International Journal of Mathematical Archive-2(9), 2011, Page: 1569-1571 (ᄌ) JMA Available online through www.ijma.info ISSN 2229-5046

Symmetric and Permutational Generating Sets of $S_{10 k+r}$ and $A_{10 k+r}$ Using the Mathieu Group M_{10}

Tarfah H. Al - Nazawi* and Ibrahim R. Al-Amri
Dep. of Math, Taibah University Madinah Munawwarah, KSA. P. O. Box 30010

E-mail: Tarfah-H@hotmail.com, profibrahim@hotmail.com
(Received on: 14-07-11; Accepted on: 01-08-11)

ABSTRACT

In this paper, we show how to generate $S_{10 k+r}$ and $A_{10 k+r}$ using the Mathieu Group M_{10} and an element of order $k+r$ in $S_{10 k+r}$ and $A_{10 k+r}$ for all positive integers $k, r>1$. We also show how to generate $S_{10 k+r}$ and $A_{10 k+r}$ symmetrically using a symmetric generating set.

Key words: Symmetric generator set M

1. INTRODUCTION:

The Mathieu group M_{10}, of order 720, is one of the well known non-simple groups. Eassa [3] showed that
$M_{10}=\left\langle X, Y \mid X^{5}=Y^{4}=[X, Y]^{3}=(X Y X Y X)^{5}=\left(X Y^{2}\right)^{2}=1\right\rangle$.
Al-Amri [1], Hammas [2] and Al-Amri and Eassa [3] studied symmetric and permutational generating sets of $S_{10 k+1}$ and $A_{10 k+1}$ using some progenitors.

In this paper, we will show that $S_{10 k+r}$ and $A_{10 k+r}$ can by generated using the Mathieu group M_{10} and an element of order $k+r$ in $S_{10 k+r}$ and $A_{10 k+r}$ respectively for all integers $k, r>1$. We will also show that $S_{10 k+r}$ and $A_{10 k+r}$ can by symmetrically generated using a symmetric generating set.

2. PRELIMINARY RESULT:

Lemma: 2.1 [3] The Mathieu group M_{10} of order 720 can be generated as follows;
$M_{10}=\langle(1,2,3,4,5)(6,7,8,9,10),(1,7,4,9)(2,10,3,6)\rangle$.

3. PERMUTATIONAL GENERATING SET OF $S_{10 k+r}$ AND $A_{10 k+r}$

Theorem: 3.1 $S_{10 k+r}$ and $A_{10 k+r}$ can be generated using the Mathieu group M_{10} and an element of order $k+r$ in $S_{10 k+r}$ and $A_{10 k+r}$ respectively.

Proof: Let
$X=(1, \ldots, 5)(6, \ldots, 10) \ldots(10(k-1)+1, \ldots, 10(k-1)+5)(10(k-1)+6 \ldots, 10(k-1)+10), Y=(1,7,4,9)(2,10,3,6) \ldots$ $(10(k-1)+1,10(k-1)+7,10(k-1)+4,10(k-1)+9)(10(k-1)+2,10(k-1)+10,10(k-1)+3,10(k-1)+6)$ and $Z=(5,15, \ldots, 10$ $(k-1)+5,10 k+1, \ldots, 10 k+r)$, be three permutations, the first is of order 5, the second is of order 4 and the third is of order $k+r$. Let $H=\langle X, Y\rangle$. By Lemma 2.1, $H \cong M_{10}$. Let $G=\langle X, Y, Z\rangle$

Let $\lambda=\left(\left[Z_{1}, Z_{2}\right] *\left[Z_{1}, Z_{2}\right]^{2}\right)^{2}=(10 k+1,10 k+2,10 k+3)$. We have the following two cases;
Case (1): If r is an odd integer. Let $\beta=X(X Y)^{2} Z Y Z_{1}$. It is not difficult to show that $\beta=(1,9,2,6,7 \ldots, 10$ $(k-2)+8,10 k+2, \ldots, 10 k+r, \ldots, 10 k+1,10 k+3)$ which is a cycle of order $10 k+r$.Now, if $\mathrm{f} k$ is an odd integers,

Then $G=\langle\beta, \lambda\rangle \cong S_{10 k+r}$. Otherwise, $G=\langle\beta, \lambda\rangle \cong A_{10 k+r}$.
Case (2): If r is an even integer. Let $\sigma=X(X Y)^{2} Z Y Z_{1} Z$. It is not difficult to show that $\sigma=(1,9,2,6,7 \ldots$, $10(k-2)+8,10 k+1,10 k+3, \ldots, 10 k+r, 5, \ldots, 10 k+(r-1))$ which is a cycle of order $10 k+r$. Now, if k is an even integers, then $G=\langle\sigma, \lambda\rangle \cong S_{10 k+r}$. Otherwise, $G=\langle\sigma, \lambda\rangle \cong A_{10 k+r} . \diamond$

Corollary 3.2: Let $G=\langle Y, Z\rangle$, where Y and Z are the elements described in the previous theorem.
Then $\mathrm{G} \cong C_{4} \times C_{k+r}$, for all integers $k, r>1$.
Proof: Since Y, Z are disjoint permutations of orders 4 and $k+r$ respectively, then, it is clear that,
$G=\langle Y, Z\rangle \cong C_{4} \times C_{k+r} . \diamond$

Note: Since $T=(5,15 \ldots 10(k-1)+5,10 k+1 \ldots 10 k+r)$, is in $S_{10 k+r}$ or $A_{10 k+r}$ depending on r then this element is going to be used in the following theorem.
4. SYMMETRIC GENERATING SET OF $S_{10 k+r}$ AND $A_{10 k+r}$.

Theorem: 4.1 Let T be the element described above. For all integers $k, r>1, S_{10 k+r}$ and $A_{10 k+r}$ can be symmetrically generated using the symmetric generating set $\Gamma=\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{5}\right\}$, where $T_{0}=T$ and $T_{i}=T^{X^{i}}$ for all $1 \leq i \leq 5$, where X be the element described in Theorem 3.1.

Proof: Let $G=\langle\Gamma\rangle$, let $\sigma=\left(\left[T, T_{1}\right] *\left[T_{1}, T_{2}\right]\right) *\left(\left[T_{2}, T_{3}\right] *\left[T_{3}, T_{4}\right]\right)^{-1}=(1,2,3,4,5)$ Conjugating by $T_{i}=T^{X^{i}}$ for all $1 \leq i \leq 5$.We can get the element $\tau=(1, \ldots, 5)(6, \ldots, 10)(10(k-1)+1, \ldots, 10(k-1)+5)$.

Hence $\zeta=\tau T_{1}=(1,2,3, \ldots, 10 k+r)$. Let $\lambda=\left(\left[T_{1}, T_{2}\right] *\left[T_{2}, T_{3}\right]\right)^{-1}=(1,2,3)$.

Now, if both of k and r are either even or odd integers, then $G=\langle\zeta, \lambda\rangle \cong S_{10 k+r}$. Otherwise, $G=\langle\zeta, \lambda\rangle \cong A_{10 k+r}$.

Corollary: 4.2 Let $\Gamma=\left\{T_{0}, T_{1}, T_{2}, \ldots, T_{4}\right\}$ be the symmetric generating set which has been described in the previous theorem, If we remove m elements of the set Γ for all $1 \leq i \leq 3$ then the resulting set generates $S_{[10-(2-m)] k+r}$ or $A_{[10-(2-m)] k+r}$, depending on k and r. If we remove 4 elements then the resulting set generates $C_{2 k+r}$.

Proof: Let $\Gamma_{1}=\left\{T, T_{1}\right\}$, let $\alpha_{1}=\left[T, T_{1}\right]=(1,5)(10 k+1,10 k+2)$,
$\beta_{1}=\left(T^{-1}\left[T, T_{1}\right]^{\alpha_{1}}\right) T^{2}=(5,10,15)$. Let $\beta_{i}=\left(\beta_{i}-1\right)^{T^{2}}$ for all $2 \leq i \leq k$

Let $\xi=\beta_{k} \times \beta_{k-1} \times \ldots \times \beta_{1}$, then;
$\xi=(5,10,15, \ldots 10(k-2)+5,10(k-1)+5,10 k+1)$, of order $2 k+1$.
$\tau=T_{1} \xi=(1,6, \ldots, 10(k-1)+1, \ldots, 10 k+1, \ldots, 10 k+r)$ Let: $m_{1}=\left[T_{1}, T_{2}\right]$ and $m_{2}=m_{1}^{T_{1}}$. Let $\delta=m_{2} m_{1}$ and $\zeta=\left(\delta^{T_{3}} \delta\right)^{2}$, then $\sigma=(\zeta)^{\tau^{-1}}=(5,10(k-1)+1,10 k+r)$

Now, if both of k and r are either even or odd integers, then $\left\langle\Gamma_{1}\right\rangle=\langle\tau, \sigma\rangle \cong S_{4 k+r}$. Otherwise, then $\left\langle\Gamma_{1}\right\rangle=\langle\tau, \sigma\rangle \cong A_{4 k+r}$. Let $\Gamma_{2}=\left\{T, T_{1}, T_{2}\right\}$, let $\lambda_{1}=T T_{1}^{-1}=(5,10, \ldots, 10(k-1)+5, \ldots, 1, \ldots, 10 k+r)$, which is a cycle of order $4 k+r$ and $\lambda_{2}=\lambda_{1} T_{2}=(5,10, \ldots, 10(k-1)+5, \ldots, 1, \ldots, 10 k+1, \ldots, 10 k+r)$, which is a cycle of order $6 k+r$. Now as in the previous the case , $\left\langle\Gamma_{2}\right\rangle \cong S_{6 k+r}$ or $A_{6 k+r}$ depending whither r is an odd or even integers. The rest of the proof goes the same.

REFERENCES:

[1] Al-Amri, Ibrahim R.; Symmetric and permutational generating Set of the Groups $A_{k n+1}$ and $S_{k n+1}$ using S_{n} and an element of order \boldsymbol{k}. IJMMS, vol. 21 No. 3 pp. 489-492 (1998).
[2] Hammas, A. M.; Symmetric generating Set of the Groups $A_{2 n+1}$ and $S_{2 n+1}$ using S_{n} and an element of order 2. IJMMS, vol. 21 No. 1, pp. 139-144 (1998).
[3] I. R. Al-Amri and A. A. Eassa; On the wreath product of the Mathieu group M_{10} by some other groups, Journal of Taibah University for science (JTUSCI) 1 (2008) 72-75.

