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ABSTRACT 

The aim of this paper is to introduce the concept of �̂�β closed set and their relations. And also we define some new 
types of separation axioms in topological spaces by using �̂�𝛽 open sets. Also the concept of �̂�𝛽 𝑅0 and �̂�𝛽 𝑅1, �̂�β  𝑇𝑖  
are introduced. Several properties of these spaces are investigated.  
 
Keywords: �̂� closed set,�̂�β closed set, 𝛽 open, �̂�𝛽 open set, �̂�𝛽 𝑅0, �̂�𝛽 𝑅1, �̂�𝛽 𝑇𝑖 (i=0, 1, 2). 
 
 
1. INTRODUCTION 
 
In 1970, Levine [9] introduced the concept of generalized closed set in topological spaces. In 2000, M.K.R.S 
Veerakumar [19] introduced several generalized closed sets namely g* closed set,*g closed set, 𝛼*g closed set, *gs 
closed set, 𝑔�closed set, μ closed set, μs closed set. S.Pious Missier and E.Sucila [16] introduced �̂� closed set and their 
continuity. Andrijevic[1] introduced semi preopen set(𝛽 open set) in general topology. The aim of this paper is to 
introduce the some properties of �̂�β closed and new types of separation axiom [5, 7, 8] via μ�β open sets, and investigate 
the relations among these concepts. Throughout this paper, (X,τ ) and (Y,σ) (or simply X and Y) represents the non-
empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, 
Cl(A) and Int(A) represents the closure of A and Interior of A respectively.  
 
2. PRELIMINARIES 
 
Definition 2.1: A subset A of X is called generalized closed (briefly g-closed) [9] set if 𝑐𝑙(𝐴) ⊆ 𝑈  whenever             
𝐴 ⊆ 𝑈 𝑎𝑛𝑑 𝑈 𝑖𝑠 𝑜𝑝𝑒𝑛. 
 
Definition 2.2: A subset A of X is called regular open (briefly r-open) [11] set if 𝐴 = 𝑖𝑛𝑡�𝑐𝑙(𝐴)� and regular closed 
(briefly r-closed) [4] set if 𝐴 = 𝑐𝑙�𝑖𝑛𝑡(𝐴)�. 
 
Definition 2.3: A subset A of X is called pre open set [13] if 𝐴 ⊆ 𝑖𝑛𝑡�𝑐𝑙(𝐴)� and pre-closed [6] set if  𝑐𝑙�𝑖𝑛𝑡(𝐴)� ⊆ 𝐴 
 
Definition 2.4: A subset A of X is called 𝛼 𝑜𝑝𝑒𝑛  [14] if 𝐴 ⊆ 𝑖𝑛𝑡(𝑐𝑙(𝑖𝑛𝑡(𝐴))) 𝑎𝑛𝑑  𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑  [10] if 
𝑐𝑙(𝑖𝑛𝑡�𝑐𝑙(𝐴)�) ⊆ 𝐴. 
 
Definition 2.5: A subset A of X is called θ closed [20] if A= clθ(A), where clθ(A)={x∈ 𝑋: 𝑐𝑙(𝑈) ∩ 𝐴 ≠ 𝑈 ∈ 𝜏} 
 
Definition 2.6: A subset A of X is called 𝛿closed [20] if A = clδ(A), where clδ(A)=𝑥 ∈ 𝑋: 𝑖𝑛𝑡(𝑐𝑙(𝑈)) ∩ 𝐴 ≠ 𝑈 ∈ 𝜏} 
 
Definition 2.7: A subset A of X is called Semi generalized closed (briefly sg closed) [2] if scl(A)⊆U whenever A⊆ 𝑈 
and U is semi open in X. 
 
Definition 2.8: A subset A of X is called Generalized α closed (briefly gα closed) [4] if α-cl(A)⊆U whenever A⊆ 𝑈 
and U is α-open in X. 
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Definition 2.9: A subset A of X is called Generalized semi-preclosed (briefly gsp closed) [14] if spcl(A)⊆U whenever 
A⊆ 𝑈 and U is open in X. 
 
Definition 2.10: A subset A of X is called Regular generalized closed (briefly rg closed) [15] if cl(A)⊆U whenever 
A⊆ 𝑈 and U is regular open in X. 
 
Definition 2.11: A subset A of X is called θ generalized closed (briefly θg closed) [6] if clθ(A)⊆U whenever A⊆ 𝑈 and 
U is  open in X. 
 
Definition 2.12:A subset A of X is called 𝛿 generalized closed (briefly 𝛿g closed) [18] if clδ(A)⊆U whenever A⊆ 𝑈 
and U is  open in X. 
 
Definition 2.13: A subset A of X is called Strongly generalized closed (briefly g* closed) [13] if cl(A)⊆U whenever 
A⊆ 𝑈 and U is g-open in X. 
 
Definition 2.14: A subset A of X is called Weakly closed (briefly w closed) [10] if cl(A)⊆U whenever A⊆ 𝑈 and U is 
semi open in X. 
 
Definition 2.15: A subset A of X is called Regular weakly closed (briefly rw closed) [4] if cl(A)⊆U whenever A⊆ 𝑈 
and U is regular semi open in X. 
 
Definition 2.16: A subset A of X is called Regular generalized weakly closed (briefly rgw closed) [17] if cl(int(A)) ⊆U 
whenever A⊆ 𝑈 and U is regular semi open in X. 
 
Definition 2.17: A subset A of a space (X, 𝜏) is called regular semi open [17] if there is a regular open set U such that 
U⊂A⊂cl(U) 
 
Definition 2.18: A subset A of X is called  𝑔𝛼* closed set [16] if 𝛼cl(A)⊆ 𝑖𝑛𝑡(U) whenever A⊆ 𝑈 and U is 𝛼 open in 
X. 
 
Definition 2.19: A subset A of X is called μ closed set [16] if cl(A)⊆U whenever A⊆ 𝑈 and U is 𝑔𝛼* open in X. 
 
Definition 2.20: A subset A of X is called �̂� closed set [16] if scl(A)⊆U whenever A⊆ 𝑈 and U is  μ  open in X. 
 
𝟑.𝑶𝒏 𝝁�β closed set 
 
Definition 3.1: A subset A of a topological space (X,𝜏) is called 𝛽 𝑜𝑝𝑒𝑛  if𝐴 ⊆ 𝑐𝑙(𝑖𝑛𝑡(𝑐𝑙(𝐴))),whenever A⊆ 𝑈 and U 
is open in X. 
 
Definition 3.2: A subset A of a topological space (X,𝜏) is called �̂�β closed set if �̂�cl(A)⊆  𝑈, whenever A⊆ 𝑈 and U is 
𝛽 open in X. 
 
Remark 3.3: ∅ and X are �̂�β closed subset of X. 
 
Theorem 3.4: Every closed set is �̂�β closed set, but not conversely. 
 
Proof: Let A be closed set such that A⊆ 𝑈 and  U is  𝛽 open set .  A=Cl(A)⊆ 𝑈.  Every closed set is �̂�  closed. 
Therefore �̂�cl(A)⊆ 𝑈,whenever A⊆ 𝑈 and U is 𝛽-open.Hence A is �̂�β closed set. 
 
Example 3.5: Let X={a, b, c, d}, 𝜏={X,𝜙, {a},{b},{a, b},{a, b, c}} here A={a, d} is �̂�β closed but not closed set in X. 
 
Remarks 3.6: Every 𝜃-closed, 𝜋 𝑐𝑙𝑜𝑠𝑒𝑑, 𝛿 closed, r closed set is closed. Therefore every 𝜃-closed, 𝜋 𝑐𝑙𝑜𝑠𝑒𝑑, 𝛿 closed, 
r closed set is �̂�β closed set. 
 
Theorem 3.7: Every g closed set is �̂�β closed set, but not conversely. 
 
Proof: Let A be g closed set such that cl(A) ⊆U, whenever A⊆U and U is open. Then cl(A) ⊆ �̂�cl(A) ⊆U.Therefore 
�̂�cl(A) ⊆U, whenever A⊆U and U is open. Since every open set is 𝛽-open, therefore every g closed set is �̂�β closed set. 
 
Example 3.8: Let X={a, b, c, d}, 𝜏={X,𝜙,{a},{b},{a, b},{a, b, c}}.Let A={a} is �̂�β closed  but not g closed. 
 
Remarks 3.9: Every gr closed, g* closed set is g closed. Therefore every gr closed, g* closed set is �̂�β closed set. 
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Theorem 3.10: Every 𝑠g closed set is �̂�β closed set, but not conversely. 
 
Proof: Let A be 𝑠𝑔 closed set such that 𝑠cl(A)⊆U, whenever A⊆U and U is semi open. Then 𝑠cl(A) ⊆ cl(A) ⊆U. 
Therefore �̂�cl(A) ⊆U, whenever A⊆U and U is semi open. Since every semi open set is 𝛽-open, therefore every 
𝑠𝑔 closed set is �̂�β closed set. 
 
Example 3.11: Let  X={a ,b, c, d}, 𝜏={X,𝜙,{a},{b},{a, b},{a, b, c}}. Let A={a, b, d} is �̂�β closed  but not 𝑠𝑔 closed. 
 
Theorem 3.12: Every gs closed, w closed, g𝛼 closed, 𝛼g closed set is �̂�β closed set, but not conversely. 
 
Example 3.13: Let  X={a, b, c, d}, 𝜏={X,𝜙,{a},{b},{a,b},{a,b,c}}.Let A = {a, c} is �̂�β closed  but not 𝑔𝑠 closed. 
 
Theorem 3.14: Every gsp closed set is �̂�β closed set. 
 
Proof: Let A be 𝑔𝑠𝑝 closed set such that spcl(A) ⊆U, whenever A⊆U and U is open. Then 𝑠𝑝cl(A) ⊆ cl(A) ⊆U. 
Therefore �̂�cl(A) ⊆U, whenever A⊆U and U is open. Since every open set is 𝛽-open, therefore every 𝑔𝑠𝑝 closed set is 
�̂�β closed set. 
 
Theorem 3.15: Let A⊆ B⊆  �̂�cl(A) and A is a �̂�β closed subset of (X,𝜏) then B is also a �̂�β closed subset of  (X,𝜏). 
 
Proof: Since A is a �̂�β closed subset of (X,𝜏), So �̂�cl(A)⊆U, whenever A ⊆U and U is 𝛽 open subset of X. Let          
A⊆ B⊆  �̂�cl(A) . That is �̂�cl(A)=�̂�cl(B).Let if possible there exists an 𝛽 open subset V of X such that B ⊆ V.So A ⊆ V 
and A being �̂�β closed subset of X, �̂�cl(A) ⊆ V. That is �̂�cl(B) ⊆ V. Hence B is also a �̂�β closed subset of X. 
 
Theorem 3.16: Let A⊆ B⊆X, where B is 𝛽 open in X. If A is �̂�β closed in X, then A is �̂�β closed in B. 
 
Proof: Let A ⊆ U, where U is 𝛽 open set of X. Since U=V∩B, for Some 𝛽 open set V of X and  B is 𝛽 open in X. 
Using assumption A is �̂�β closed in X. We have �̂�cl(A)⊆U and so �̂�cl(A)=cl(A)∩B ⊆ U∩B ⊆ U. Hence A is �̂�β closed 
in B. 
 
Theorem 3.17: A subset A of X is �̂�β closed sets iff �̂�cl(A) ∩ Ac contains no non-zero closed set in X. 
 
Proof: Let A be a �̂�β closed subset of X. Also if possible let M be closed subset of X such that M ⊆  �̂�cl(A) ∩Ac. That 
is M ⊆  �̂�cl(A) and M ⊆ Ac. Since M is a closed subset of X, Mc is an open subset of X ⊆ A, and A being �̂�β open 
subset of X, �̂�cl(A)  ⊆ Mc. But M⊆  �̂�cl(A).So we get a contradiction .Therefore  M=∅.So the condition is true. 
Conversely, let A ⊆ N, and N is a open subset of X. Then Nc ⊆Ac, And Nc is a closed subset of X. Let if possible 
�̂�cl(A) ⊆ N .Then �̂�cl(A) ∩ Nc is a nonzero closed subset of �̂�cl(A) ∩ Ac, which is a contradiction .Hence A is a �̂�β 
closed subset of X. 
 
Theorem 3.18: A subset A of X is �̂�β closed set in X iff�̂�cl(A)-A contain no non-empty 𝛽 closed set in X. 
 
Proof: Suppose that F is a non-empty 𝛽  closed subset if �̂�cl(A)-A. Now F  ⊆ �̂�cl(A)-A. Then F  ⊆ �̂�cl(A)  ∩  Ac. 
Therefore F⊆  Ac. Since Fc is 𝛽  open set and A is �̂� β closed, �̂� cl(A )  ⊆  Fc. That is F⊆ �̂� cl(A)c. Hence                           
F⊆ �̂�cl(A) ∩[�̂�cl(A)]c=∅. That is F=∅. Thus �̂�cl(A)-A contains no non empty 𝛽 closed set. Conversely assume that 
�̂�cl(A)-A contains no nonempty 𝛽 closed set. Let A ⊆ U and U is 𝛽 open.Suppose that �̂�cl(A) is not contained in U. 
Then �̂� cl(A)  ∩  Uc is a non-empty 𝛽  closed set and contained in �̂� cl(A)-A .which is a contradiction. Therefore      
�̂�cl(A) ⊆ U and hence A is �̂�β closed set. 
 
Example 3.19: The figure 1 is justified with the following examples. 
 
Let X= {a, b, c, d}, be with the topology 𝜏={X, 𝜙, {a}, {b}, {a, b}, {a, b, c}} then 

1. Closed sets in X are X, 𝜙, {d}, {c, d}, {a, c, d},{b, c, d} 
2. �̂�β closed sets in X are X, 𝜙, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b,d},{a, c, d}, {b, c, d}. 
3. 𝛼closed sets in X are X, 𝜙,{c},{d},{c, d},{a, c, d},{b, c, d} 
4. Pre closed sets in X are X, 𝜙,{c},{d},{c, d},{a, c, d},{b, c, d} 
5. Semi closed sets in X are X, 𝜙,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d}{c, d},{a, c, d},{b, c, d} 
6. Regular closed sets in X are X, 𝜙, {a, c, d},{b, c, d} 
7. g closed sets in X are X, 𝜙,{d},{a, d} ,{b, d},{c, d} {a, b, d},{a, c, d},{b, c, d}. 
8. g* closed sets in X are X, 𝜙,{d},{a, d}, {b, d},{c, d} {a, b, d},{a, c, d},{b, c, d}. 
9. g𝛼 closed sets in X are X, 𝜙,{c},{d},{c, d},{a, c, d},{b, c, d}. 
10. gsp closed sets in X are X, 𝜙,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, d},{a, c, d},{b, c, d}. 
11. sg closed sets in X are X, 𝜙,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, d},{a, c, d},{b, c, d}. 
12. rg closed sets in X are X, 𝜙,{c},{d},{a, b},{a. c},{a, d},{b, c},{b, d},{c, d},{a, b, d},{a, c, d},{b, c, d}. 
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13. gr closed sets in X are X, 𝜙,{d},{a, d} ,{b, d},{c, d},{a, b, d},{a, c, d},{b, c, d}. 
14. w closed sets in X are X, 𝜙,{d},{c, d},{a, c, d},{b, c, d}. 
15. gα* closed sets in X are X, 𝜙,{c},{d},{c, d},{a, c, d},{b, c, d}. 
16. μ closed sets in X are X, 𝜙,{d},{c, d},{a, c, d},{b, c, d}. 
17. �̂�closed sets in X are X, 𝜙,{a},{b},{c},{d},{a, c},{a, d},{b, d},{c, d} {a, b, d},{a, c, d},{b, c, d}. 
18. rw closed sets in X are X, 𝜙,{d},{a, b},{c, d},{a, b, c},{a, b, d},{a, c, d},{b, c, d}. 
19. rwg closed sets in X are X, 𝜙,{c},{d},{a, b},{a. c},{a, d}, {b, c},{b, d}, {c, d},{a, b, c}, {a, b, d},{a, c, d},    

{b, c, d}. 
20. gpr closed sets in X are X, 𝜙,{c},{d},{a, b},{a,c},{a, d},{b, c},{b, d},{c, d},{a, b, c},{a, b, d},  {a, c, d},       

{b, c, d}. 
21. rgw closed sets in X are X, 𝜙,{c},{d},{a, b},{c, d},{a, b, c} {a, b, d},{a, c, d},{b, c, d}. 

 

 
 
A                                    B Means A implies B but not conversely 

A B means A and B are independent of each other 

Figure-1 
 
4. 𝛍�𝛃 𝑻𝒌 Space (k = 0, 𝟏 𝟐� , 1, 2) 
 
In this section, some new types of separation axioms are defined and studied in topological spaces called μ�β 𝑇𝑘 for       
k = 0, 1 2� , 1, 2 and μ�β 𝐷𝑘 for k = 0, 1, 2 and  some properties of these spaces are also explained. The following 
definitions are introduced via μ�β open sets. 
 
Definition 4.1: A subset A of a topological space X is called a μ�β difference set (briey, μ�βD set) if there exist two μ�β 
open sets U and V such that U ≠ X and A = U \ V.  
 
Definition 4.2: A space X is said to be:  

1. μ�β 𝑇0 if for each pair of distinct points x and y in X, there exists a μ�β open set A containing x but not y or a 
μ�β open set B containing y but not x.  

2. μ�β 𝑇1 if for each pair x, y in X, x ≠ y, there exists a μ�β open set G containing x but not y and a μ�β open set B 
containing y but not x.  

3. A space X is said to be μ�β 𝑇2 if for any pair of distinct points x and y in X, there exist U ∈ μ�βO(X, x) and      
V ∈ μ�βO(X, y) such that U ∩ V = ∅.  

4. μ�β 𝐷0 (resp., μ�β 𝐷1) if for any pair of distinct points x and y of X there exists a μ�βD set of X containing x but 
not y or (resp., and) a μ�βD set of X containing y but not x.  

5. μ�β 𝐷2 if for any pair of distinct points x and y of X, there exist disjoint μ�βD sets G and H of X containing        
x and y, respectively. 

 
Definition 4.3: A topological space X is called μ�β 𝑇1

2�
 if every μ�β closed set is μ�  closed. 
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Theorem 4.4: A topological space (X, τ) is μ�β 𝑇0  if and only if for each pair of distinct points x, y of X,             
μ�βCl({x}) ≠ μ�βCl({y}).  
 
Proof:  
Necessity: Let (X,τ ) be a μ�β 𝑇0 space and x, y be any two distinct points of X. There exists a μ�β open set U containing 
x or y, say x but not y. Then X \ U is a μ�β closed set which does not contain x but contains y. Since μ�βCl({y}) is the 
smallest μ�β closed set containing y, μ�β Cl({y}) ⊆  X\U and therefore x ∉  μ�β Cl({y}). Consequently                     
μ�βCl({x}) ≠ μ�βCl({y}).  
 
Sufficiency: Suppose that x, y ∈ X, x ≠ y and μ�βCl({x}) ≠ μ�β Cl({y}). Let z be a point of X such that z ∈ μ�βCl({x}) 
but z ∉ μ�βCl({y}). We claim that x ∉ μ�βCl({y}). For, if x ∈ μ�βCl({y}) then μ�βCl({x}) ⊆ μ�βCl({y}). This contradicts 
the fact that z ∉ μ�βCl({y}). Consequently x belongs to the μ�β open set X \ μ�βCl({y}) to which y does not belong. 
Hence (X, τ) is a μ�β 𝑇0 space. 
 
Theorem 4.5: A topological space (X, τ) is μ�β 𝑇1 if and only if the singletons are μ�β closed sets.  
 
Proof: Let (X, τ) be μ�β 𝑇1 space and x any point of X. Suppose y ∈ X \ {x}, then x ≠ y and so there exists a μ�β open 
set U such that y ∈ U but x ∉ U. Consequently y ∈ U ⊆ X \{x}, that is X \{x} = ∪{U: y ∈ X \{x}} which is μ�β -open.  
 
Conversely, suppose {p} is μ�β closed for every p ∈ X. Let x, y ∈ X with x ≠ y. Now x ≠ y implies y ∈ X \ {x}. Hence 
X \ {x} is a μ�β open set containing y but not x. Similarly X \ {y} is a μ�β open set containing x but not y. Therefore X is 
a μ�β 𝑇1 space. 
 
Theorem 4.6: A topological space (X, τ) is μ�β 𝑇1

2�
 if each singleton {x} of X is either μ�  open or μ�  closed.  

 
Proof: Suppose {x} is μ�β  open, then it is obvious that (X \ {x}) is μ�β closed. Since (X, τ) is μ�β 𝑇1

2�
, so (X \ {x}) is 

μ�  closed, that is {x} is μ�  open. 
 
Theorem 4.7: The following statements are equivalent for a topological space (X, τ)  

1. X is μ�β 𝑇2.  
2. Let x ∈ X. For each y ≠ x, there exists a μ�β open set U containing x such that y ∉ μ�βCl(U).  
3. For each x ∈ X, ∩{μ�βCl(U) : U ∈ μ�βO(X) and x ∈ U} = {x}.  

 
Proof:  
(1) ⇒ (2): Since X is μ�β 𝑇2, there exist disjoint μ�β open sets U and V containing x and y respectively. So, U ⊆ X\V. 
Therefore, μ�βCl(U) ⊆ X\V. So y ∉ μ�βCl(U).  
 
(2) ⇒ (3): If possible for some y ≠ x, we have y∈ μ�βCl(U) for every μ�β open set U Containing x,which contradicts (2).  
 
(3) ⇒ (1): Let x, y ∈ X and x ≠ y. Then there exists a μ�β open set U containing x such that y ∉ μ�βCl(U). Let V = X \ 
μ�βCl(U), then y ∈ V and x ∈ U and also U ∩V = ∅. Therefore X is μ�β 𝑇2 space. 
 
Theorem 4.8: Let (X, τ) be a topological space, then the following statements are true:  

1. Every μ�β 𝑇2 space is μ�β 𝑇1.  
2. Every μ�β 𝑇1 space is μ�β 𝑇1

2�
  

 
Proof: The proof is straightforward from the definitions and theorem 4.5.  
 
Remark 4.9: Every proper μ�β open set is a μ�βD set. But, the converse is not true in general as the next example shows. 
 
Example 4.10: Consider X = {a, b, c, d} with the topology 𝜏  = { ∅ , {a}, {b},{a, b},{a, b, c}, X}. So,                      
μ�βO(X,τ) = {∅,{a}, {b}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, X}, then        
U = {a, b, d} ≠ X and V = {a,b,c} are μ�β open sets in X and A = U \ V = {a, b,d}\ {a,b,c} = {d}, then we have A = {d} 
is a μ�βD set but it is not μ�β open. Now we define another set of separation axioms called μ�β𝐷𝑘, for k = 0, 1, 2, by using 
the μ�βD -sets. 
 
Remark 4.11: For a topological space (X, τ), the following properties hold:  

1. If (X, τ) is μ�β 𝑇𝑘, then it is μ�β 𝐷𝑘, for k = 0, 1, 2.  
2. If (X, τ) is μ�β𝐷𝑘, then it is μ�β𝐷𝑘−1, for k = 1, 2.  

 
Proof: Obvious. 
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Theorem 4.12: A space X is μ�β𝐷0 if and only if it is μ�β𝑇0.  
 
Proof: Suppose that X is μ�β𝐷0. Then for each distinct pair x, y ∈ X, at least one of x, y, say x, belongs to a μ�βD set G 
but y ∉ G. Let G = 𝑈1 \ 𝑈2 where 𝑈1 ≠ X and 𝑈1, 𝑈2 ∈ μ�βO(X, τ). Then x ∈ 𝑈1, and for y ∉ G we have two cases:      
(a) y ∉ 𝑈1, (b) y ∈ 𝑈1 and y ∈ 𝑈2.  
 
In case (a), x ∈ 𝑈1 but y ∉ 𝑈1.  
 
In case (b), y ∈ 𝑈2 but x ∉ 𝑈2.  
 
Thus in both the cases, we obtain that X is μ�β𝑇0. Conversely, if X is μ�β𝑇0, by Remark 4.11 (1), X is μ�β𝐷0. 
 
Theorem 4.13: A space X is μ�β𝐷1 if and only if it is μ�β𝐷2.  
 
Proof: Necessity: Let x, y ∈ X, x ≠ y. Then there exist μ�βD sets 𝐺1, 𝐺2 in X such that x ∈ 𝐺1, y ∉ 𝐺1 and y ∈ 𝐺2,          
x ∉ 𝐺2. Let 𝐺1 = 𝑈1 \ 𝑈2 and 𝐺2 = 𝑈3 \ 𝑈4, where 𝑈1, 𝑈2, 𝑈3 and 𝑈4 are μ�β open sets in X. From x ∉ 𝐺2, it follows that 
either x ∉  𝑈3 or x ∈  𝑈3 and x ∈ 𝑈4. We discuss the two cases separately.  
(i) x ∉ 𝑈3. By y ∉ 𝐺1 we have two sub-cases:  
(a) y ∉ 𝑈1 . Since x ∈ 𝑈1  \ 𝑈2 , it follows that x ∈ 𝑈1  \ (𝑈2  ∪ 𝑈3), and since y ∈ 𝑈3\𝑈4  we have y ∈ 𝑈3\(𝑈1 ∪ 𝑈4). 
Therefore (𝑈1\(𝑈2 ∪  𝑈3)) ∩ (𝑈3\(𝑈1 ∪ 𝑈4)) = ∅.  
(b) y ∈ 𝑈1 and y ∈ 𝑈2. We have x ∈ 𝑈1 \ 𝑈2, and y ∈ 𝑈2. Therefore (𝑈1 \ 𝑈2) ∩ 𝑈2 = ∅.  
(ii) x ∈ 𝑈3 and x ∈ 𝑈4. We have y ∈ 𝑈3\ 𝑈4 and x ∈  𝑈4. Hence (𝑈3 \ 𝑈4) ∩  𝑈4 = ∅. Therefore X is μ�β𝐷2.  
 
Sufficiency: Follows from Remark 4.11 (2). 
 
Corollary 4.14: If (X, τ) is μ�βD1, then it is μ�βT0.  
 
Proof: Follows from Remark 4.11 (2) and theorem 4.12. Here is an example which shows that the converse of 
Corollary 4.14 is not true in general. 
 
Definition 4.15: A point x ∈ X which has only X as the μ�β neighbourhood is called a μ�β neat point.  
 
Proposition 4.16: For a μ�βT0 topological space (X, τ) the following are equivalent:  

1. (X, τ) is μ�βD1.  
2. (X, τ) has no μ�β neat point.  

 
Proof:  
(1) ⇒ (2): Since (X, τ) is μ�βD1, then each point x of X is contained in a μ�βD set A = U \ V and thus in U. By definition 
U ≠ X. This implies that x is not a μ�β neat point.  
 
(2) ⇒  (1): If X is μ�βT0, then for each distinct pair of points x, y ∈ X, at least one of them, x (say) has a 
μ�β neighbourhood U containing x and not y. Thus U which is different from X is a μ�β D set. If X has no μ�β neat point, 
then y is not a μ�β neat point. This means that there exists a μ�β neighbourhood V of y such that V ≠ X. Thus y ∈ V \ U 
but not x and V \ U is a μ�βD set. Hence X is μ�βD1. 
 
Corollary 4.17: A μ�βT0 space X is not μ�βD1 if and only if there is a unique μ�β neat point in X.  
 
Proof: We only prove the uniqueness of the μ�β neat point. If x and y are two μ�β neat points in X, then since X is μ�β T0, 
at least one of x and y, say x, has a μ�β neighbourhood U containing x but not y. Hence U ≠ X. Therefore x is not a 
μ�β neat point which is a contradiction. 
 
Definition 4.18: A topological space (X, τ) is said to be μ�β symmetric if for x and y in X, x ∈ μ�βCl({y}) implies           
y ∈ μ�βCl({x}).  
 
Theorem 4.19: If (X, τ) is a topological space, then the following are equivalent:  

1. (X, τ) is a μ�β symmetric space.  
2. {x} is μ�β closed, for each x ∈ X.  

 
Proof: 
(1) ⇒  (2): Assume that {x} ⊆  U ∈  μ�βO(X), but μ�βCl({x}) ⊄  U. Then μ�βCl({x}∩  X \ U ≠ ∅ . Now, we take                   
y ∈ μ�βCl({x} ∩ X \U, then by hypothesis x ∈ μ�βCl({y}) ⊆ X \ U and x ∉ U, which is a contradiction. Therefore {x} is 
μ�β closed, for each x ∈ X. 
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(2) ⇒ (1): Assume that x ∈ μ�βCl({y}), but y ∉ μ�βCl({x}). Then {y} ⊆ X \ μ�βCl({x}) and hence μ�βCl({y}⊆ X \ 
μ�βCl({x}). Therefore x ∈ X \ μ�βCl({x}), which is a contradiction and hence y ∈ μ�βCl({x}). 
 
Corollary 4.20: If a topological space (X, τ) is a μ�βT1 space, then it is μ�β symmetric.  
 
Proof: In a μ�βT1 space, every singleton is μ�β closed and therefore is by theorem 4.19, (X, τ) is μ�β symmetric.  
 
Corollary 4.21: If a topological space (X, τ) is μ�β symmetric and μ�βT0, then (X, τ) is μ�βT1.  
 
Proof: Let x ≠ y and as (X, τ) is μ�βT0, we may assume that x ∈ U ⊆ X\{y} for some U ∈ μ�βO(X). Then x ∉ μ�βCl({y}) 
and hence y ∉ μ�βCl({x}). There exists a μ�β open set V such that y ∈ V ⊆ X \ {x} and thus (X, τ) is a μ�βT1 space.  
 
Corollary 4.22: If a topological space (X, τ) is μ�βT1, then (X, τ) is μ�β symmetric and μ�β𝑇1

2�
  

 
Proof: By Corollary 4.21 and Proposition 4.8, it is true.  
 
Corollary 4.23: For a rg*b-symmetric space (X, τ), the following are equivalent:  

1. (X, τ) is μ�βT0.  
2. (X, τ) is μ�βD1.  
3. (X, τ) is μ�βT1.  

 
Definition 4.24: Let A be a subset of a topological space ((X, τ). The μ�β kernel of A, denoted by μ�βker(A) is defined to 
be the set μ�βker(A) = ∩{U ∈ μ�βO(X): A ⊆ U}.  
 
Theorem 4.25: Let (X, τ) be a topological space and x ∈ X. Then y ∈ μ�βker({x}) if and only if x ∈ μ�βCl({y}).  
 
Proof: Suppose that y ∉ μ�βker({x}). Then there exists a μ�β open set V containing x such that y ∉ V. Therefore, we 
have x ∉ μ�βCl({y}). The proof of the converse case can be done similarly.  
 
Theorem 4.26: Let (X, τ) be a topological space and A be a subset of X. Then, μ�βker(A) = {x ∈ X: μ�βCl({x}) ∩ A ≠ ∅}.  
 
Proof: Let x ∈ μ�βker(A) and suppose μ�βCl({x}) ∩ A = ∅. Hence x ∉ X \ μ�βCl({x}) which is a μ�β open set containing 
A. This is impossible, since x ∈ μ�βker(A). Consequently, μ�βCl({x}) ∩ A ≠ ∅. Next, let x ∈ X such that μ�βCl({x}) ∩ A ≠ ∅ 
and suppose that x ∉ μ�βker(A). Then, there exists a μ�β open set V containing A and x ∉ V. Let y ∈ μ�βCl({x}) ∩ A. Hence, V 
is a μ�β neighbourhood of y which does not contain x. By this contradiction x ∈ μ�βker(A) and the claim.  
 
Theorem 4.27: The following properties hold for the subsets A, B of a topological space(X, τ)  

1. A ⊆ μ�βker(A).  
2. A ⊆ B implies that μ�βker(A) ⊆ μ�βker(B).  
3. If A is μ�β open in (X,τ ), then A = μ�βker(A).  
4. μ�βker(μ�βker(A)) = μ�βker(A).  

 
Proof: (1), (2) and (3) are immediate consequences of Definition 4.24. To prove (4), first observe that by (1) and (2), 
we have μ�βker(A) ⊆ μ�βker(μ�βker(A)). If x ∉ μ�βker(A), then there exists U ∈ μ�βO(X,τ ) such that A ⊆ U and x ∉ U. 
Hence μ�βker(A) ⊆ U, and so we have x ∉  μ�βker(μ�βker(A)). Thus μ�βker(μ�βker(A)) = μ�βker(A). 
 
Proposition 4.28: If a singleton {x} is a μ�βD set of (X, τ), then μ�βker({x}) ≠ X. 
 
Proof: Since {x} is a μ�βD set of (X, τ), then there exist two subsets 𝑈1, 𝑈2 ∈ μ�βO(X,τ ) such that {x} = U1 \ U2, {x} ⊆ U1 
and U1 ≠ X. Thus, we have that μ�βker({x}) ⊆ U1 ≠ X and so μ�βker({x}) ≠ X. 
 
5. 𝛍�𝛃 Rk Space (k = 0, 1)  
 
In this section, new classes of topological spaces called μ�β R0 and μ�β R1spaces are introduced.  
 
Definition 5.1: A topological space (X, τ) is said to be μ�β R0 if U is a μ�β open set and x ∈ U then μ�βCl({x}) ⊆ U.  
 
Theorem 5.2: For a topological space (X, τ) the following properties are equivalent:  

1. (X, τ) is μ�β R0.  
2. For any F ∈ μ�βC(X), x ∉ F implies F ⊆ U and x ∉ U for some U ∈ μ�βO(X).  
3. For any F ∈ μ�βC(X), x ∉ F implies F ∩ μ�βCl({x}) = ∅.  
4. For any distinct points x and y of X, either μ�βCl({x}) = μ�βCl({y}) or μ�βCl({x}) ∩ μ�βCl({y})= ∅.  
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Proof: 
(1) ⇒ (2): Let F ∈ μ�βC(X) and x ∉ F. Then by (1), μ�βCl({x}) ⊆ X \ F. Set U = X \ μ�βCl({x}), then U is a μ�β open set 
such that F ⊆ U and x ∉ U.  
 
(2) ⇒ (3): Let F ∈ μ�βC(X) and x ∉ F. There exists U ∈ μ�βO(X) such that F ⊆ U and x ∉ U. Since U ∈ μ�βO(X),           
U ∩ μ�βCl({x}) = ∅ and F ∩ μ�βCl({x}) = ∅.  
 
(3) ⇒ (4): Suppose that μ�βCl({x}) ≠ μ�βCl({y}) for distinct points x, y ∈ X. There exists z ∈ μ�βCl({x}) such that           
z ∉ μ�βCl({y}) (or z ∈ μ�βCl({y}) such that z ∉ rg*bCl({x})). There exists V ∈ μ�βO(X) such that y ≠ V and z ∈ V; 
hence x ∈ V. Therefore, we have x ∉ μ�βCl({y}). By (3), we obtain μ�βCl({x}) ∩ μ�βCl({y}) = ∅.  
 
(4) ⇒ (1): let V ∈ μ�βO(X) and x ∈ V. For each y ∉ V, x ≠ y and x ∉ μ�βCl({y}). This shows that μ�βCl({x}) ≠ μ�βCl({y}). 
By (4), μ�βCl({x}) ∩ μ�βCl({y}) = ∅ for each y ∈ X\V and hence μ�βCl({x}) ∩ (⋃ μ�βCl(y)𝑦∈𝑋\𝑉 ) = ∅. On other hand, 
since V ∈ μ�βO(X) and y ∈ X \ V, we have μ�βCl({y}) ⊆ X \ V and hence X \ V =. ⋃ μ�βCl(y).  𝑦∈𝑋\𝑉 Therefore, we 
obtain (X \ V) ∩ μ�βCl({x}) = ∅ and μ�βCl({x}) ⊆ V . This shows that (X, τ) is a μ�β R0 space.  
 
Theorem 5.3: If a topological space (X, τ) is μ�β T0 and a μ�β R0 space then it is μ�β T1.  
 
Proof: Let x and y be any distinct points of X. Since X is μ�βT0, there exists a μ�β open set U such that x ∈ U and y ∉ U. 
As x ∈ U implies that μ�βCl({x}) ⊆ U. Since y ∉ U, so y ∉ μ�βCl({x}). Hence y ∈ V = X \ μ�βCl({x}) and it is clear that 
x ∉ V. Hence it follows that there exist μ�β open sets U and V containing x and y respectively, such that y ∉ U and        
x ∉ V. This implies that X is μ�β T1.  
 
Theorem 5.4: For a topological space (X, τ) the following properties are equivalent:  

1. (X, τ) is μ�β R0.  
2. x ∈ μ�βCl({y}) if and only if y ∈ μ�βCl({x}), for any points x and y in X.  

 
Proof:  
(1) ⇒ (2): Assume that X is μ�β R0. Let x ∈ μ�βCl({y}) and V be any μ�β open set such that y ∈ V. Now by hypothesis,     
x ∈ V. Therefore, every μ�β open set which contain y contains x. Hence y ∈ μ�βCl({x}).  
 
(2) ⇒ (1): Let U be a μ�β open set and x ∈ U. If y ∉ U, then x ∉ μ�βCl({y}) and hence y ∉ μ�β Cl({x}). This implies that 
μ�βCl({x}) ⊆ U. Hence (X, τ) is μ�β R0. From Definition 4.18 and theorem 5.4, the notions of μ�β symmetric and μ�β R0 
are equivalent. 
 
Theorem 5.5: The following statements are equivalent for any points x and y in a topological space (X, τ):  

1. μ�βker({x}) ≠ μ�βker({y}).  
2. μ�βCl({x}) ≠ μ�βCl({y}).  

 
Proof: 
(1) ⇒ (2): Suppose that μ�βker({x}) ≠ μ�βker({y}), then there exists a point z in X such that z ∈ μ�βker({x}) and             
z ∉  μ�βker({y}). From z ∈  μ�βker({x}) it follows that {x}∩  μ�βCl({z}) ≠ ∅  which implies x ∈  μ�βCl({z}). By                  
z ∉ μ�βker({y}), we have {y}∩ μ�βCl({z}) = ∅. Since x ∈ μ�βCl({z}), μ�βCl({x}) ⊆ μ�βCl({z}) and {y}∩ μ�βCl({x}) = ∅. 
Therefore, it follows that μ�βCl({x}) ≠ μ�βCl({y}). Now μ�βker({x}) ≠ μ�βker({y}) implies that μ�βCl({x}) ≠  μ�βCl({y}).  
 
(2)  ⇒ (1): Suppose that μ�βCl({x}) ≠  μ�βCl({y}). Then there exists a point z in X such that z ∈ μ�βCl({x}) and               
z ∉ μ�βCl({y}). Then, there exists a μ�β open set containing z and therefore x but not y, namely, y ∉ μ�βker({x}) and thus 
μ�βker({x}) ≠ μ�βker({y}).  
 
Theorem 5.6: Let (X,τ ) be a topological space. Then ∩{μ�βCl({x}) : x ∈ X} = ∅ if and only if μ�βker({x}) ≠ X for 
every x ∈ X.  
 
Proof: 
Necessity: Suppose that ∩{μ�βCl({x}) : x ∈ X} = ∅. Assume that there is a point y in X such that μ�βker({y}) = X. Let x 
be any point of X. Then x ∈ V for every μ�β open set V containing y and hence y ∈ μ�βCl({x}) for any x ∈ X. This 
implies that y ∈ ∩{μ�βCl({x}) : x ∈ X}. But this is a contradiction.  
 
Sufficiency: Assume that μ�βker({x}) ≠ X for every x ∈ X. If there exists a point y in X such that y ∈∩{μ�βCl({x}) :       
x ∈ X}, then every μ�β open set containing y must contain every point of X. This implies that the space X is the unique 
μ�β open set containing y. Hence μ�βker({y}) = X which is a contradiction. Therefore, ∩{μ�βCl({x}) : x ∈ X} = ∅.  
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Theorem 5.7: A topological space (X,τ ) is μ�β R0 if and only if for every x and y in X,  μ�βCl({x}) ≠  μ�βCl({y}) 
implies μ�βCl({x}) ∩ μ�βCl({y}) = ∅. 
  
Proof: 
Necessity: Suppose that (X, τ) is μ�β  R0 and x, y ∈  X such that μ�βCl({x}) ≠  μ�βCl({y}). Then, there exists                      
z ∈ μ�βCl({x}) such that z ∉ μ�βCl({y}) (or z ∈ μ�β Cl({y}) such that z ∉ rg*bCl({x})). There exists V ∈ μ�βO(X) such 
that y ∉ V and z ∈ V , hence x ∈ V . Therefore, we have x ∉ μ�βCl({y}). Thus x ∈ [X \ μ�βCl({y})] ∈ μ�βO(X), which 
implies μ�βCl({x}) ⊆ [X \ μ�βCl({y})] and μ�βCl({x}) ∩  μ�βCl({y}) = ∅. 
 
Sufficiency: Let V ∈ μ�βO(X) and let x ∈ V. We still show that μ�βCl({x}) ⊆ V. Let y ∉ V, that is y ∈ X \ V. Then        
x ≠ y and x ∉ μ�βCl({y}). This shows that μ�βCl({x}) ≠ μ�βCl({y}). By assumption, μ�βCl({x}) ∩ μ�βCl({y}) = ∅. Hence   
y ∉ μ�βCl({x}) and therefore μ�βCl({x}) ⊆ V .  
 
Theorem 5.8: A topological space (X, τ) is μ�β R0 if and only if for any points x and y in X, μ�βker({x}) ≠ μ�βker({y}) 
implies μ�βker({x}) ∩ μ�βker({y}) = ∅.  
 
Proof: Suppose that (X,τ ) is a μ�β R0 space. Thus by Theorem 3.5, for any points x and y in X if μ�βker({x}) ≠ μ�βker({y}) 
then μ�βCl({x}) ≠ μ�βCl({y}). Now we prove that μ�βker({x}) ∩ μ�βker({y}) = ∅. Assume that z ∈ μ�βker({x}) ∩ μ�βker({y}). 
By z ∈ μ�βker({x}) and theorem 4.24, it follows that x ∈ μ�βCl({z}). Since x ∈ rg*bCl({x}), by theorem 5.2, μ�βCl({x}) = 
μ�βCl({z}). Similarly, we have μ�βCl({y}) = μ�βCl({z}) = μ�βCl({x}). This is a contradiction. Therefore, we have 
μ�βker({x}) ∩  μ�βker({y}) = ∅.  
 
Conversely, let (X,τ ) be a topological space such that for any points x and y in X, μ�βker({x}) ≠ μ�βker({y}) implies 
μ�βker({x}) ∩ μ�β ker({y}) = ∅. If μ�βCl({x}) ≠ μ�βCl({y}), then by Proposition 3.4, μ�βker({x}) ≠ μ�βker({y}). Hence, 
μ�βker({x}) ∩  μ�βker({y}) = ∅  which implies μ�βCl({x}) ∩  μ�βCl({y}) = ∅ . Because z ∈  μ�βCl({x}) implies that               
x ∈ μ�βker({z}) and therefore μ�βker({x}) ∩ μ�β ker({z}) ≠ ∅. By hypothesis, we have μ�βker({x}) = μ�βker({z}). Then     
z ∈ μ�βCl({x}) ∩ μ�βCl({y}) implies that μ�βker({x}) = μ�βker({z}) = μ�βker({y}). This is a contradiction. Therefore, 
μ�βCl({x}) ∩ μ�βCl({y}) = ∅ and by theorem 5.2, (X, τ) is a μ�β R0 space 
 
Theorem 5.9: For a topological space (X,τ ) the following properties are equivalent:  

1. (X, τ) is a μ�β R0 space.  
2. For any non-empty set A and G ∈ μ�βO(X) such that A ∩ G ≠ ∅, there exists F ∈ μ�βC(X) such that A ∩ F ≠ ∅ 

and F ⊆ G.  
3. For any G ∈ μ�βO(X), we have G = ∪{F ∈ μ�βC(X): F ⊆ G}.  
4. For any F ∈ μ�βC(X), we have F = ∩{G ∈ μ�βO(X): F ⊆ G}.  
5. For every x ∈ X, μ�βCl({x}) ⊆ μ�βker({x}).  

 
Proof: 
(1) ⇒ (2): Let A be a non-empty subset of X and G ∈ μ�βO(X) such that A ∩ G ≠ ∅. There exists x ∈ A ∩ G. Since         
x ∈ G ∈ μ�βO(X), μ�βCl({x}) ⊆ G. Set F = μ�βCl({x}), then F ∈  μ�βC(X), F ⊆ G and A ∩ F ≠ ∅.  
 
(2) ⇒ (3): Let G ∈ μ�βO(X), then G ⊇ ∪{F ∈  μ�βC(X): F ⊆ G}. Let x be any point of G. There exists F ∈ μ�βC(X) such 
that x ∈ F and F ⊆ G. Therefore, we have x ∈ F ⊆ ∪{F ∈ μ�βC(X): F ⊆ G} and hence G = ∪{F ∈ μ�βC(X): F ⊆ G}.  
 
(3) ⇒ (4): Obvious.  
 
(4) ⇒ (5): Let x be any point of X and y ∉ μ�βker({x}). There exists V ∈ μ�βO(X) such that x ∈ V and y ∉ V, hence 
μ�βCl({y}) ∩ V = ∅. By (4), (∩{G ∈ μ�βO(X): μ�βCl({y}) ⊆ G}) ∩ V = ∅ and there exists G ∈ μ�βO(X) such that x ∉ G 
and μ�βCl({y}) ⊆ G. Therefore μ�βCl({x}) ∩ G = ∅ and y ∉ μ�βCl({x}). Consequently, we obtain μ�βCl({x}) ⊆ μ�βker({x}). 
 
(5) ⇒ (1): Let G ∈ μ�βO(X) and x ∈ G. Let y ∈ μ�βker({x}), then x ∈ μ�βCl({y}) and y ∈ G. This implies that μ�βker({x}) ⊆ G. 
Therefore, we obtain x ∈ μ�β Cl({x}) ⊆ μ�β ker({x}) ⊆ G. This shows that (X, τ) is a μ�β R0 space.  
 
Corollary 5.10: For a topological space (X, τ) the following properties are equivalent:  

1. (X, τ) is a μ�β R0 space.  
2. μ�βCl({x}) = μ�βker({x}) for all x ∈ X.  

 
Proof: 
(1) ⇒ (2): Suppose that (X,τ ) is a μ�β R0 space. By theorem 5.9, μ�βCl({x}) ⊆ μ�βker({x}) for each x ∈ X. Let y ∈ μ�βker({x}), 
then x ∈ μ�βCl({y}) and μ�βCl({x}) = μ�βCl({y}). Therefore, y ∈ μ�βCl({x}) and hence μ�βker({x}) ⊆ μ�βCl({x}). This shows 
that μ�βCl({x}) = μ�βker({x}).  
 
(2) ⇒ (1): Follows from theorem 5.9.  
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Theorem 5.11: For a topological space (X, τ) the following properties are equivalent:  

1. (X, τ) is a μ�β R0 space.  
2. If F is μ�β closed, then F = μ�βker(F).  
3. If F is μ�β closed and x ∈ F, then μ�βker({x}) ⊆ F.  
4. If x ∈ X, then μ�βker({x}) ⊆ μ�βCl({x}).  

 
Proof:  
(1) ⇒ (2): Let F be a μ�β closed and x ∉ F. Thus (X \ F) is a μ�β open set containing x. Since (X, τ) is μ�β R0, μ�βCl({x}) 
⊆ (X \ F). Thus μ�βCl({x}) ∩ F = ∅ and by theorem 2.33, x ∉ μ�βker(F). Therefore μ�βker(F) = F.  
 
(2) ⇒  (3): In general, A ⊆ B implies μ�βker(A) ⊆ μ�βker(B). Therefore, it follows from (2), that μ�βker({x}) ⊆ μ�βker(F) 
= F.  
 
(3) ⇒  (4): Since x ∈ μ�βCl({x}) and μ�βCl({x}) is μ�β closed, by (3), μ�βker({x}) ⊆ μ�βCl({x}).  
 
(4) ⇒ (1): We show the implication by using theorem 5.4. Let x ∈ μ�βCl({y}). Then by theorem 4.25, y ∈ μ�βker({x}). 
Since x ∈  μ�βCl({x}) and μ�βCl({x}) is μ�β closed, by (4), we obtain y ∈  μ�βker({x}) ⊆  μ�βCl({x}). Therefore                    
x ∈ μ�βCl({y}) implies y ∈ μ�βCl({x}). The converse is obvious and (X,τ ) is μ�β R0.  
 
Definition 5.12: A topological space (X,τ ) is said to be μ�β R1 if for x, y in X with μ�βCl({x}) ≠ μ�βCl({y}), there exist 
disjoint μ�β open sets U and V such that μ�βCl({x}) ⊆ U and μ�βCl({y}) ⊆ V 
 
Theorem 5.13: A topological space (X,τ ) is μ�β R1 if it is μ�β T2.  
 
Proof: Let x and y be any points of X such that μ�βCl({x}) ≠ μ�βCl({y}). By theorem 4.8 (1), every μ�β T2 space is 
μ�β T1. Therefore, by theorem 4.5, μ�βCl({x}) = {x}, μ�βCl({y}) = {y} and hence {x} ≠ {y}. Since (X, τ) is μ�β T2, there 
exist disjoint μ�β open sets U and V such that μ�βCl({x}) = {x} ⊆ U and μ�βCl({y}) = {y} ⊆ V . This shows that (X, τ) is 
μ�β R1.  
 
Theorem 5.14: If a topological space (X, τ) is μ�β symmetric, then the following are equivalent:  

1. (X, τ) is μ�β T2.  
2. (X, τ) is μ�β R1 and μ�β T1.  
3. (X, τ) is μ�β R1 and μ�β T0.  

 
Proof: Straightforward.  
 
Theorem 5.15: For a topological space (X, τ) the following statements are equivalent:  

1. (X, τ) is μ�β R1.  
2. If x, y ∈ X such that μ�βCl({x}) ≠ μ�βCl({y}), then there exist μ�β closed sets F1 and F2 such that x ∈ F1, y ∉ F1, 

y ∈ F2, x ∉ F2 and X = F1 ∪ F2.  
 
Proof: Obvious.  
 
Theorem 5.16: If (X, τ) is μ�β R1, then (X, τ) is μ�β R0.  
 
Proof: Let U be μ�β open such that x ∈ U.  If y ∉ U, since x ∉ μ�βCl({y}), we have μ�βCl({x}) ≠ μ�βCl({y}). So, there 
exists a μ�β open set V such that μ�βCl({y}) ⊆ V and x ∉ V , which implies y ∉ μ�βCl({x}). Hence μ�βCl({x}) ⊆ U. 
Therefore, (X,τ ) is μ�β R0. 
 
Corollary 5.17: A topological space (X, τ) is μ�β R1 if and only if for x, y ∈ X, μ�βker({x}) ≠  μ�βker({y}), there exist 
disjoint μ�β open sets U and V such that μ�βCl({x}) ⊆ U and μ�βCl({y}) ⊆ V .  
 
Proof: Follows from Theorem 5.5.  
 
Theorem 5.18: A topological space (X, τ) is μ�β R1 if and only if x ∈ X \ μ�βCl({y}) implies that x and y have disjoint 
μ�β open neighbourhoods.  
 
Proof:  
Necessity: Let x ∈ X \ μ�βCl({y}). Then μ�βCl({x}) ≠ μ�βCl({y}), so, x and y have disjoint μ�β open neighbourhoods. 
 
Sufficiency: First, we show that (X, τ) is μ�β R0. Let U be a μ�β open set and x ∈ U. Suppose that y ∉ U. Then, 
μ�βCl({y}) ∩ U = ∅ and x ∉ μ�βCl({y}). There exist μ�β open sets Ux and Uy such that x ∈ Ux, y ∈ Uy and Ux∩Uy = ∅. 
Hence, μ�βCl({x}) ⊆ μ�βCl(Ux) and μ�βCl({x}) ∩ Uy ⊆ μ�βCl(Ux) ∩ Uy = ∅. Therefore, y ∉ μ�βCl({x}). Consequently,  
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μ�βCl({x}) ⊆ U and (X, τ) is μ�β R0. Next, we show that (X, τ) is μ�β R1. Suppose that μ�βCl({x}) ≠ μ�βCl({y}). Then, we 
can assume that there exists z ∈ μ�βCl({x}) such that z ∉ μ�βCl({y}). There exist μ�β open sets Vz and Vy such that            
z ∈ Vz, y ∈ Vy and Vz ∩ Vy = ∅. Since z ∈ μ�βCl({x}), x ∈ Vz. Since (X, τ) is μ�β R0, we obtain μ�βCl({x}) ⊆ Vz, 
μ�βCl({y}) ⊆  Vy and Vz ∩ Vy  = ∅. This shows that (X, τ) is μ�β R1.  
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