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ABSTRACT 
In this paper the problem of Rayleigh wave propagation due to two oppositely placed, parallel rigid plane barriers has 
been discussed. The plane vertical barriers of small depth H (x = 0, a) are erected artificially in the surface of the deep 
ocean. Deep ocean is a liquid half space given by 0,z x≥ −∞ < < ∞ . The elastic medium is homogeneous, isotropic 
and slightly dissipative. The reflected, transmitted and scattered waves have been obtained by Fourier transform and 
Wiener-Hopf technique. The numerical computations for the amplitude of the scattered waves have been made versus 
the wave number. As the wave number goes on increasing, the amplitude of the reflected waves falls rapidly.  
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I. INTRODUCTION 
 
During an earthquake, seismic waves appear on the surface of the earth and loose their energy around the 
inhomogeneities and irregularities. Rayleigh waves are responsible for the damages to human beings and buildings on 
the surface of the earth. The problem of scattering of Rayleigh waves at the edges of rigid plane barriers requires 
investigation. The effect of a vertical barrier, fixed in an infinitely deep sea, on normally incident surface waves was 
first considered by Ursell [11] for a two dimensional case. The problem of diffraction of compressional waves due to a 
rigid barrier in the surface of a deep sea-water and in an ocean superimposed on a solid half space has been studied by 
Deshwal [3, 4] using the technique of Wiener and Hopf [9]. The attenuation of Rayleigh waves due to the presence of a 
surface impedence in the surface of a solid half space has been studied by Gregory [6]. Momoi [8] has considered the 
scattering of Rayleigh waves by semicircular and rectangular discontinuities in the surface of a solid half space using 
the technique of Fourier transformation. The problem of reflection and transmission of a plane SH-wave at a corrugated 
interface between a dry sandy half space and an anisotropic elastic half space has been studied by Tomar and Kaur [7]. 
They have used the Rayleigh’s method of approximation for studying the effect of sandiness, the anisotropy, the 
frequency and the angle of incidence on the reflection and transmission coefficients. The reflection of shear waves in 
visco-elastic medium at parabolic irregularity has been studied by Chattopadhyay et al. [1]. They found that amplitude 
of reflected wave decreases with increasing length of notch and increases with increasing depth of irregularity. 
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Here we discuss the problem of scattering of Rayleigh waves due to the presence of two oppositely placed parallel rigid 
barriers in the surface of a deep ocean. The barriers are given by x = 0, a and of equal length H. The barriers are rigid 
such that no displacement occurs across them.  The problem is two dimensional in zx-plane. 
 
II. FORMULATION OF THE PROBLEM 
 
We take the x-axis along the free surface of the ocean and the z-axis pointing vertically downward. The oceanic water 
is assumed to be a homogeneous, isotropic and slightly dissipative liquid half space. The two rigid vertical plane 
barriers of small depth H are held parallel to z-axis at distance a in the free surface (Fig. 1). The two dimensional wave 
equation is 

2 2 2

2 2 2 2

1
x z c t t
φ φ φ φε

 ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

                                                                                                                   (1) 

where c is the velocity of  wave propagation and ε  > 0 is a damping constant. A time harmonic two-dimensional 
Rayleigh wave incident on the barriers is given by 

( ) ( )1 22 2
0 0 0 0 0( , ) exp ,i x z A ip x z p kφ β β= − − = ± −                                                                              (2) 

0p being the wave number for Rayleigh waves. If the potential for a time-harmonic wave be 

( ) ( ), , , iwtx z t x z eφ φ −=                                                                                                                                 (3) 
 
Then (1) reduces to 

2 2
2 2

1 22 2 0, ( )k k w i w c k ik
x z
φ φ φ ε∂ ∂
+ + = = + = +

∂ ∂
                                                                               (4) 

 
The imaginary part of k is assumed to be small and positive. Let the total potential be 

( ) ( ) ( ), , ,t ix z x z x zφ φ φ= +                                                                                                                         (5) 
 

 
Figure-1: Geometry of the problem 

 
Boundary Conditions: 
 
The boundary conditions are 

(i) ( ),x zφ is bounded as z →∞ .                                                                                                                          (6) 

(ii) ( ), 0, 0t x z zφ = = for all x.                                                                                                                              (7) 

(iii) 0, 0 ,0tu x and x a z H
x
φ∂

= = = = ≤ ≤
∂

                                                                                                   (8) 

u is the displacement component at any point (x, z). It is assumed that for given z, ( ),x zφ has the behavior of d xe− as 

x →∞ , d > 0.  
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III. SOLUTION OF THE PROBLEM 
 
We first define the Fourier transforms 

( ) ( ) ( )
0

0

, , ,ipx ipxp z x z e dx x z e dxφ φ φ
∞

−∞

= +∫ ∫  

                = ( ) ( ), ,p z p zφ φ− ++ , p iξ η= +                                                                                              (9) 

Then ( ),p zφ+ and ( ),p zφ− are analytic in the region dη > − and dη < respectively of the complex p-plane, ξ  

being the real part of the complex number p. Hence ( ),p zφ along with derivatives is analytic in the strip 

d dη− < < of the complex p-plane. 
 
Taking Fourier transformation of (4), we obtain 

( )
2

2 2 2
2 , 0,d p z p k

dz
β φ β

 
− = = ± − 

 
                                                                                             (10) 

 
We choose that sign before the radical in (10) which makes the real part of 0β ≥ for all p. The solution of the 
equation (10) is 

( ) ( ) ( ), z zp z A p e B p eβ βφ −= +                                                                                                               (11) 
 

Since ( ),p zφ is bounded as z →∞ , therefore A(p) = 0 and from (11), we have 

( ) ( ), zp z B p e βφ −=                                                                                                                                     (12) 
 
Differentiating (12) and eliminating B from (12) and resultant equation 

( ) ( )p
p

φ
φ

β

′
= −                                                                                                                                            (13) 

where ( )pφ , ( )pφ′ denote ( ),p Hφ and ( ),p Hφ′ respectively. Similar notation are used for ( ),p Hφ+  and 

( ),p Hφ− and for teir deriaties. Deomposition of (13) by Wiener-Hopf technique and application of Liouville’s 
theorem gives 

( ) ( ) ( ) ( )k
p h p k

φ
φ φ

β
+

+ +

′
′= −                                                                                                                (14) 

( ) ( ) ( ) ( )k
p h p k

φ
φ φ

β
−

− +

′
′= − −                                                                                                             (15) 

where ( ) ( )k kφ φ+ −
′ ′= − and 

( )
( ) ( )
1 1

2 2
h p

k p k k p k
= −

− +
                                                                                                       (16) 

 
Similarly, 

( ) ( ) ( ) ( )p
p h p k

φ
φ φ

β
+

+ +

′ −′− = − −                                                                                                       (17) 

( ) ( ) ( ) ( )p
p h p k

φ
φ φ

β
−

− +

′ −′− = −                                                                                                          (18) 
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The Fourier transform of (4) from −∞ to 0 and use of (8) leads to a differential equation whose complete solution is  

( ) ( ) ( ) ( )
0

0 0
1 2 2 2

2, , ,0
z

z z

o

ip A ep z p z A p e A p e z H
p p

β
β βφ φ

−
−

− −+ − = + + ≤ ≤
−

                                   (19) 

 
The Fourier transform of (7) between −∞ and 0 gives 

( ) ( ) 0 0
02 2

2,0 ,0 ,
o

ip Ap p p p
p p

φ φ− −+ − = ≠ ±
−

                                                                                          (20) 

 
From (19) and (20) we get 

( ) ( ) ( )
0

0 0
1 2 2

2, , 2 sinh
z

o

ip A ep z p z A p p z
p p

β

φ φ
−

− −+ − = +
−

                                                                      (21) 

 
Eliminating of A1(p) between (21) and its derivative with respect to z when z = H leads to 

( ) ( ) ( ) ( )
0 0

0 0 0 0 0
2 2 2 2

2 2tanh H H

o o

ip A e ip A eHp p p p
p p p p

β βββφ φ φ φ
β

− −

− − − −

 ′ ′+ − = + − + + − − 
                  (22) 

Integrating (4) from x = 0 to x = a after multiplying it by ipxe  we get 

( ) ( ) ( )
2

2
2 0

0

, ,0iap iap
a x a x

x a x

d p z e ip e ip z H
dz x x

φ φβ φ φ φ
= =

= =

  ∂ ∂   − = − + + − ≤ ≤     ∂ ∂    
           (23) 

where  ( ) ( )
0

, ,
a

ipx
a p z x z e dxφ φ= ∫  

The right hand side of (22) is obtained by using the boundary conditions (7-8) and the result that 0tφ = on (0, H) and 
(a, H). Adding (23) to the new result obtained by changing p to –p in it, we get the differential equation whose solution 
is  

( ) ( ) ( ) ( )

( ) ( )
0

0

1 2

0
0 02 2

0

, ,

2 cos sin

iap iap z z
a a

z
iap

p z e p z e C p e C p e

iA e p ap ip ap p e
p p

β β

β

φ φ− −

−
−

+ − = +

 − − − −

                         (24) 

 
Similarly (7) is integrated on z = 0 to get 

( ) ( ) ( ) ( ) 00
02 2

0

2,0 ,0 cos sin iapiap iap
a a

iAp e p e p ap ip ap p e
p p

φ φ −−  + − = − − − −
                       (25) 

 
Using (24 and (25), we obtain 

( ) ( ) ( ) ( ) ( )
0

00
2 0 02 2

0

2, , sinh cos sin
z

ip aiap iap
a a

iA ep z e p z e C p z p ap ip ap p e
p p

β

φ φ β
−

−−  + − = − − − −
       (26) 

 
Eliminating of C2(p) between (26) and its derivatives when z = H, gives 

( ) ( ) ( ) ( )tanhiap iap iap iap
a a a a

Hp e p e p e p eβφ φ φ φ
β

− − ′ ′+ − = + −
 

                                                
( ) ( )( )

0
00 0

02 2
0

2 cos sin
H

iap
o

iA e p ap ip ap p e
p p

ββ −
− 

− − − − 
 

                                                
( ) ( )( )

0
00

02 2
0

2 cos sin
H

iap
o

iA e p ap ip ap p e
p p

β−
−− − −

−
                                 (28) 

 
Similarly, the Fourier transform of (4) between a and ∞ gives us 

( ) ( ), , ipx
a

a

p z x z e dxφ φ
∞

+ = ∫  
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Adding (27) and (28), we get 

( ) ( ) ( ) ( )tanhiap iap iap iapHp e p e p e p eβφ φ φ φ
β

− −
+ + + +

 ′ ′+ − = + −
 

                                                  
( ) ( )( )

0
0 0

02 2
0

2 cos sin
HiA e p ap ip ap

p p

ββ − 
− − − 

          

                                                  
( ) ( )( )

0
0

02 2
0

2 cos sin
HiA e p ap ip ap

p p

β− 
− − − 

                                              (29) 

 
Using (14) and (17) in (29), we get 

( ) ( )
0

0 0
2 2

0

2 .
cosh cosh

HH H
iap iap iA ee ep e p e

H p p H

ββ ββφ φ
β β β β

−
−

+ +
 ′ ′+ − =  − 

 

    ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0
0 02 2

0

2cos sin 2 sin cos sin
HiA ep ap ip ap ih p ap k p ap ip ap

p p

β

φ
−

+
′   × − − + −   −

         (30) 

 
Similarly, from (15), (18) and (22), we get 

( ) ( )
0 0

0 0 0 0 0
2 2 2 2

0 0

2 2.
cosh cosh

H HH Hip A e ip A ee ep p
H p p H p p

β ββ ββφ φ
β β β β

− −

− −
 ′ ′+ − = − −  − − 

                       (31) 

 
IV. FACTORIZATION AND DECOMPOSITION 
 
Let us now factorize cosh HHe ββ − . We write 

( ) ( )G p G pHe eβ + −− − −  =                                                                                                                                     (32) 
Where 

( ) ( )1cos
cosh

H p k
HG p

β
β

π

−

+ = 

( )log 2ipH p k
π

 as p →∞                                                (33) 

And       ( ) ( )G p G p− += −                                                                                                                                         (34) 
 
The factorization of cosh HHe Hββ β− as an infinite product is 

( ) ( ) ( ) coshHe HT p T p T p
H

β β
β

−

+ −= =  

                                         = 
( ) ( )

( ) ( )
2 2 2 2

1 2 1 21 1
2 2 1

exp
1 n n

n

G p G p
k b p b

H p k p k

∞
+ −

− −
=

 − −   − + 
+ −

∏                                (35) 

where 

( )
( ) ( )
( )

( ) ( )
1 22 2

1 2 1 21 2
1

exp
1 exp

1 2n n
n

X p G p ipHT p k b ipb
nH p k π

∞
−

− − −
=

 −  −   = − +      − −   
∏                        (36) 

( )1 2 1 2nb H n π− = −  and X(p) is an arbitrary function to give a suitable behaviour of ( )T p− as p →∞ . The 

behaviour of ( )T p− as p →∞ is given by 

( )
( ) ( )

( )

1 1 1

1 2
1

exp log 2
1 exp

1 2 1 2n

X p ipH p k ipH ipHT p
n nH p k

π π π
− − −∞

−
=

 + −     = + −  − − −     
∏                        (37) 

 
The infinite product in (37) is approximated by the result 

( ) 2
1

1

1 exp exp 1 2 2
1 2 1 2

p

n

p p p C p
n n

∞
−

=

   
+ − + −  − −   

∏                                                               (38) 
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where C1= 0.5772 is Euler’s constant. Therefore, 

( )
( ) ( )( )

( )[ ]

1
1

1 2

exp 1 log 2 2X p ipH C kH pH
T p

H p k

π π−

−

+ − + −

−

  
                                                     (39) 

is asymptotic to ( ) 1 2p −
as p →∞ , if 

( ) ( )( )1
11 log 2 2X p ipH C kH pHπ π−= − − + +                                                                              (40) 

 
Using (35) in (31) and decomposing the resulting equation, we obtain 

( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( )

0

0 0 0

0 0 0 0

2 1 1
2

Hp ip A e
H p k T p H p p p k p p T p p k T p

βφ β −
−

− − −

′
+ −

− + − − + −

 
 
 

 

       
( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0

0 0 0

0

1H
m

m

p iA e p k T p
p p

H p k T p p p H p k T p

βφ
φ φ

−
− +

− −

− −

′ − + − ′ ′+ + = − − −
− − −

 
  

 

                   
( )( ) ( )

( )( ) ( )( )0 0
0 00 0 0 0

0 0 0 0 0 0

2
2

H H T p p k T p p ki A e ip A e
H p p p k T p p p p p p

β ββ − −
+ +

−

+ +
− − −

+ + − − +

 
 


                      (41) 

where ,m np k p= . np are zeros of ( ) 0T p− = . By analytic continuation and Liouville,s theorem, each member is 
zero and we have 

( ) ( ) ( )
( )( ) ( ) ( ) ( )

0

0 0

0 0 0 0 0

2 1 1
2

Hip A e p k T p
p

p p p k p p T p p k p T p

β

φ
−

−
−

− −

−′ = − −
+ − − + −

 
 


 

                  ( ) ( ) ( ) ( ) ( )0

0 0 0

0

H

m

iA e p k T p H p k T p
p

p p

β

φ
−

+ −
−

+ −′− − −
−

                                                      (42) 

 
Similarly decomposing (30), we get 

( ) ( ) ( ) ( )( ) ( )
( )( ) ( )

00 0 1 0

0 0 0 0

mia p p iap H
m

iA L p p k T p
p p e e

p p p k p T p
ββ

φ φ − −−
+ +

−

− −′ ′= +
+ + −  

                ( ) ( ) ( )2 sinih p ap kφ+
′− ( )( ) ( )p k p k HT p+ −  

                

( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

0

0 1 1 0 0 0

0 0 0 0

2
2

H iapiA e e H p k T p L p p k T p L p p k T p
p p p p p T p

β−
−

−

− + +
+ −

− +

 
 
 

                    (43) 

where 

( ) ( ) ( )1 0 cos sinL p p ap ip ap= −                                                                                                             (44) 
 
Adding (42) and (43), we obtain 

( ) ( ) ( ) ( )( ) ( )
( )( ) ( )

0 00 0 1 0

0 0 0 0

mia p p iap H
m

iA L p p k T p
p p e e

p p p k p T p
ββ

φ φ − − −
+

−

− −′ ′= +
+ + −

 

               ( ) ( ) ( )2 sinih p ap kφ+
′− ( )( ) ( )p k p k HT p+ −  

               

( ) ( )
( )

( )( ) ( )
( ) ( )

( )( ) ( )
( )

0
0 1 1 0 0 0

0 0 0 0

2
2

H iapiA e e H p k T p L p p k T p L p p k T p
p p p p T p p T p

β−
−

− −

 − + +
+ − 

− +  
 

               
( ) ( ) ( ) ( ) ( )

( )
0

0 0 0

0

H

m

iA e p k T p H p k T p
p

p p

β

φ
−

+ −
−

+ −′− − −
−

 

               

( ) ( )
( ) ( )( ) ( ) ( ) ( )

0
0 0 0

0 0 0 0 0

2 1 1
2

HiA p e p k T p
p p p p p k T p p k p T p

ββ −
−

− −

 −
− − 

+ − − + −  
           (45) 
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V. REFLECTED AND TRANSMITTED WAVES 
 
The potential function ( ),x zφ is obtained by the inverse Fourier transform 

 
Figure-2: Contour of integration in the complex plane 

 

( ) ( ) ( )1
,

2

ipxz H ei

i

p e
x z dp

βη

η

φ
φ

π β

−− −∞+

−∞+

′
= ∫                                                                                                        (46) 

To evaluate the integral (46), the contour is taken along the line ( )0Im pη = as shown in Fig. 2, avoiding the points 

0p p= ± . p k= ± are the branch points. The condition ( )Re 0β = on the -branch cut as discussed by Ewing and 

Press [5] gives the points of hyperbola to be used as branch cuts with p k= ± as branch points. The presence of the 

factor ipxe− makes the integral vanish along the infinite circular arcs AB and CD. The contribution of identations are 

( ) ( )0 0 0
1 0 0 0, 1 cosh , , 0ip x z Hx z A e e e H p p xβ βφ β− − −= + = <                                                               (47) 

( ) ( ) ( )0 0 02
2 0 0 0, 1 cosh , , 0ip x a z Hx z A e e e H p p xβ βφ β− − −= + = − >                                                      (48) 

 
In (47), we have transmitted waves in the region x < 0 and in (48) we have reflected waves from the barriers in the 
region x > 0. 
 
VI. SCATTERED WAVES 
 
The scattered waves can be obtained by evaluating the integral (46) along the branch cut pT . ( )T p− being analytic in 

the lower half plane does not change its value on two sides of branch cut. ( )Im β has different signs on the opposite 
sides of branch cut. The main contribution comes from the neighbourhood of the branch point p = -k, then p = -k –iu, u 
is small, since ( )Re β = 0 on the branch cut, therefore, 

( ) ( ) ( )22 2 2 2 2
1 2 2 12 2 , 0p k k iu k i k ik u u k u u kβ = ± − = ± + − = ± + − = ± − + =  

                               = ( )2
1 1 2, 2i k u uβ β± = +                                                                                           (49) 

 
Integrating (46) along two sides of the branch cut, we get 

( ) ( ) ( ) ( ) ( )2

1 1

0

,
2

z H z Hk x
ux

i i

p e p eie
I x z e du

β β

β β β β

φ φ
π β β

− − − −∞−
−

= =−

′ ′
= −

    
    
    
     

∫  

              
( ) ( ) ( )

2
1 1

2 1 1
10

cos
2 cos sin

k x H u z He
H u H z

β
β β

π β

∞− −
= − +




∫  

                  ( ) 1 1
3

1

cos cos
2 uxH z

H u e du
β β

β
−−





                                                                                            (50) 

       -k 

A 
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Expanding Hi(u) around u = 0, 

( ) ( ) ( ) ( )
2

0 0 0 ...
2!i i i i
uH u H uH H′ ′′= + + +                                                                                           (51) 

and retaining Hi(0) only, we have 
2 2( )

1 2

2
0 2

(0)cos (2 )( )
( , )

(2 )

k x a H k u u z HeI x z
k u uπ

∞− −  + −
=
 +
∫

 
                2 2

2 2 2(0)(sin (2 )( ) sin (2 )( ))H k u u z H k u u z H+ + + + + −   

                
2 2

3 2 2

2
2

(0)(cos (2 )( ) cos (2 )( ))

(2 )
uxH k u u z H k u u z H

e du
k u u

−
+ + + + −
−
+ 

 
                       

(52) 

where 

( ) ( ) ( ) ( )
( )( ) ( )

0
0 0 1 0 2 2

1
2 0 0 2 0 0

2
0 m

H
iap

m

A L p k T ik e
H p e

ik p p ik p T p

ββ
φ

−
−−

+
−

− −′= − −
− + + −

 

                  

( ) ( )( ) ( )
( )

0
0 2 1 0 2 0 2 0

2 0 0

2 HA Hk L p T ik p ik T p e
ik p p

β−
− +− +

+
− −

                                

                  

( ) ( )( ) ( )
( )

0

2 2

0 2 2 0 2 0

2 0

2 H
m

ak ak

p A Hk T ik p ik T p e
e ik p e

βφ −
− − +
′ − − +

+ +
− −

 

                  

( )
( ) ( ) ( )

0

2

0 0 0 2 2

2 0 2 2 0 2

2 1H

ak

A p k T ik e
ik p e ik ik p T ik

ββ −
−

−

−
+ 

− − + −
 

                  
( ) ( )0 2 0 0

1
p ik p T p−


− 

+ − 
                                                                                                        (53) 

( ) ( )
( )

( ) ( )0
0 1 2 2 2

2 2 2
22 0

sinh
0

2

HiA e L ik ak ik
H

kk p

β φ−
+
′−

= − +
+

                                                                            (54) 

( ) ( ) ( )3 2 20 sinhH ak ikφ+
′=                                                                                                                      (55) 

 
To evaluate the integral in (52), we use results by Oberhettinger [10]  

i.e.         ( )
( )( )
( )

( )2

1 22
2

0 21 22
0 2

cos 2
e

2
k x a ux

k u u z
e du K k r

k u u

∞
− − −

+
=

+
∫                                                                                (56) 

( ) ( )( ) ( )2
1 22 2

2 1 21
20

sin 2 ek x a ux k ze k u u z du K k r
r

∞
− − −+ =∫                                                                          (57) 

where Kn(x) is the modified Hankel function of order n. Using (56) and (57) in (52). We get 

( ) ( ) ( ) ( ) ( )
( )

( )2
1 0 2 1 2 1 2 21

2
2

1, 0 0
k z H

I x z H K k r H K k r
rπ

  + = − +
 

                   

                   

( )
( )

( ) ( ) ( ) ( )( )2
1 2 1 3 0 2 2 0 2 11

2
1

0
k z H

K k r H K k r K k r
r

− + − +


                                                 (58)       

 

Where 

( ) ( ) ( ) ( )2 2 2 22 2
1 2,r x a z H r x a z H= − + − = − + +                                                                              (59) 
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VII. NUMERICAL COMPUTATION AND CONCLUSIONS 
 
The equation (47) represents the transmitted waves which are independent of the distance between the barriers but the 
reflected waves in (48) are found to depend on the distance. The scattered waves are obtained in (58). For small values 

of r, ( ) ( )0 2 2log logK k r z k r C− − and for large r, ( ) ( )0 2 2expK k r k r r− . The scattered waves behave 
as a decaying cylindrical wave at distant points originating at the tips (a, H) of the barriers and at their images (a, -H) in 
the free surface. Close to the tips, when 1r and 2r are small, the scattered field possesses a logarithmic singularity 
implying very large amplitude close to the scatterer.  

 
Figure-3: Variation of Amplitude of scattered waves vs the wave number 

 
The numerical calculations for the amplitude oh the scattered waves have been obtained for a=0.01 km, 1r = 0.1km,     

2r =12km, z=H and H= 6km. The graph of amplitude versus wave number of the scattered waves has been plotted in 
figure 3. The graph indicates that the amplitude decreases rapidly as the wave number increases very slowly. 
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