International Journal of Mathematical Archive-8(12), 2017, 95-100 IMAAvailable online through www.ijma.info ISSN 2229-5046

RESULTS ON β_{M}-NUMBER FOR THE GENERALIZED PETERSEN GRAPHS $P(n, k)$

B. JOHN* ${ }^{*}$, J. JOSELINE MANORA ${ }^{2}$ AND I. PAULRAJ JAYASIMMON ${ }^{3}$

${ }^{1}$ Department of Mathematics,
A.J.C. English School, Kumbakonam, Tamil Nadu, India.
${ }^{2}$ PG \& Research Department of Mathematics, T.B.M.L College, Porayar. Nagapattinam Dt, India.
${ }^{3}$ Department of Mathematics, Amet University, Kanathur, Chennai, India.

(Received On: 02-11-17; Revised \& Accepted On: 24-11-17)

Abstract

A set S of vertices of a graph G is said to be a Majority Independent set(or MI-set) if it induces a totally disconnected subgraph with $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$ and $|p n[v, S]|>|N[S]|-\left\lceil\frac{p}{2}\right\rceil$ for every $v \in S$. In this note, we investigate the Majority Independence Number $\beta_{M}(G)$ for Generalised Petersen graphs and also discussed whether it is β_{M}-excellent or not.

Keywords: Majority independence number- $\beta_{M}(G), \beta_{M}$ excellent graphs.
2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider connected, undirected, finite graphs without loops. We follow the notations and terminology of Harary[2] and Haynes et al. [3]. Let $G=(V, E)$ be a graph with $|V|=p$ and $|E|=q$. For every vertex $v \in V(G)$, the open neighbourhood $N(v)=\{u \in V(G) / u v \in E(G)\}$ and the closed neighbourhood $N[v]=N(v) \bigcup\{v\}$. Let S be a set of vertices, and let $u \in S$. The private neighbor set of u with respect to S is $p n[u, S]=\{v / N[v] \cap S=\{u\}\}$

In 2006, A subset $S \subseteq V(G)$ of vertices in a graph G is called majority dominating set if at least half of the vertices of $V(G)$ are either in S or adjacent to the vertices of S.
i.e., $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$. A majority dominating set S is minimal if no proper subset of S is a majority dominating set of G. The majority domination number $\gamma_{M}(G)$ of a graph G is the minimum cardinality of a minimal majority dominating set in G. The upper majority domination number $\Gamma_{M}(G)$ is the maximum cardinality of a minimal majority dominating set of a graph G. This parameter has been studied by Swaminathan. V and Joseline Manora. J[8].

[^0]/ Results On β_{M}-Number For The Generalized Petersen Graphs $P(n, k) /$ IJMA- 8(12), Dec.-2017.
In 2014, A set S of vertices of a graph G is said to be a Majority Independent set(or MI-set) if it induces a totally disconnected subgraph with $|N[S]| \geq\left\lceil\frac{p}{2}\right\rceil$ and $|p n[v, S]|>|N[S]|-\left\lceil\frac{p}{2}\right\rceil$ for every $v \in S$. If any vertex set S^{\prime} properly containing S is not majority independent. Then S is called Maximal Majority Independent set. The minimum cardinality of a maximal majority independent set is called lower majority independence number of G and it is also called Independent Majority Domination number of G. It is denoted by $i_{M}(G)$. The maximum cardinality of a maximal majority independent set of G is called Majority Independence number of G and it is denoted by $\beta_{M}(G)$. A β_{M}-set is a maximum cardinality of a maximal majority independent set of G. This parameter has been highly developed by Joseline Manora. J and John. B[5].

Claude Berge in 1980, introduced B graphs. These are graphs in which every vertex in the graph is contained in a maximum independent set of the graph. Fircke et al. [1] in 2002 made a beginning of the study of graphs which are excellent with respect to various parameters. γ-excellent trees and total domination excellent trees have been studied in [1]. Also in 2006, N.Sridharan and Yamuna [7] made an extensive work in this area. In 2011, Swaminathan. V and Pushpalatha. A.P have defined β_{o}-excellent graphs, just β_{o}-excellent graphs and very β_{o}-excellent graphs and they have made a detailed study in this paper [7].

Definition: For each $n \geq 3$ and $0<k<n, P(n, k)$ denotes the Generalized Petersen graph with vertex set $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E(G)=\left\{u_{i} u_{i+1(\bmod n)}, u_{i} v_{i}, v_{i} v_{i+k(\bmod n)}\right\}, 1 \leq i \leq n$.

Definition: Let $G=(V, E)$ be a simple graph. Let $u \in V(G)$. The vertex u is said to be β_{M}-good if u is contained in a β_{M}-set of G. The vertex \boldsymbol{u} is said to be β_{M}-bad if there exists no β_{M}-set of G containing u. A graph G is said to be β_{M}-excellent if every vertex of G is β_{M}-good. This parameter has been studied by Joseline Manora. J and John. B [4].
2. Exact β_{M}-number for $G=P(n, k)$

Theorem 2.1: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=1, n \geq 3$. Then

$$
\beta_{M}(G)= \begin{cases}\left.\frac{\left(\frac{p-4}{4}\right.}{} \right\rvert\, \text { if } n \leq 6 \\ \left(\frac{p}{7}\right) & \text { if } n=7 \\ \left\lfloor\frac{p-3}{4}\right\rfloor & \text { if } n \geq 8\end{cases}
$$

Proof: Let G be a Generalized Petersen graph $P(n, 1)$ with $|V(G)|=2 n=p$. The graph G consists of two cycles C_{1} and C_{2} such that the cycle C_{1} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is nested by the another cycle C_{2} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and each u_{i} in C_{2} is joined to exactly one v_{i} in C_{1} and $d\left(v_{i}\right)=d\left(u_{i}\right)=3, i=1,2, \ldots, n$.

Case-(i): When $n \leq 6$. The maximum majority independent sets are $\left\{v_{i}, u_{i+1(\bmod n)}\right\}, i=1,2, \ldots, 6$. Then $\beta_{M}(G)=2=\left\lceil\frac{p-4}{4}\right\rceil$, if $n \leq 6$.

Case-(ii): When $n=7$. The maximum majority independent sets are $\left\{v_{i}, u_{i+2(\bmod n)}, i=1,2, \ldots, 7\right\}$. Therefore $\beta_{M}(G)=2=\left(\frac{p}{7}\right)$.

Case-(iii): When $n \geq 8$. Let $D=\left\{u_{1}, u_{2}, . ., u_{t}\right\}, t=\left\lfloor\frac{p-3}{4}\right\rfloor$ and $d\left(u_{i}, u_{j}\right) \geq 2, i \neq j$.
Then $|N[D]|=\sum_{i=1}^{t}\left(d\left(u_{i}\right)+1\right)=4 t=4\left\lfloor\frac{p-3}{4}\right\rfloor \geq\left\lceil\frac{p}{2}\right\rceil$. Also, for every $v \in D$,
$|p n[v, D]|>|N[D]|-\left[\frac{p}{2}\right]$. Hence D is a β_{M}-set of G.
Therefore $\quad \beta_{M}(G) \geq|D|=\left\lfloor\frac{p-3}{4}\right\rfloor . \quad$ Suppose $\quad S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}, \quad r=\left\lfloor\frac{p-3}{4}\right\rfloor+1 \quad$ with $d\left(v_{i}, v_{j}\right) \geq 2, i \neq j$. But $|p n[v, S]| \leq|N[S]|-\left\lceil\frac{p}{2}\right\rceil$, for any $v \in S$. Therefore S is not a
$\beta_{M \text {-set of } G}$. Hence $\beta_{M}(G)<|S|=\left\lfloor\frac{p-3}{4}\right\rfloor+1 . \quad \Rightarrow \quad \beta_{M}(G) \leq\left\lfloor\frac{p-3}{4}\right\rfloor$
Therefore $\beta_{M}(G)=\left\lfloor\frac{p-3}{4}\right\rfloor$. The maximal majority independent sets of G are
$\left\{v_{i}, u_{i+1(\bmod n)}, v_{i+2(\bmod n)}, u_{i+3(\bmod n)}, \ldots\right\}$,
$\left\{u_{i}, v_{i+1(\bmod n)}, u_{i+2(\bmod n)}, v_{i+3(\bmod n)}, \ldots\right\}, i=1,2, \ldots, n$.
Proposition 2.2[4]: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=1, n \geq 3$. Then $G=P(n, 1)$ is β_{M}-excellent.

Proof: In all the cases of the above theorem [2.1], all vertices of $V(G)$ are contained in any one of the β_{M}-sets of G. Therefore all vertices are β_{M}-good vertices. Hence $G=P(n, 1)$ is β_{M}-excellent.

Theorem 2.3: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=2, n \geq 3$. Then $\beta_{M}(G)=\left\{\begin{array}{l}\left\lceil\frac{p}{8}\right\rceil \text { if } n \leq 11 \\ \left\lfloor\frac{p}{6}\right\rfloor \text { if } n \geq 12\end{array}\right.$

Proposition 2.4: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=2, n \geq 3$. Then $G=P(n, 2)$ is β_{M}-excellent.

Theorem 2.5: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=3, n \geq 3$. Then $\beta_{M}(G)= \begin{cases}\left\lceil\frac{p-2}{6}\right\rceil \quad \text { if } n \leq 10 \\ \left\lceil\frac{p-4}{4}\right\rceil-1 & \text { if } n \geq 11\end{cases}$

Proof: Let G be a Generalized Petersen graph $P(n, 3)$ with $|V(G)|=2 n=p$ vertices. Then G consists of two cycles C_{1} and C_{2} such that the cycle C_{1} with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is nested by the another cycle C_{2} with vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and each u_{i} in C_{2} is joined to exactly one v_{i} in $C_{1}, i=1,2, \ldots, n$ and $d\left(v_{i}\right)=d\left(u_{i}\right)=3$.

Case-(i): When $n \leq 10$. Let $n=5,6,7$. Then $p=2 n=10,11,12,13,14$.
Let $\quad D=\left\{u_{1}, v_{2}\right\} . \quad|N[D]|=7 \geq\left\lceil\frac{p}{2}\right\rceil . \quad$ Therefore $\quad|N[D]|-\left\lceil\frac{p}{2}\right\rceil=2$ or 1 or 0. $\left|p n\left[u_{i}, D\right]\right|=3>|N[D]|-\left\lceil\frac{p}{2}\right\rceil$, for $\forall u_{i} \in D, i=1,2$. Therefore D is a maximal majority independent set of $G \Rightarrow \beta_{M}(G)=2=\left\lceil\frac{p-2}{6}\right\rceil$.
Let $n=8,9,10$. Then $p=2 n=16,18,20$. Let $D=\left\{u_{1}, v_{2}, u_{3}\right\} \cdot|N[D]|=10 \geq\left\lceil\frac{p}{2}\right\rceil$.
Then $\left|p n\left[u_{i}, D\right]\right|=4$ or $3>|N[D]|-\left[\frac{p}{2}\right]$, for $\forall u_{i} \in D, i=1,3$ and
$\left|p n\left[v_{2}, D\right]\right|=3>|N[D]|-\left\lceil\frac{p}{2}\right\rceil, v_{2} \in D$. Therefore $\beta_{M}(G)=2=\left\lceil\frac{p-2}{6}\right\rceil$.
Case-(ii): When $n \geq 11$. Let $D=\left\{u_{1}, u_{2}, . ., u_{t}\right\}, t=\left\lceil\frac{p-4}{4}\right\rceil-1$
and $d\left(u_{i}, u_{j}\right) \geq 2, i \neq j$. Then $|N[D]|=\left(\sum_{i=1}^{t} d\left(u_{i}\right)\right)+1=3 t+1 \geq\left\lceil\frac{p}{2}\right\rceil$.
Also, $|N[D]|-\left\lceil\frac{p}{2}\right\rceil=\left\{\begin{array}{ll}0 & \text { if } n \text { is even } \\ 1 & \text { if } n \text { is odd }\end{array}\right.$ and $\left|p n\left[u_{i}, D\right]\right|=4$ or 3 or 2.
Therefore $\left|p n\left[u_{i}, D\right]\right|>|N[D]|-\left[\frac{p}{2}\right]$, for $\forall u_{i} \in D$. Therefore D is a maximal majority independent set of G. Hence $\beta_{M}(G) \geq|D|=\left\lceil\frac{p-4}{4}\right\rceil-1$.

Suppose $S=\left\{v_{1}, v_{2}, . ., v_{r}\right\}, r=\left\lceil\frac{p-4}{4}\right\rceil-1+1$ with $d\left(v_{i}, v_{j}\right) \geq 2, i \neq j$.
$|N[S]|=\left(\sum_{i=1}^{r} d\left(v_{i}\right)\right)+1=3 r+1 \geq\left\lceil\frac{p}{2}\right\rceil$. But $\left|p n\left[v_{i}, S\right]\right| \leq|N[S]|-\left\lceil\frac{p}{2}\right\rceil$, for any $v_{i} \in S$.
S is not a β_{M}-set of G. Therefore $\beta_{M}(G) \leq|S|=\left\lceil\frac{p-4}{4}\right\rceil \Rightarrow \beta_{M}(G) \leq\left\lceil\frac{p-4}{4}\right\rceil-1$.
Hence $\beta_{M}(G)=\left\lceil\frac{p-4}{4}\right\rceil-1$.
The maximal majority independent sets of $G=P(n, 3)$ are
$\left\{u_{i}, v_{i+1(\bmod n)}, u_{i+2(\bmod n)}, v_{i+3(\bmod n)} ; i=1,2,3, \ldots, n\right\}$, if $n=11,12, \ldots$
$\left\{u_{i}, v_{i+1(\bmod n)}, u_{i+2(\bmod n)}, v_{i+3(\bmod n)}, u_{i+4(\bmod n)} ; i=1,2,3, \ldots, n\right\}$, if $n=13,14, \ldots$

In general, the maximal majority independent sets of G are
$\left\{u_{i}, v_{i+1(\bmod n)}, u_{i+2(\bmod n)}, v_{i+3(\bmod n)} ; i=1,2,3, \ldots, n\right\}$,
when $n=3 k-1,3 k, 3 k+3,3 k+4,3 k+7,3 k+8, \ldots$, if $k=4$.
When $n=3 k+1,3 k+2,3 k+5,3 k+6,3 k+9,3 k+10, \ldots$, if $k=4$,
then the maximal majority independent sets of G are
$\left\{u_{i}, v_{i+1(\bmod n)}, u_{i+2(\bmod n)}, v_{i+3(\bmod n)}, u_{i+4(\bmod n)} ; i=1,2,3, \ldots, n\right\}$.
Proposition 2.6: Let G be a Generalization of Petersen graph $P(n, k)$ with $k=3, n \geq 3$. Then $G=P(n, 3)$ is β_{M}-excellent.

Proof: All vertices of $V(G)$ are contained in any one of the β_{M}-sets of G by theorem (2.5). Therefore all vertices of $G=P(n, 3)$ are β_{M}-good vertices. Hence $G=P(n, 3)$ is β_{M}-excellent.

CONCLUSION

In this paper we surveyed the β_{M}-number for the Generalised Petersen graphs $G=P(n, k)$ where $k=1,2,3, n \geq 3$ and also discussed β_{M}-excellent. Further we extend this idea to find β_{M}-excellent and β_{M} number for $G=P(n, k)$ where $k>3, n \geq 3$ and also extend this idea for the some more interesting different types of graphs.

REFERENCES

1. Fricke. G.H, Teresa W. Haynes, Hadetniemi .S. T, Hedetniemi. S. M and Laskar. R. C, Excellent trees, Bull. Inst. Combin. Appl. Vol 34(2002), pp 27-38.
/ Results On β_{M}-Number For The Generalized Petersen Graphs $P(n, k) / I J M A-8(12)$, Dec.-2017.
2. Harary .F, Graph Theory, Adison-Wesley, Reading, Mass., 1972.
3. Haynes. T. W, Hedetniemi S. T and P. J. Slater, Fundamentals of domination in Graphs, Marcel Dekkar, New York, 1998.
4. Joseline Manora. J, John. B, $\beta_{M}(G)$-Excellent Graphs-Proceedings of the International Conference on Jamal Research Journal: (Special Issue) ISSN 0973-0303(2015), pp 513-517.
5. Joseline Manora. J, John. B, Majority Independence Number of a Graph, International Journal of Mathematical Research, Vol-6, No. 1 (2014), 65-74.
6. Pushpalatha. A.P, Jothilakshmi. G, Suganthi. S, Swaminathan. V, β_{o}-excellent graphs, WSEAS Transaction on Mathematics, Issue 2, Vol. 10, February 2011.
7. Sridharan. N and Yamuna. M, A Note on Excellent graphs, ARS COMBINATORIA 78(2006), pp. 267-276.
8. Swaminathan. V, Joseline Manora. J, Majority Dominating Sets of a graph, Jamal Academic Research Journal, Vol-3, No. 2 (2006), 75-82.
[^1]
[^0]: Corresponding Author: B. John*,
 ${ }^{1}$ Department of Mathematics, A.J.C. English School, Kumbakonam, Tamil Nadu, India.

[^1]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

