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ABSTRACT 
Let G = (V, E) be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every vertex 
is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is 
called the resolving number of G and  is denoted by r(G).  Total resolving number as the minimum cardinality taken 
over all resolving sets in which 〈𝑊〉  has no isolates and is denoted by tr(G). In this paper, we determine the exact 
values for the total resolving number of T(C3), Cn(C3) and Fs(C3). Also, we obtain bounds for the total resolving 
number of G(C3) and characterize the extremal graphs. 
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1. INTRODUCTION 
  
Let G = (V, E) be a finite, simple, connected and undirected graph. The degree of a vertex v in a graph G is the number 
of edges incident with v and it is denoted by d(v).  The maximum degree in a graph G is denoted by ∆(G) and the 
minimum degree is denoted by δ(G). The distance d(u, v) between two vertices u and v in G is the length of a shortest  
u- v path in G. The maximum value of distance between vertices of G is called its diameter. Let Pn  denote any  path  on 
n vertices,  Cn  denote any cycle on n vertices and Kn denote any complete graph on  n  vertices. A complete bipartite 
graph is denoted by Ks, t. K1, n – 1 is called a star. A tree containing exactly two vertices that are not end vertices is called 
a bistar and it is denoted by Bs, t.  The join G + H consists of G ∪ H and all edges joining a vertex of G and a vertex of 
H. Let P denote the set of all pendant edges of G and |P| = p. Vertices which are adjacent to pendant vertices are 
called support vertices. 
 
A graph H is called a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G). A subgraph F if a graph G is called an 
induced subgraph 〈F〉 of G if whenever u and v are vertices of F and uv is an edge of G, then uv is an edge of F as well. 
For a cut vertex v of a connected graph G, suppose that the disconnected graph G \ {v} has k components                    
G1, G2, … , Gk (k ≥ 2). The induced subgraphs Bi = G[V(Gi) ∪ {v}] are connected and referred to as the brances of G 
at v. The complement Gc of a graph G is that graph whose vertex set is V(G) and such that for each pair u, v of vertices 
of G, uv is an edge of Gc if and only if uv is not an edge of G. A vertex v in a graph G is called complete vertex if the 
subgraph by its neighborhood is complete. For an integer s ≥ 2, sK2 + K1 is called the friendship graph and is denoted 
by Fs. 
            
If W = {w1, w2,  ... , wk} ⊆ V(G) is an ordered set, then the ordered k-tuple (d(v, w1), d(v, w2), ... , d(v, wk)) is called 
the representation of v with respect to W and it is denoted by  r(v | W).  Since the representation for each wi ∈ W 
contains exactly one 0 in the ith position, all the vertices of W have distinct representations. W is called a resolving set 
for G if all the vertices of V \ W also have distinct representations. The minimum cardinality of a resolving set is called 
the resolving number of G and it is denoted by r(G). 
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In 1975, Slater [9] introduced these ideas and used locating set for what we have called resolving set. He referred to the 
cardinality of a minimum resolving set in G as its location number. In 1976, Harary and Melter [4] discovered these 
concepts independently as well but used the term metric dimension rather than location number. In 2003, Ping Zhang 
and Varaporn Saenpholphat  [7, 8] studied connected  resolving number and in 2015, we   introduced and studied total 
resolving number. In this paper, we use the term resolving number to maintain uniformity in the current literature. 
 
If W is a resolving set and the induced subgraph 〈𝑊〉  has  no isolates, then W is called a total resolving set of G. The 
minimum cardinality taken over all total resolving sets of G is called the total resolving number of G and is denoted by 
tr(G). We introduced edge cycle graph in [5] and studied the resolving number of edge cycle graph G(Ck). An edge 
cycle graph of a graph G is the graph G(Ck) formed from one copy of G and |E(G)| copies of Pk, where the ends of the 
ith edge are identified with the ends of ith copy of Pk.   
    
In this paper, we determine the exact values for the total resolving number of T(C3), Cn(C3) and Fs(C3). Also, we obtain 
bounds for the total resolving number of G(C3) and characterize the extremal graphs. 
 
2. BUILDING BLOCKS 
 
The following results are used in the subsequent sections. 
 
Theorem 2.1: [6] Let {w1, w2} ⊂ V(G) be a total resolving set in G. Then the degrees of w1 and w2 are at most 3. 
 
Lemma 2.2: [6]  For  n  ≥  3, tr(Pn) = 2 and tr(Cn) =2.   
 
Observation 2.3: [6] Let G be a graph of order n ≥ 3. Then 2 ≤ tr(G) ≤ n−1.  
 
Theorem 2.4: [6]  Let G be a graph of order n ≥ 3. Then tr(G) = n – 1 if and only if G = Kn  or K1, n – 1. 
 
Definition 2.5: A block of G containing exactly one cut vertex of G is called an   end   block of G. 
 
Lemma 2.6: [5] Let G be a 1-connected graph with δ(G) ≥ 2. Then every resolving set contains at least one non cut 
vertex of each end block. 
 
Corollary 2.7: [5] If G contains b end blocks, then r(G) ≥ b. 
 
Definition 2.8: A cycle Cr  is called an end cycle if Cr contains exactly one vertex of degree at least 3. 
 
Notation 2.9: Let ec denote the number of end cycles of the graph G. 
 
Theorem 2.11: [6] Let T be a tree of order n  ≥  3. Then r(T(C3)) = p.  
 
In this paper, we investigate the total resolving number of the edge cycle graphs G(C3). 
 
3. TOTAL RESOLVING NUMBER OF EDGE CYCLE GRAPHS G(C3) 
 
In this section, we determine the exact values for the total resolving number of T(C3), Cn(C3) and Fs(C3).  
 
Observation 3.1: For   n = 3, 4, 5, tr(Cn(C3))  =  3.   
        
Theorem 3.2: For   n ≥   6, tr(Cn(C3))  =        4     .   
 
Proof: Let V(Cn) = {v1, v2, . . . , vn}, E(Cn) =  {v1v2, v2v3, . . . , vnv1} and u1, u2, . . . , un be the new vertices in Cn(C3)  
corresponding to the edges  v1v2, v2v3, . . . , vnv1.  Then  V(Cn(C3)) = V ∪ U,  where  V = V(Cn), U ={u1, u2, . . . , un}and  
E(Cn(C3)) = E(Cn) ∪ {uivi, uivi+1 / 1 ≤ i ≤ n − 1} ∪ {unvn, unv1}. Let W be a total resolving set of Cn(C3). 
 
First, we claim that tr(Cn(C3))   ≥       4 .        Suppose that tr(Cn (C3))  ≤      3   .      B   y    Theorem 2.1,  tr(Cn(C3))  =      3  .       Therefore  〈𝑊〉 is P3 or K3. 
If 〈𝑊〉 is K3, then without loss of generality, let W = {v1, u2, v2}. Then  r(vn | W) = r(un | W) = (1, 2, 3), which is a 
contradiction. If 〈𝑊〉 is P3, then without loss of generality, let W  ⊆ {𝑣1,   𝑣2, 𝑣3, 𝑢1,   𝑢2,}. Then r (vn | W) = r (un | W), 
which is a contradiction. Thus tr(Cn(C3))    ≥          4 .    
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Let W = �𝑣1,   𝑣2, 𝑣�𝑛2�+ 1,𝑣�𝑛2�+ 2� .   Let x, y be two distinct vertices of V(Cn(C3)) \ W. If d(x, v1) ≠ d(y, v1) or       

d(x, v2) ≠ d(y, v2), then r(x | W)  ≠  r(y | W). So we may assume that d(x, v1) = d(y, v1) or d(x, v2) = d(y, v2). Then       

x ∈ U  and y ∈ V or x ∈ V  and   y ∈ U. Without  loss of generality,  let x ∈ U   and   y ∈ V.  But                              
d(x,  𝑣�𝑛2�+ 1) = d(y,   𝑣�𝑛2�+ 1)  + 1 and d(x,  𝑣�𝑛2�+ 2) = d(y,   𝑣�𝑛2�+ 2)  + 1. It follows that r(x | W) ≠ r(y | W). Thus W is 

a resolving set of Cn(C3) and 〈𝑊〉 has no isolates,  tr(Cn(C3)) ≤  4. Hence tr(Cn(C3)) = 4. 
 
Lemma 3.3: Let G be a graph of order n ≥ 3 and δ(G) = 1. Then tr(G(C3)) ≥ p + s. 
 
Proof: Let W be a total resolving set of G(C3). Let B1, B2, … , Bp  be the end blocks of G(C3). Then by Lemma 2.6,                
W ∩ V (Bi) ≠ ∅, for all 1 ≤  i  ≤   p. Since W is a total resolving set, |W ∩ V (Bi)| ≥ 2 for all 1 ≤ i ≤ p. But some end blocks 
have the common vertex, |W ∩ V (G(C3))| ≥ p + s and hence tr(G(C3)) ≥ p + s. 
 
Theorem 3.4: Let T be a tree of order at least 3. Then tr(T (C3)) = p + s. 
 
Proof: The proof follows from Theorem 2.11 and Lemma 3.3. 
 
Corollary 3.5: For n ≥ 4, t r(Pn(C3)) = 4.    
 
Corollary 3.6: For n ≥ 2, t r(K1, n - 1(C3)) = n.  
 
Corollary 3.7: For s, t ≥ 1, t r(Bs, t(C3)) =s + t + 2. 
 
Theorem 3.8: For s ≥ 2, t r(Fs(C3)) = 2s. 
 
Proof: Let V(Fs)={u, u11, u12, u21, u22, … , us1, us2} and  
                  E(Fs) = �uuij /1 ≤  i ≤  s and j = 1, 2� ∪ {u11u12, u21u22, … , us1us2}. 
 
For 1 ≤ j ≤ s, let v i be the new vertex of the edge ui1ui2, vj1 be the new vertex of the edge uuj1 and vj2 be the new 
vertex of the edge uuj2 in Fs(C3). Then we have G contains exactly s blocks, say B1, B2, …, Bs. Let W be a total 
resolving set of Fs(C3).  
 
First, we claim that tr(Fs(C3)) ≥ 2s. Suppose that tr(Fs(C3)) ≤ 2s – 1. Then we have W contains at most three 
vertices from union of two blocks. Without loss of generality, let B1 and B2 be such blocks. Then we have           
|W ∩ (V(B1) ∪ V(B2)) | ≤ 3. By Lemma 2.6 , |W ∩ (V(B1) \ {u}| ≠ ∅ and  |W ∩ (V (B2) \ {u}| ≠  ∅. Let u, x, y ∈ W, 
where x ∈ N(u) ∩V(B1) and y ∈ N(u) ∩V(B2). Then d(x) = 2 or 4 in Fn(C3). If d(x) = 2, then without loss of 
generality, let x = v11. But we have r(u12 | W) = r(v12 | W). If d(x) = 4, then without loss of generality, let x = u11. But 
we have r(v11 | W) = r(u12 | W), which is a contradiction. Hence tr(Fs(C3)) ≥ 2s.  
 
Next, we claim that tr(Fs(C3)) ≤ 2s.  Now, let W = {u11, u21, …, us1}∪ {u12, u22, …, us2}. Let x, y be two distinct 
vertices of V(Fs(C3)) \ W. Then we consider the following two cases. 
 
Case-1:  x, y∈ V(Bi) for some 1 ≤ i ≤ s. 
 
Without loss of generality, let x, y ∈ V(B1). If d(x, w) ≠ d(y, w) for some w ∈ W ∩ (V(B1),  then  r(x | W) ≠ r(y | 
W). So we may assume that d(x, w) = d(y, w) for all w ∈ W ∩ (V(B1)). Then x = v1 and y = u. But 3 = d(x, w) >d(y, 
w) = 1. It follows that r(x | W) ≠ r(y | W). 
 
Case-2:  x∈ V(Bi), y ∈ V(Bj) for some 1 ≤ i ≠ j ≤ s. 
 
Then clearly, d(x, w) < d(y, w) for all w ∈ W ∩ V(Bi).  It follows that r (x | W) ≠ r (y | W). 
 
Thus W is a resolving set and 〈𝑊〉 has no isolates, tr(F3(C3)) ≤  2s. Hence tr(F3(C3)) =  2s. 
 
GENERAL BOUNDS AND EXTREMAL GRAPHS 
          
In this section, we obtain bounds for the total resolving number of G(C3) and characterize the extremal graphs. 
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Theorem 4.1: Let G be a graph of order n ≥ 3. Then 3 ≤  tr(G(C3)) ≤ n. 
 
Proof: By Theorem 2.1, tr(G(C3)) ≥ 3. Let V (G) = {v1, v2, …, vn} and vij be the new vertex of the edge vivj in G(C3), 
where  i, j ∈ {1, 2, …, n} and i ≠ j. Let W = V  (G). Then ith and jth

 coordinates of the representation of vij are 1. Since     
i ≠ j, representation of all vij are distinct. Therefore tr(G(C3)) ≤ n. Hence 3 ≤ tr(G(C3)) ≤ n. 
 
Theorem 4.2: Let G be a graph of order n ≥ 3. Then tr(G(C3)) = 3 if and only if G ≅ P3 or K3 or C4 or K4 \ {e} or K4 or 
C5. 
 
Proof: Let V (G) = {v1, v2, . . . , vn} and tr(G(C3)) = 3. If n = 3, then  G  ≅  P3 or K3. So we may assume that n ≥ 4. For 
i, j ∈ {1, 2,  …, n} and i ≠ j,  let vij be the new vertex of the edge vivj in G(C3). Let W = {w1, w2, w3} be a total 
resolving set of G(C3).  
 
Let 〈𝑊〉 be K3. If W is not a subset of V(G),   then without loss of generality, let W = {v1, v2, v12}.   Let X = V(G)  \ 
{v1, v2}. Since G is connected, a vertex of X, say v3 is adjacent to v1 or v2 or both.  If v3 is adjacent to v1 or v2, say v1, 
then r (v3 | W) = r (v13 | W) = (1, 2, 2), which is a contradiction. If no vertex of X is adjacent to exactly one vertex of 
{v1, v2}, then a vertex of X, say v3 is adjacent to v1 and v2. Since G is connected and n ≥ 4, v3 is adjacent to a vertex of 
X, say v4. But we have r (v4 | W) = r (v34 | W) = (2, 2, 3), which is a contradiction and hence W ⊂ V(G).  
 
Without loss of generality, let W = {v1, v2, v3} and X = V (G) \ W. Then r (v12 | W) = (1, 1, 2),  r (v23 | W) = (2, 1, 1),      
r (v31 | W) = (1, 2, 1) which shows that no vertex of X has exactly two neighbors in W. If a vertex vi ∈ X is adjacent to 
exactly one vertex of W, say vj, j ∈ {1, 2, 3}, then r(vi | W) = r(v1j | W), which is a contradiction. If there exists a vertex 
of X, say vi is adjacent to no vertex of W, then r (vi | W) = r(vik | W), where vivk ∈ E(G), which is a contradiction. 
Hence each vertex of X is adjacent to all the vertices of W. If |X| > 1, then r(v4 | W) = r(v5 | W) = … = r(vn | W), which 
is a contradiction. Consequently, |X| = 1. Hence X = {v4} and G ≅ K4. 
 
Let 〈𝑊〉 be P3. Then we consider the following two cases. 
 
Case-1: W is a subset of V(G). 
 
Then without loss of generality, let W = {v1, v2, v3}, where v2 is adjacent to v1 and v3. Then r(v12 | W) = (1,1, 2) and 
r(v23 | W) = (2, 1, 1). Let X = V(G) \ W. If there exists a vertex vi ∈ X which is adjacent to v2 but not to v1 and v3, then 
r(vi | W) = r(vi2 | W) = (2, 1, 2) in G(C3), which is a contradiction. If there exist two distinct vertices vi, vj ∈ X such that 
vi is adjacent to v1 & v3 and vj is adjacent to v1, v2 & v3, then r(vi1 | W) = r(vj1 | W) = (1, 2, 2) and r(v3i | W) = r(v3j | W)  
= (2, 2, 1) in G(C3), which is a contradiction. 
 
Now, we claim that |N(W)| = 1 or 2. Suppose |N(W)| ≥ 4. Let N(W) = {v4, v5, …, vk}, k ≥ 7. Without loss of generality, 
let v4 be adjacent to v1 but not to v2 and v3, v5 be adjacent to v3 but not to v1 and v2, v6 be adjacent to v1 & v2 or            
v1, v2 & v3. But a vertex of {v7, v8, …, vk} is adjacent to v1 or v3 or v1 & v3. If v7 is adjacent to v1 or v3, say v1, then    
r(v14 | W) = r(v17 | W) = (1, 2, 3), which is a contradiction. If v7 is adjacent to v1 and v3, then r(v6 | W) = r(v7 | W), which 
is a contradiction. 
  
Suppose |N(W)| = 3. Then without loss of generality, let N(W) = {v4, v5, v6} and v4 be adjacent to v1, v5 be adjacent to 
v3 and v6 be adjacent to either v1 and v3 or v1, v2 & v3. If 〈{ 𝑣4, 𝑣5, 𝑣6}〉  is either K3

c or K2 ∪ K1, then without loss of 
generality, let v4 be not adjacent to v5 and v6. Then r(v4 | W) = r(v14 | W) = (1, 2, 3) in G(C3), which is a contradiction. If 
〈{ 𝑣4, 𝑣5, 𝑣6}〉 is either P3 or K3, then r(v4 | W) = r(v16 | W) = (1, 2, 2) in G(C3), which is a contradiction. Hence       
|N(W)| = 1 or 2. Now, we consider the following two subcases. 
 
Subcase-1: |N(W)| = 1. 
Then without loss of generality, let N(W) = {v4}. We claim that |X| = 1. Suppose |V1| ≥ 2. Then v4 is a cut vertex of G. 
Then there are at least two branches at v4 in G(C3), say B1 and B2. Let 〈{ 𝑣1, 𝑣2, 𝑣3, 𝑣4}〉  = B1. Therefore B2 contains at 
least one end block. But no vertex of B2 belongs to W, which is a contradiction to Lemma 2.6 and hence X = {v4}. 
 
If v4 is adjacent to v1 but not to v2 and v3 in G, then r(v4 | W) = r(v14 | W) = (1, 2, 2) in G(C3), which is a contradiction.  
If v4 is adjacent to v1 and v3 but not to v2, then G ≅ C4 and if v4 is adjacent to v1, v2  and v3, then G ≅ K4 \ {e}. 
 
Subcase-2: |N(W)| = 2. 
Then without loss of generality, let N(W) = {v4, v5}. Then exactly one vertex of {v4, v5} is adjacent to exactly one 
vertex of {v1, v3}. Without loss of generality, let v4 be adjacent to v1. If v4v5 ∈   /  E(G), then r(v4 | W) = r(v4i | W),               
i ∈   {1, 2, 3}, which is a contradiction. Thus v4v5 ∈    E(G). 
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If v5 is adjacent to v3, then we claim that |V| = 5. Suppose |V| > 5. Let V = {𝑣1, 𝑣2,𝑣3, … , 𝑣𝑛}, n ≥ 6. Let 〈{ 𝑣4, 𝑣5, 𝑣𝑖}〉 ≅  
P3 for some i ∈   {6, 7,…, n}. If vi is adjacent to v4, then r(v i | W) = r(v4i | W) = (2, 3, 3) in G(C3), which is a 
contradiction. If 〈{ 𝑣4, 𝑣5, 𝑣𝑖}〉 ≅  K3 for some i ∈   {6, 7,…, n}, then r(vi | W) = r(v45 | W) = (2, 3, 2) in G(C3), which is a 
contradiction. Therefore |V| = 5 and hence G ≅ C5. 
 
If v5 is adjacent to v1  and v3 in G, then r(v15|W) = r(v4|W) = (1, 2, 2) in G(C3), which is a contradiction.   
          
Case-2: W is not a subset of             V(G). 
Then without loss of generality, let v1, v2   and v3 be three vertices of G such that 〈{ 𝑣1, 𝑣2, 𝑣3}〉 ≅ P3 or K3, v3 ∈∈ / W and  
v2 ∈    W. Let V1 = V (G) \ X. Then clearly, no vertex of V1 is adjacent to v2 in G, for, if vi ∈   V1 is adjacent to v2 in G, then 
r(vi | W) = r(v2i | W) = (2, 1, 2) in G (C3), which is a contradiction. 
 
Now, we claim that |N(X)| = 1. Suppose |N(X)| ≥ 4. Let N(X) = {v4, v5, …, vk}, k ≥ 7. Then without loss of generality, 
let v4 be adjacent to exactly one vertex of {v1, v3}, say v1, v5 be adjacent to v3 not to v1 and v6 be adjacent to v1 and v3. 
But a vertex of {v7, v8, …, vk} is adjacent to v1 or v3 or both. Without loss of generality, let v7 be adjacent to say v1. 
Then r(v7 | W) = r(v4 | W), which is a contradiction and hence |N(X) | ≤ 3.  
 
If |N(X)| = 2, then without loss of generality, let v4 and v5 be two vertices in N(X). If v4 is adjacent to v1, v5 is adjacent 
to v3 or v4 is adjacent to v1 and v5 is adjacent to v1 and v3, then r(v4 | W) = r(v14 | W) in G(C3), which is a contradiction.  
 
Let v4 be adjacent to v3 and v5 is adjacent to v1 and v3. If W contains exactly one vertex of V, then r(v4 | W) = r(v14 | W) 
= (3, 2, 2) in G (C3), which is a contradiction. If W contains two vertices of V, then by our assumption v2 ∈   W and         
v3 ∈ /  W, v1 ∈   W. If 〈{ 𝑣1, 𝑣2, 𝑣3}〉 ≅ K3, then r(v4 | W) = r(v34 | W) = (2, 2, 2). If 〈{ 𝑣1, 𝑣2, 𝑣3}〉 ≅ P3 and v4v5 ∈ /  E(G), then 
r(v4 | W) = r(v34 | W) = (3, 2, 2). If 〈{ 𝑣1, 𝑣2, 𝑣3}〉 ≅ P3 and v4v5 ∈    E(G), then r(v4 | W) = r(v35 | W) = (2, 2, 2), which is a 
contradiction. 
 
If N(X) = 3, then without loss of generality, let v4, v5, v6 be three vertices in N(X) and v4 be adjacent to v1, v5 be 
adjacent to v3, v6 be adjacent to v1 and v3 in G. Then r(v4 | W) = r(v14 | W) = (2, 2, 3) in G(C3), which is a contradiction. 
 
Without loss of generality, let N(X) = {v4}. We claim that V1 = {v4}. Suppose V1 = {v4, v5, …, vn}, n ≥ 5. If H is 〈𝑉1〉, 
then H(C3) contains at least one end block. But no vertex of H(C3) belongs to W, which is a contradiction to Lemma 
2.6. Therefore X = {v4}. If v4 is adjacent to either v1 or v3, say v1, then r(v4 | W) = r(v14 | W) = (1, 2, 3) in G (C3), which 
is a contradiction and hence v4 is adjacent to v1 and v3. But if 〈{ 𝑣1, 𝑣2, 𝑣3}〉 ≅ K3, then r(v4 | W) = r(v13 | W) in G(C3), 
which is a contradiction. Therefore 〈{ 𝑣1, 𝑣2, 𝑣3}〉  ≅ P3 and hence in this case, G ≅  C4. 
 
Conversely, let G ≅  P3 or K3 or C4 or K4 \ {e} or K4 or C5. Let W = {v1, v2, v3} and v1v2, v2v3 ∈   E(G). Then W is a total 
resolving set of G(C3). 
 
Thus tr(G(C3)) ≤ 3. By Theorem 4.1, tr(G(C3)) ≥ 3 and hence tr(G(C3)) = 3.   
 
Theorem 4.3: Let G be a graph of order n ≥  3. Then tr(G(C3)) = n if and only if each non support vertex is a complete 
vertex of degree 2. 
 
Proof: Assume that tr(G(C3)) = n. Let V(G) = {v1, v2, …, vn}. Let vij be the new vertex of the edge vivj in G(C3). Then 
we claim that each non support vertex is a complete vertex of degree 2. Suppose not. Then we consider the following 
two cases. 
 
Case-1: There exists a non support vertex vi for some i such that d(vi) ≥ 3 in G.  
Then without loss of generality, let v1 be such vertex and N(v1) = {v1, v3,…, vk + 1}, k ≥ 3 in G. Let W = {v2, v3, …, vn}. 
Then for 2 ≤ i ≠ j ≤ n, i – 1th and j – 1th coordinates of the representation of vij are 1, 1st k coordinates of the 
representation of v1 are 1 and j – 1th coordinate of the representation of v1j, 2 ≤  j ≤  k + 1 is 1 in G(C3). Therefore each 
vertex of V(G(C3)) \ W have distinct representations. Since 〈𝑊〉 has no isolates, tr(G(C3)) ≤ n – 1, which is a 
contradiction. 
 
Case-2: There exists a non support vertex vi for some i such that d(vi) = 2 and vi is not a complete vertex in G. 
Then without loss of generality, let vi be such vertex in G. Let N(v1) = {v2, v3} and W = { v2, v3,…, vn}. Then for          
2 ≤ i ≠ j ≤  n, i – 1th and j – 1th coordinates of the representation of vij are 1, 1st and 2nd coordinates of v1 are 1,                
1st coordinate of v12 is 1 and 2nd coordinate of v13 is 1 in G(C3). Thus each vertex of V(G(C3)) \ W have distinct 
representations. Since 〈𝑊〉 has no isolates, tr(G(C3)) ≤ n – 1, which is a contradiction. 
 
Hence each non support vertex is a complete vertex of degree 2. 
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Conversely, suppose that each non support vertex is a complete vertex of degree 2. By Theorem 4.1, tr(G(C3)) ≤ n. Let 
W be a total resolving set for G (C3). Let d(vi) = 2, vi is a complete non support vertex and N(vi) = {vj, vk}. Then       
d(vi, v) = d(vjk, v) for all v ∈   V(G(C3)) \ vi, vjk. Therefore vi or vjk ∈   W and by Lemma 3.3, tr(G(C3) ≥ p + s + s' = n, 
where s' denote the number of non support vertices of G. Thus tr(G(C3)) ≥ n and hence tr(G(C3)) = n. 
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