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ABSTRACT 

In this paper, the notion of δgβ-closed sets in topological spaces is applied to study new class of functions called 
contra δgβ -continuous and almost contra δgβ-continuous functions as a new generalization of contra continuity and 
obtain their characterizations and properties.  
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1. INTRODUCTION 
 
In 1996, J. Dontchev [8] introduced the concept of contra continuous functions. Later, M. Caldas and S. Jafari [9] 
introduced and studied contra β-continuous functions and K. Amutha et al. [4] introduced and obtained the properties 
of contra gβ-continuous functions. 
 
2. PRELIMINARIES 
 
The following definitions, which are useful in the sequel are recalled. 
 
Definition 2.1: A subset A of a topological space X is called 

(i) β-closed [1] if int(cl(int(A)))⊆A. 
(ii) b-closed [2] if cl(int(A))∩int(cl(A))⊆A. 
(iii) regular-closed [18] if  A=cl(int(A)). 
(iv) α-closed [13] if cl(int(cl(A)))⊆A. 
(v) semi-closed [ 11] if int(cl(A))⊆A. 
(vi) δ-closed[20] if A=clδ(A) where clδ(A)={x∈X:int(cl(U))∩A≠Φ,U∈τ  and x∈U}. 
(vii) δgβ-closed [7]  if βcl(A)⊆G whenever A⊆G  and G is δ-open in X. 

 
The complements of the above mentioned closed sets are their respective open sets. 
 
The β-closure of a subset A of X is the intersection of all β-closed sets containing A and is denoted by βcl(A) .  
 
Definition 2.2: A function f: X→Y from a topological space X into a topological space Y is called contra continuous 
[8] (resp, contra β-continuous [9], contra gβ-continuous[4], contra gδs-continuous[6], contra δgb-continuous [5] and 
δgβ-continuous[7])if f-1(G) is closed (resp, β-closed, gβ-closed, gδs-closed, δgb-closed  and  δgβ -open) in X for every 
open set G of Y. 
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Definition 2.3[7] A topological space X is said to be 

(1) Tδgβ -space if every δgβ-closed subset of X is closed. 
(2) δgβT1/2-space if every δgβ-closed subset of X is β-closed. 

 
3. CONTRA δgβ-CONTINUOUS FUNCTIONS 
 
Definition 3.1: A function f: X→Y is called contra δgβ-continuous if the inverse image of open set in Y is δgβ-closed 
in X. 
 
Theorem 3.2: A function f: X→Y is contra δgβ-continuous if and only if f-1(G)  is δgβ-open in X for every closed set 
G in Y. 
 
Theorem 3.3:  

(i) Every contra β-continuous function is contra δgβ-continuous function. 
(ii) Every contra gβ-continuous function is contra δgβ-continuous function. 
(iii) Every contra gδs-continuous function is contra δgβ-continuous function. 
(iv) Every contra δgb-continuous function is contra δgβ-continuous function. 

 
Proof: Follows from definitions. However, converse does not hold. 
 
Example 3.4: Let X={a, b, c, d} and Y={a, b, c}. Let τ = {X, Φ, {a}, {b}, {a, b}, {a, c}, {a, b, c}} and  
σ ={X, Φ,{a},{b},{a, b}} be topologies on X and Y respectively. Let f : X→Y be a function defined by f(a) = a,        
f(b) = c and f(c) = d, f(d) = b. Then f is contra δgβ-continuous but not contra gβ-continuous. 
 
Example 3.5: Let X = {a, b, c, d, e} and Y={a, b, c, d}. Let τ = {X, Φ, {a, b}, {c, d}, {a, b, c, d}, {a, b, c}} and               
σ ={X, Φ,{a},{b},{a, b},{a, b, c}} be topologies on X and Y respectively. Let f: X→Y be a function defined by        
f(a) = a = f(d),f(b) = b = f(e) and f(c) = c. Then f is contra δgβ-continuous but not contra gδs-continuous. 
 
Example 3.6: Let X=Y={a, b, c}. Let τ = {X, Φ, {a}, {b},{a, b}} and σ = {X, Φ,{a}} be topologies on X and Y 
respectively. Let f: X→Y  be a function defined by   f(a) = a = f(b) and f(c) = c. Then f is contra δgβ-continuous but not 
contra δgb-continuous function. 
 
Theorem 3.7: If f: X→Y is contra δgβ-continuous with X as Tδgβ-space, then f is contra continuous. 
 
Proof: Suppose X is Tδgβ -space and f is contra δgβ-continuous. Let V be an open set in Y, by hypothesis f-1(V) is   
δgβ-closed in X and hence f-1(V) is closed in X since X is Tδgβ-space. Therefore, f is contra continuous. 
 
Converse is obvious. 
 
Theorem 3.8 If f: X→Y is contra δgβ-continuous with X as δgβT1/2-space then f is contra β-continuous. 
 
Proof: Suppose X is δgβT1/2-space and f is contra δgβ-continuous. Let G be an open set in Y by hypothesis f-1(G) is 
δgβ-closed in X and hence f-1(G) is β-closed in X because X is δgβT1/2-space. Therefore, f is contra β-continuous. 
 
Converse is obvious. 
 
Theorem 3.9: If f: X→Y   is contra δgβ-continuous with X is semi-regular space, then f is contra gβ-continuous. 
 
Proof: Follows from the fact that every open set is δ-open in semi-regular space. 
 
Definition 3.10[10]: A space X is submaximal and extremally disconnected if every β-open set is open. 
 
Theorem 3.11: If f: X→Y is contra δgβ-continuous with X is submaximal and extremely disconnected space, then f is 
contra gδs-continuous. 
 
Theorem 3.12: If f: X→Y is contra δgβ-continuous with X is submaximal and extremely disconnected space, then f is 
contra δgb-continuous. 
 
Definition 3.13: A space X is called locally δgβ-indiscrete if every δgβ-open set is closed in X. 
 
Theorem 3.14: If f: X→Y is a contra δgβ-continuous and X is locally δgβ-indiscrete space, then f is continuous. 
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Proof: Let G be a closed set in Y. Since f is contra δgβ-continuous and X is locally δgβ-indiscrete space, then f-1(G) is 
a closed set in X. Hence f is continuous.  
 
Definition 3.15[14]: A space X is called locally indiscrete if every open set is closed in X.  
 
Theorem 3.16: If f: X→Y is a contra δgβ-continuous preclosed surjection and X is Tδgβ-space then Y is locally 
indiscrete. 
 
Proof: Let V be an open set in Y. Since f is contra δgβ-continuous and X is Tδgβ-space then f-1(G) is closed in X. Since 
f is preclosed, then V is preclosed in Y. We have cl(V) = cl(int(V)) ⊆V and hence Y is indiscrete.  
 
Theorem 3.17:  If f is contra δgβ-continuous, then for each x∈X and each closed set F of Y containing f(x), there 
exists an δgβ-open set G in X containing x such that f(G)⊆F. 
 
Proof: Let F be a closed set in Y containing f (x) then x∈ f-1(F). By hypothesis, f-1(F) is δgβ-open set in X containing x. 
Let G = f-1(F), then f(G) = f(f-1(F)) ⊆ F. 
 
Theorem 3.18: Suppose that δgβC(X) is closed under arbitrary intersections. Then the following are equivalent for a 
function f: X→Y: 

(i) f is contra δgβ-continuous. 
(ii) For each x∈X and each closed set B of Y containing f(x), there exists an δgβ-open set A in X containing x 

such that f(A) ⊆ B. 
(iii) For each x∈X and each open set G of Y not containing f(x), there exists an δgβ-closed set H in X not 

containing x such that f-1(G)⊆H. 
 
Proof: 
(i) → (ii): Let B be a closed set in Y containing f (x), then x∈ f-1(B). By (i), f-1(B) is δgβ-open set in X containing x. 
Let A = f-1(F), then f (A) = f(f-1(B)) ⊆ B. 
 
(ii) → (i): Let F be a closed set in Y containing f (x), then x∈ f-1(F). From (ii), there exists δgβ-open set Gx in X 
containing x such that f(Gx)⊆F which implies Gx⊆f-1(F). Thus f-1(F)=∪{Gx:x∈f-1(F)}, which is δgβ -open. Hence f-1(F) 
is δgβ-open set in X. 
 
(ii) → (iii): Obvious. 
 
Theorem 3.19: If A⊆X is regular open, then it is β-closed. 
 
Theorem 3.20[7]: If A⊆X is both δ-open and δgβ-closed then it is β-closed. 
 
Theorem 3.21:  A⊆X is semi-open if and only if cl(int(A)) = cl(A). 
 
Lemma 3.22[12]:  For a subset A of a space X, the following are equivalent: 

(i) A is regular open. 
(ii) A is α-open and β-closed. 
(iii) A is open and semi-closed. 
(iv) A is open and β-closed. 
(v) A is pre-open and semi-closed. 

 
Lemma 3.23: For a subset A of a space X, the following are equivalent: 

(i) A is regular open. 
(ii) A is δ-open and semi-closed. 
(iii) A is δ-open and β-closed. 

 
Lemma 3.24[4]: For a subset A of a space X, the following are equivalent: 

(i) A is open and gβ-closed. 
(ii) A is regular open. 
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Definition 3.25[3]: A function f: X→Y said to be completely-continuous if f-1(G) is regular-open in X for every open 
set G of Y. 
 
Lemma 3.26: For a subset A of a space X, the following are equivalent: 

(i) A is regular open. 
(ii) A is open and gβ-closed. 
(iii) A is δ-open and β-closed. 
(iv) A is δ-open and gδs-closed. 
(v) A is δ-open and δgβ-closed. 

 
Proof: Follows from Lemma 3.22, Lemma 3.23 and Lemma 3.24. 
 
As a consequence of the above lemma 3.26, we have the following result: 
 
Theorem 3.27: For a function f: X→Y, the following statements are equivalent: 

(i) f is completely continuous. 
(ii) f is contra β-continuous and α-continuous. 
(iii) f is contra gβ-continuous and continuous. 
(iv) f is contra δgβ-continuous and super-continuous. 
(v) f is contra gδs-continuous and super-continuous 

 
Definition 3.28[19]: A set A⊆X is said to be Q-set if int(cl(A)) = cl(int(A)).  
 
Definition 3.29 [19]: A function f : X→Y   is Q-continuous if f-1(V) is Q-set in X for every open set V of Y. 
 
Theorem 3.30: For a subset A of a space X, the following are equivalent: 

(i) A is clopen. 
(ii) A is α-open, Q-set and β-closed. 
(iii) A is open, Q-set and gβ-closed. 
(iv) A is δ-open, Q-set and δgβ-closed. 

 
Theorem 3.31: The following statements are equivalent for a function f: X→Y: 

(i) f is perfectly continuous. 
(ii) f is δ-continuous, Q-continuous and contra δgβ-continuous. 
(iii) f is continuous, Q-continuous and contra β-continuous. 

 
Recall that for a function f: X→Y, the subset {(x, f(x)):x∈X}⊆XxY is called the graph of f and is denoted by G(f). 
 
Definition 3.32: The graph G(f) of a function f: X→Y   is said to be contra δgβ-closed if for each (x, y) ∈(XxY)-G(f), 
there exists U∈ δgβO (X, x) and V∈C (Y, y) such that (UxV)∩G(f)=Φ. 
 
Theorem 3.33: Let f: X→Y  be a function and g: X→XxY the graph function of f, defined by g(x) = (x, f(x)) for each 
x∈X. If g is contra δgβ-continuous, then f is contra δgβ-continuous. 
 
Proof: Let U be an open set in Y, then XxU is an open set in XxY. Since g is contra δgβ-continuous. It follows that      
f-1(U) = g-1(XxU) is δgβ-closed in X. Hence f is contra δgβ-continuous.  
 
Theorem 3.34: If A and B are δgβ-closed sets in submaximal and extremally disconnected space X, then A∪B is δgβ-
closed in X. 
 
Proof: Let A∪B⊆G where G is δ-open in X. Since A⊆G, B⊆G and A and B are δgβ-closed sets, then βcl(A)⊆G and 
βcl(B)⊆G. As X is submaximal and extremally disconnected, βcl(M)=cl(M) for any M⊆X.  
Therefore, βcl(A∪B) = βcl(A)∪βcl(B)⊆G and hence A∪B is δgβ-closed. 
 
Corollary 3.35: If A and B are δgβ-open sets in submaximal and extremally disconnected space X, then A∩B is      
δgβ-open in X. 
 
Theorem 3.36 [7]: Let A be a subset of a space X. Then x∈ δgβcl(A) if and only if G∩A≠ Φ for every δgβ-open set G 
containing x. 
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Theorem 3.37: Suppose that δGβO(X) is a topology on X. If f: X→Y   and g:X→Y are contra δgβ -continuous and Y 
is Urysohn, then K={x∈X: f(x)=g(x)}  δgβ-closed in X. 
 
Proof: Let x∈X-K. Then f(x)≠g(x). Since Y is Urysohn, there exist open sets U and V such that f(x) ∈U, g(x) ∈V and 
cl(U)∩cl(V)=Φ. Also f and g are contra δgβ-continuous, f-1(cl(U)) and g-1(cl(V)) are δgβ-open sets in X. Let C=f-

1(cl(U)) and D=g-1(cl(V)). Then C and D are δgβ-open sets containing x. Set E=C∩D, then E is δgβ-open set in X. 
Hence f(E)∩g(E) = f(C∩D) ∩g(C∩D) ⊆f(C)∩g(D) = cl(U)∩cl(V)=Φ. Therefore, E∩K = Φ. By Theorem 3.36,            
x ∉ δgβcl(K).  Hence K is δgβ-closed in X. 
 
Definition 3.38: A space X is called δgβ-connected provided that X is not the union of two disjoint nonempty δgβ-open 
sets. 
 
Theorem 3.39: If f is a contra δgβ-continuous function from a δgβ- connected space X onto any space Y, then Y is not 
a discrete space. 
 
Proof: Since f is contra δgβ-continuous and X is δgβ-connected space. Suppose Y is a discrete space. Let V be a proper 
non empty open and closed subset of Y. Then f-1(V) is proper nonempty δgβ-open and δgβ-closed subset of X, which 
contradicts the fact that X is δgβ-connected space. Hence Y is not a discrete space. 
 
Theorem 3.40: If a surjective function f: X→Y is contra δgβ-continuous with X is δgβ-connected space, then Y is 
connected. 
 
Proof: Suppose Y   is a not connected space.  Then there exist disjoint open sets U and V in Y such that Y = U∪V. 
Therefore, U and V   are clopen in Y. Since f is contra δgβ-continuous, f-1(U) and f-1(V) are δgβ-open sets in X. Further 
f is surjective implies f-1(U) and f-1(V) are nonempty disjoint and X = f-1(U)∪f-1(V). This contradicts the fact that X is 
δgβ-connected space.  Therefore, Y is connected. 
 
Theorem 3.41: If f: X→Y is contra δgβ-continuous, X is δgβ-connected and Y is T1 -space, then f is constant. 
 
Proof: Since Y is T1-space, U ={f-1(y): y∈Y} is a disjoint δgβ-open partition of X. If |U|≥2, then X is the union of two 
nonempty δgβ-open sets. This is contradiction to the fact that X is δgβ-connected. Therefore |U|=1 and hence f is 
constant. 
 
Definition 3.42: A topological space X is said to be δgβ-T2 space if for any pair of distinct points x and y, there exist 
disjoint δgβ-open sets G and H such that x∈G and y∈H. 
 
Theorem 3.43: Let f:X→Y be contra δgβ-continuous injective function from a space X into Urysohn space Y, then X 
is δgβ-T2. 
 
Proof: Let x and y be any distinct points in X, then f(x)≠f(y), there exist open sets V and W in Y containing f(x) and 
f(y) respectively, such that cl(V)∩cl(W) = Φ. Since f is contra δgβ-continuous, then there exist δgβ-open sets M and N 
in X such that f(M)⊆cl(V) and f(N)⊆cl(W) we have M∩N=Φ. Hence X is δgβ-T2    
 
Remark 3.44: The composition of two contra δgβ-continuous functions need not be contra δgβ- continuous as seen 
from the following examples. 
 
Example 3.45: Let X = Y = Z ={a, b, c}, τ={X, Φ,{a},{b},{a, b}}, σ={Y,Φ, {a}} and η={Z,Φ,{b, c}} be topologies on 
X,Y and Z respectively. Define a function f: X→Y as f(a) = a, f(b) = b and f(c) = c and a function g: Y→Z as g(a) = b, 
g(b) = c and g(c) = a. Then f and g are contra δgβ-continuous but g◦f: X→Z is not contra δgβ-continuous, since there 
exists a open set {b, c} in Z such that (g◦f)-1[{b, c}]={a, b} is not δgβ-closed in X. 
 
Theorem 3.46: Let f: X→Y   and g: Y→Z be any two functions. 

(i) If f is contra δgβ-continuous and g is continuous then g◦f is contra δgβ-continuous. 
(ii) If f is contra δgβ-continuous and g is contra continuous then g◦f is  δgβ-continuous. 
(iii) If f is δgβ-continuous and g is contra continuous then g◦f is contra δgβ-continuous. 
(iv) If f is δgβ-irresolute and g is contra δgβ-continuous then g◦f is contra δgβ-continuous. 

 
Proof: (i) Let h = g◦f and V be an open set in Z. 
 
 



S. S. Benchalli1, P. G. Patil1*, J. B. Toranagatti2 and S. R. Vighneshi3 / Some New Contra-Continuous Functions 
 / IJMA- 8(11), Nov.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      193  

 
Since g is continuous, g-1(V) is open in Y. Therefore f-1[g-1(V)] = h-1(V) is δgβ-closed in X because f is contra           
δgβ-continuous .Hence g◦f is contra δgβ-continuous. 
 
The proofs of (ii), (iii) and (iv) are analogous to (i) with the obvious changes. 
 
Theorem 3.47: Let f: X→Y be contra δgβ-continuous and g: Y→Z be δgβ-continuous. If Y is Tδgβ-space, then         
g◦f: X→Z is contra δgβ-continuous. 
 
Proof: Let V   be any open set in Z.  Since g is δgβ-continuous, g-1(V) is δgβ-open in Y and since Y is Tδgβ-space,        
g-1(V) open in Y. Since f is contra δgβ-continuous f-1[g-1(V)] = (g◦f)-1(V) is δgβ-closed set in X. Therefore, g◦f is contra 
δgβ-continuous. 
 
4. ALMOST CONTRA δgβ-CONTINUOUS FUNCTIONS 
 
In this section, almost contra delta generalized β-continuous functions are introduced and studied. 
 
Definition 4.1: A function f: X→Y is called almost contra delta generalized β-continuous if f-1(G) is δgβ-closed in X 
for every regular open set G in Y 
 
Theorem 4.2: A function f: X→Y is almost contra δgβ-continuous if and only if for every regular closed set F of Y,     
f-1(V) is δgβ-open set of X. 
 
Theorem 4.3: Every contra δgβ-continuous function is almost contra δgβ-continuous. 
 
Proof: Follows from the fact that every regular-open set is open. 
 
The converse of the Theorem 4.3 need to be true in general as seen from the following example. 
 
Example 4.4: Let X = Y = {a, b, c} with τ = {X, Φ, {a}} and σ = {X,Φ,{a},{b},{a, b}}be topologies on X and Y 
respectively. Let f: X→Y be a function defined by f(a) = a, f(b) = b and f(c) = c. Then f is almost contra                    
δgβ-continuous function but not contra δgβ-continuous, because for the open set {b} in Y and   f-1({b}) ={a} is not 
δgβ-closed in X. 
 
Theorem 4.5: The following are equivalent for a function f: X→Y: 

(i) f is almost contra δgβ-continuous. 
(ii) f-1(cl(G)) is δgβ-open set in X for every β-open subset G of Y.  
(iii) f-1(cl(G)) is δgβ-open set in X for every semi-open subset G of Y. 
(iv) f-1(int(cl(G))) is δgβ-closed set in X for every pre-open subset G of Y. 

 
Proof: 
(i) → (ii):  Let G be β-open set of Y. It follows from Theorem 2.4 of [3] that cl(G) is regular closed. Then f-1(cl(G)) is 
δgβ-open set in X. 
 
(ii) → (iii): Obvious. 
 
(iii)→ (iv): Let G be a pre-open set of Y. Then Y-int(cl(G)) is regular closed and hence it is semi-open. Then, we have 
f-1(cl(Y-int(cl(G))) = f-1(Y-int(cl(G)) = X-f-1(int(Cl(G))) is δgβ-open set in X .  
Hence f-1(int(cl(G))) is δgβ-closed set in X. 
 
(iv)→ (v): Let G be regular-open set of Y. Then G is pre-open in X and hence f-1(G) = f-1(int(Cl(G))) is δgβ-closed set 
in X. 
 
Theorem 4.6[16]: For a subset A of a space X, the following properties hold: 

(i) αcl(A) = cl(A) for every β-open subset A of X. 
(ii) pcl(A) = cl(A) for every semi-open subset A of X. 
(iii) scl(A) = int(cl(A)) for every pre-open subset A of X. 

 
Theorem 4.7: The following are equivalent for a function f: X→Y: 

(i) f is almost contra δgβ-continuous. 
(ii) for every β-open subset G of Y, f-1(αcl(G)) is δgβ-open set in X.  
(iii) for every semi-open subset G of Y, f-1(pcl(G)) is δgβ-open set in X. 
(iv) for every pre-open subset G of Y, f-1(scl(G))) is δgβ-closed set in X. 
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Definition 4.8 [16]: A function f: X→Y is said to be R-map if f-1(V) is regular open in X for each regular open set V of 
Y.  
 
Definition 4.9[15]: A function f: X→Y is said to be perfectly continuous if f-1(V) is clopen in X for each regular open 
set V of Y. 
 
Theorem 4.10: For two functions f: X→Y and g: Y→Z, let g◦f: Y→Z is composition function. Then the following 
properties hold: 

(i) If f is almost contra δgβ-continuous and g is an R-map, then g◦f is almost contra δgβ-continuous. 
(ii) If f is almost contra δgβ-continuous and g is perfectly continuous, then g◦f is contra δgβ-continuous. 
(iii) If f is contra δgβ-continuous and g is almost continuous, then g◦f is almost contra δgβ-continuous. 

 
Proof: (i) Let V be any regular open set in Z. Since g is an R-map, g-1(V) is regular open in Y. Since f is almost contra 
δgβ-continuous, f-1[g-1(V)] = (g◦f)-1(V) is δgβ-closed set in X. Therefore, g◦f is almost contra δgβ-continuous. 
 
Proofs of (ii) and (iii) are similar to (i). 
 
Theorem 4.11: Let f: X→Y be a contra δgβ-continuous and g: Y→Z be δgβ-continuous. If Y is Tδgβ-space, then       
g◦f: X→Z is almost contra δgβ-continuous. 
 
Proof: Let V be any regular open and hence open set in Z. Since g is δgβ-continuous g-1(V) is δgβ-open in Y. Since f is 
contra δgβ-continuous, f-1[g-1(V)] = (g◦f)-1(V) is δgβ-closed set in X. Therefore, g◦f is almost contra δgβ-continuous. 
 
Definition 4.12:  A space X is called locally δgβ-indiscrete if every δgβ-open set is closed in X.  
 
Theorem 4.13: If f: X→Y is almost contra δgβ-continuous and X is locally δgβ-indiscrete space then f is almost 
continuous. 
 
Proof: Let U be any regular open set of Y. Since f is almost contra δgβ-continuous f-1(U) is δgβ-closed set in X. As X 
is locally δgβ-indiscrete space, f-1(U) is an open set in X. Therefore, f is almost continuous. 
 
Theorem 4.14[7]: The intersection of a δgβ-closed set and a δ-closed set of X is always δgβ-closed.  
 
Theorem 4.15: If f: X→Y is almost contra δgβ-continuous, and A is δ-closed in X then the restriction (f/A): A→Y X 
is almost contra δgβ- continuous. 
 
Proof: Let V be any regular open set of Y. Then f-1(V) is δgβ-closed set in X. By Theorem 4.14, (f/A)-1(V)=A∩f-1(V) is 
δgβ-closed it follows that (f/A) is almost contra δgβ-continuous.   
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