(PPω(x2n),Qω(x2n+1),t)  

0  dv 

W(PPω(x2n), Qω(x2n+1), t) = min�
M2(ABPω(x2n), STω(x2n+1), t),
M2(PPω(x2n), ABPω(x2n), t),

M2(Qω(x2n+1), STω(x2n+1), t),
�  

 
Taking   n → ∞, we get 

 ∫ ξ(v)M2(Pω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)W(Pω(z),ω(z),t)  

0  dv 

W(Pω(z),ω(z), t) = min�
M2(Pω(z),ω(z), t),

M2(Pω(z), Pω(z), t),
M2(ω(z),ω(z), t),

�  

 ∫ ξ(v)M2(Pω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)M2(Pω(z),ω(z),t)  

0  dv 
 
Therefore we have 

 M2(Pω(z),ω(z), kt) ≥ M2(Pω(z),ω(z), t)  
 
Hence                   M(Pω(z),ω(z), kt) ≥ M(Pω(z),ω(z), t)  
 
Therefore by Lemma 1.13 we get   Pω(z) = ω(z)  
 
Step-9: Put  ω(x)  = ABω(x2n)  and  ω(y) = ω(x2n+1) in 2.2(e) then we get 

 ∫ ξ(v)M2(P ABω(x2n),Qω(x2n+1),kt)  
0  dv ≥ ∫ ξ(v)W(P ABω(x2n),Qω(x2n+1),t)  

0  dv 

W(P ABω(x2n), Qω(x2n+1), t) = min�
M2(AB ABω(x2n), STω(x2n+1), t),
M2(P ABω(x2n), AB ABω(x2n), t),

M2(Qω(x2n+1), STω(x2n+1), t),
�  

 
Taking n →   ∞  we get 

 ∫ ξ(v)M2(ABω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)W(ABω(z),ω(z),t)  

0  dv 

W(ABω(z),ω(z), t) = min�
M2(AB ω(z),ω(z), t),
M2(ABω(z),ω(z), t),

M2(ω(z),ω(z), t),
�  

 ∫ ξ(v)M2(ABω(z),ω(z),kt)  
0  dv ≥ ∫ ξ(v)M2(ABω(z),ω(z),t)  

0  
 
Therefore   M2(ABω(z),ω(z), kt) ≥ M2(ABω(z),ω(z), t)  
 
And hence   M(ABω(z),ω(z), kt) ≥ M(ABω(z),ω(z), t)  
 
By lemma .1.13 we get  ABω(z)  = ω(z)  
 
By applying step 4, 5, 6, 7, 8 we get 
  Aω(z) = Bω(z) = Sω(z) = Tω(z)  = Pω(z) = Qω(z)  = ω(z). 
 
That is ω(z)  is a common fixed point of A, B, S, T, P, Q in X. 
 
Uniqueness: Let u be another common fixed point of A, B, S, T, P and Q. Then  

Aω(u) = Bω(u) = Sω(u) = Tω(u) = Pω(u) = Qω(u) = ω(u) 
 
Putting  ω(x)  = ω(u)  and  ω(y) = ω(z) in 2.1(e) then we get 

 ∫ ξ(v)M2(Pω(u),Qω(z),kt)  
0  dv ≥ ∫ ξ(v)W(Pω(u),Qω(z),t)  

0  dv 

W(Pω(u), Qω(z), t) = min�
M2(ABω(u), STω(z), t),
M2(Pω(u), ABω(u), t),
M2(Qω(z), STω(z), t),

�  
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Taking   limit both side then we get 

 ∫ ξ(v)M2(ω(u),ω(z),kt) 
0  dv ≥ ∫ ξ(v)W(ω(u),ω(z),t)  

0  dv 

W(ω(u),ω(z), t) = min�
M2(ω(u),ω(z), t),
M2(ω(u),ω(u), t),
M2(ω(z),ω(z), t),

�  

 
That is   M2(ω(u),ω(z), kt) ≥ M2(ω(u),ω(z), t)  
 
And hence  M(ω(u),ω(z), kt) ≥ M(ω(u),ω(z), t)   
 
By lemma  1.13  we get  ω(z ) = ω( u).  
That is z   is a unique common fixed point of A, B, S, T, P and Q in X. 
 
Remark 3.3: If we take B = T = I identity map on X in Theorem 2.2.3.2 then condition 6.3.1(b) is satisfy trivially and 
we get following  Corollary 
 
Corollary 2.4: Let (X, M,Ω,⋆) be a complete random fuzzy metric space and let A, S, P and Q be mappings from X into 
itself such that the following conditions are satisfied: 
2.4(a)  P(X) ⊂ S(X) and  Q(X) ⊂ A(X), 
2.4 (b) either P or AB is continuous, 
2.4 (c)  (P, AB)  is compatible of type (β)  and (Q, ST)  is weak compatible, 
2.4 (d) there exists k ∈ (0,1) such that for every x, y ∈ X and  t > 0 

 ∫ ξ(v)M2(Pω(x),Qω(y),kt)
0  dv ≥ ∫ ξ(v)W(ω(x),ω(y),t)  

0  dv 

 W(ω(x),ω(y), t) =  min�
M2(Aω(x), Sω(y), t),
M2(Pω(x), Aω(x), t),
M2(Qω(y), Sω(y), t),

�   

Where  ξ ∶   [0 , +∞] → [0 , +∞]  is  a  lebgesgue  integrable  mapping  which  is  summable  on  each  compact  subset  
of  [0 , +∞],  non  negative, and such that,  ∀  ε > 0, ∫ ξ(v)ε

0  dv > 0. Then A, B, S, T, P and Q have a unique common 
fixed point in X. 
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