(ccalMA Available online through www.ijma.info ISSN 2229-5046

INTERSECTION GRAPHS ON MINIMAL MAJORITY DOMINATING SETS OF A GRAPH

S. VEERAMANIKANDAN*1, J. JOSELINE MANORA ${ }^{2}$
${ }^{1}$ Department of Mathematics, AMET University, Chennai, Tamil Nadu - 603112, India.
${ }^{2}$ Department of Mathematics, T.B.M.L College, Porayar, Tamil Nadu - 609203, India.

(Received On: 25-10-17; Revised \& Accepted On: 16-11-17)

Abstract

Let $G=(V, E)$ be a graph. The Minimal Majority Dominating Graph MMD(G) of a graph G is the intersection graph defined on the family of all minimal majority dominating sets of vertices in G. The Common Minimal Majority Dominating Graph $\operatorname{CMMD}(G)$ of a graph G is the graph having same vertex set as G with two vertices adjacent in $C M M D(G)$ if and only if there exists a minimal majority dominating set in G containing them.

1. INTRODUCTION

The graphs considered here are finite, undirected without loops or multiple edges. Any undefined term in this paper, may be found in Harary [1]. Suppose $G=(V, E)$ be a graph with p vertices and q edges. Let S be a finite set and let $\mathrm{F}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}\right\}$ be a partition of S . Then the intersection graph $\Omega(F)$ of F is the graph whose vertices are the subsets in F and in which two vertices S_{i} and S_{j} are adjacent if and only if $\mathrm{S}_{\mathrm{i}} \bigcap \mathrm{S}_{\mathrm{j}} \neq \phi$. Kulli and Janakiram [3] introduced a new class of intersection graphs in field of domination theory. The minimal dominating graph $\mathrm{MD}(\mathrm{G})$ of a graph G is the intersection graph defined on the family of all minimal dominating sets of vertices in G . With the aim to extend this concept to majority dominating sets in a graph G, the Minimal Majority Dominating Graph MMD(G) is introduced in this article.

2. DEFINITION AND EXAMPLE

Definition 2.1: The Minimal Majority Dominating Graph $\operatorname{MMD}(\mathrm{G})$ of a graph G is the intersection graph defined on the family of all minimal majority dominating sets of vertices in G. Each vertex of a $\operatorname{MMD}(\mathrm{G})$ is a minimal majority dominating set of G and two vertices of $\operatorname{MMD}(\mathrm{G})$ are adjacent if and only if there is a common element between the two minimal majority dominating sets of G.

Example 2.2: A graph G and its $\operatorname{MMD}(\mathrm{G})$ are shown below.

[^0]
3. MAIN RESULTS ON MMD(G)

Result 3.1:

1. For $\mathrm{G}=\mathrm{K}_{\mathrm{p}}, \mathrm{p} \geq 3$ and $\mathrm{G}=\mathrm{K}_{\mathrm{m}, \mathrm{n}}, \mathrm{m}=\mathrm{n}, \operatorname{MMD}(\mathrm{G})=\overline{K_{p}}$
2. If $G=W_{p}, p \geq 5, \operatorname{MMD}(G)$ is disconnected with atleast an isolate.
3. Suppose $\mathrm{G}=\mathrm{K}_{1, \mathrm{p}-1}, \mathrm{p} \geq 2$. $\mathrm{MMD}(\mathrm{G})$ is totally disconnected if $\mathrm{p} \leq 4$ and Disconnected with an isolate if $\mathrm{p}>4$.
4. Let $\mathrm{G}=\mathrm{D}_{\mathrm{r}, \mathrm{s}}$. Then $\operatorname{MMD}(\mathrm{G})$ is disconnected with isolates.
5. For $\mathrm{G}=\mathrm{P}_{\mathrm{p}}, \mathrm{p}>1 . \operatorname{MMD}(\mathrm{G})$ is totally disconnected if $\mathrm{p} \leq 6$ and connected if $\mathrm{p}>6$.

Theorem 3.2: For any graph G with at least two vertices, $\operatorname{MMD}(G)$ is connected if and only if $\Delta(G)<\left\lceil\frac{p}{2}\right\rceil-1$.
Proof: Suppose MMD (G) is connected. Assume $\Delta(G) \geq\left\lceil\frac{p}{2}\right\rceil-1$. Let u be a vertex of degree $\left\lceil\frac{p}{2}\right\rceil-1$. Then $\{\mathrm{u}\}$ is a minimal majority dominating set of G and $V-\{u\}$ also contains a minimal majority dominating set of G. This shows that $\operatorname{MMD}(\mathrm{G})$ has at least two components, a contradiction. Hence $\Delta(G)<\left\lceil\frac{p}{2}\right\rceil-1$.
Conversely, Let $\Delta(G)<\left\lceil\frac{p}{2}\right\rceil-1$. Then $\gamma_{M}(G) \geq 2$. Assume that D_{1} and D_{2} be any two disjoint minimal majority dominating sets of G. Then every minimal majority dominating set has at least two vertices of G. Suppose there exists two vertices $u \in D_{1}$ and $v \in D_{2}$ such that u and v are not adjacent. Then there exists a maximal independent set D_{3} containing u and v. Since D_{3} is also a minimal majority dominating set, D_{1} and D_{2} are connected through D_{3}. Thus $\operatorname{MMD}(G)$ is connected. Suppose some vertex in D_{1} is adjacent to some vertex in D_{2}. Let $u \in D_{1}$ and $v \in D_{2}$ such that u and v are adjacent. Then there exists a vertex $w \in D_{2}$ such that u and w are not adjacent. Then, there exists a maximal majority independent set D_{3} containing $\{\mathrm{u}, \mathrm{w}\}$. Since a maximal majority independent set is also a minimal majority dominating set, D_{1} and D_{2} are connected through the common vertices u and w. Thus $\operatorname{MMD}(G)$ is connected. Suppose every vertex in D_{1} is adjacent to every vertex in D_{2}. Since $\gamma_{M}(G) \geq 2$, Let $D_{1}=\left\{u_{1}, u_{2}, \ldots\right\}$ and $D_{2}=\left\{v_{1}, v_{2}, \ldots\right\}$ be such that every vertex in D_{1} is adjacent to every vertex in D_{2}. Then there exists $w \in V-\left(D_{1} \cup D_{2}\right)$ such that w is not adjacent to the vertices of D_{1} and D_{2}. Choose two maximal majority independent sets D_{3} and D_{4} containing $\{u, w\}$ and $\{\mathrm{v}, \mathrm{w}\}$ respectively. Then D_{1} and D_{2} are connected through the common vertex w . Thus the resulting graph MMD(G) is connected. Hence the proof.

Theorem 3.3: In a graph G, Every vertex is a majority dominating vertex if and only if $\operatorname{MMD}(\mathrm{G})$ is totally disconnected.

Proof: If every vertex v in a graph G is a majority dominating vertex then each vertex v is a minimal majority dominating set of G. Let F be the family of all minimal majority dominating sets of G. Then $|F|=\left|p_{M}\right|$. Since intersection of all vertices of $\operatorname{MMD}(\mathrm{G})$ is empty, there exists no edge among vertices of $\operatorname{MMD}(\mathrm{G})$. This implies that $\operatorname{MMD}(\mathrm{G})$ is totally disconnected. Conversely, Let $\operatorname{MMD}(\mathrm{G})$ be a totally disconnected graph. Therefore in MMD(G) each vertex is a minimal majority dominating set of G and $d(v) \geq\left\lceil\frac{p}{2}\right\rceil-1 \forall \mathrm{v} \in \operatorname{MMD}(\mathrm{G})$.

Theorem 3.4: For any graph $G, \operatorname{MMD}(G)$ is disconnected with an isolate if and only if G has a majority dominating vertex.

Proof: Suppose G has a majority dominating vertex v. Then $D=\{v\}$ is a minimal majority dominating set and there exists no minimal majority dominating set of G containing v . This shows that there exists no edge between D and any vertex of $\operatorname{MMD}(\mathrm{G})$. Therefore $\operatorname{MMD}(\mathrm{G})$ is disconnected with an isolate. Conversely, Suppose G has no majority dominating vertex v. Then $\gamma_{M}(G) \geq 2$ and By theorem [3-.1], $\operatorname{MMD}(G)$ is connected which is a contradiction. Therefore G has atleast one majority dominating vertex.

4. COMMON MINIMAL MAJORITY DOMINATING GRAPH OF A GRAPH

Definition 4.1: The Common Minimal Majority Dominating Graph CMMD(G) of a graph G is the graph having the same vertex set as G with two vertices adjacent in $\operatorname{CMMD}(\mathrm{G})$ if and only if there exists a minimal majority dominating set in G containing them.

S. Veeramanikandan* ${ }^{1}$, J. Joseline Manora ${ }^{2}$ /

Example 4.2: A graph G and its $\mathrm{CMMD}(\mathrm{G})$ are given below.
G:

CMMD(G):

Result 4.3:

1. For $G=K_{p}$, and $G=K_{m, n}, m=n, \operatorname{CMMD}(G)$ is totally disconnected.
2. If $\mathrm{G}=\mathrm{W}_{\mathrm{p}}, \mathrm{p} \geq 5, \mathrm{CMMD}(\mathrm{G})$ is disconnected with atleast an isolate.
3. Suppose $\mathrm{G}=\mathrm{K}_{1, \mathrm{p}-1}, \mathrm{p} \geq 2$. Then $\operatorname{CMMD}(\mathrm{G})=\mathrm{K}_{\mathrm{p}-1} \bigcup \mathrm{~K}_{1}$.
4. Let $\mathrm{G}=\mathrm{D}_{\mathrm{r}, \mathrm{s}}$. Then $\operatorname{CMMD}(\mathrm{G})=\mathrm{K}_{\mathrm{p}-2} \mathrm{U} 2 \mathrm{~K}_{1}$.

Theorem 4.4: For any graph G with at least two vertices $\operatorname{CMMD}(G)$ is connected if and only if there is no majority dominating vertex in G.

Proof: Let CMMD(G) be connected. Suppose there exists atleast one majority dominating vertex vin G . Hence v is an isolate in $\mathrm{CMMD}(\mathrm{G})$, a contradiction. Therefore there is no majority dominating vertex. . Conversely suppose there is no majority dominating vertex. Then every minimal majority dominating set of G contain atleast two vertices. Therefore there exists atleast one path between every pair of vertices of CMMD(G).

Proposition 4.5: If $\gamma_{M}(G)=1$ then $\operatorname{CMMD}(G)$ is disconnected with isolate. Proof: Suppose $\gamma_{M}(G)=1$. Then $\mathrm{D}=\{\mathrm{v}\}$ be a majority dominating set. Since $|\mathrm{D}|=1$, there exists no vertex in $\operatorname{CMMD}(\mathrm{G})$ adjacent to v . Therefore CMMD(G) is disconnected with isolate.

Proposition 4.6: If every vertex of G is majority dominating vertex then $\mathrm{CMMD}(\mathrm{G})$ is totally disconnected.
Proof: Suppose every vertex of G is majority dominating vertex and CMMD (G) is not totally disconnected. Then there exists a minimal majority dominating set containing two vertices which are a majority dominating set of G , a contradiction. Therefore CMMD(G) is totally disconnected.

REFERENCES

1. Harary. F, Graph Theory, Addison-Wesley, Reading Mass, 1969.
2. Haynes.T.W, Hedetniemi.S.T, Petet J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
3. Kulli.V.R, Janakiram.B, The Minimal Dominating Graph, Graph Theory Notes of New York, XXXVIII, 12-15, 1995.
4. Kulli.V.R, Janaikiram.B, The Common Minimal Dominating Graph, Indian J.pure appl.Math., 27(2): 193-196, February 1996.
5. Swaminathan.V, Joseline Manora.J, Majority Dominating Sets in Graphs, Jamal Academic Research Journal, vol.3, No.2, 75-82, 2006.
[^1]
[^0]: Corresponding Author: S. Veeramanikandan*1,
 ${ }^{1}$ Department of Mathematics, AMET University, Chennai, Tamil Nadu - 603112, India.

[^1]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

