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ABSTRACT 
Jayasree and Swamy (2006) derived new series of distributions called SJS derived power series distributions.  In this 
paper an attempt is made to derive a new discrete probability distribution using restriction on one of the two 
parameters in the distribution given by Kulasekera and Tonkyn (1992). Properties of the derived distribution are 
presented with suitable examples.   
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1. INTRODUCTION 
 
Suppose that a = (a0, a1, a2, …) is a sequence of nonnegative real numbers. The partial sum of order n ∈ N is            
gn(θ) = Σ akθ

k, k=0, 1 … n for all θ ∈ R. The power series is then defined by g(θ) = limn→∞ gn(θ) for θ ∈ R for which the 
limit exists, and is denoted gn(θ) = Σakθ

k, k = 0,1 … ∀ θ∈R. A random variable n with values in N has the power series 
distribution associated with the function g (or equivalently with the sequence a), with parameter θ ∈ [0, r), if N has 
discrete probability density function  fθ(n) = anθn / g(θ), n ∈ N. 
 
Let P1(s) and P2(s); | s | ≤1 are the probability generating functions of two power series distributions. Jayasree and 
Swamy (2006) defined a family of new power series distributions with the convolution of P1(s) and [P2(s)]-1 called 
Derived Power Series Distributions (DPSD). Consider a DPSD for which the probability mass function is given by     
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The mean and variance of derived power series distributions are μ = μ1 – μ2 and σ2 = σ1

2 – σ2
2 where μ1, σ1

2 are the 
mean and variance of P1(s) and μ2,  σ2

2 are the mean and variance of P2(s) power series distributions. Some of the power 
series distributions defined by Kulasekera and Tonkyn (1992) and Jayasree and Swamy (2006) are presented below. 
 
Definition 1.1: A random variable X is said be a derived power series probability distribution if it satisfies the 
probability law P [X = x] = xαqx / (Σ xαqx) ;  =x 1, 2, … ; - ∞ < α < ∞;   0 < q < 1; p+q =1. For fixed value of α, the 
distribution belongs to the family of power series distribution. The mean and variance of the distribution are (1+q) p-1 
and 2qp-2. 
 
Definition 1.2: A random variable X is said to be a Geometrico-Poisson Distribution if it satisfies the probability law   

P [ X = x ] = eδ (δθ-1)x (1-δθ-1) S(x,θ) where x = 1, 2, … ; 0 < δ < θ < 1, where  S(x,θ) = !/)1(
0
∑
∞

=

−
x

xx xθ ; θ = λ/q;  

δ=θ(1-p). The mean and variance of Geometrico-Poisson Distribution are μ= δ[θ-1(1- δθ-1)-1-1]  and σ2 = δθ-1[(1- δθ-1)-2- θ]. 
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Definition 1.3: A random variable X is said to be a N-Bino-Geometric Distribution if it satisfies the probability law      
P[ X = x ] =  r+x-2Cx qx pr-1; 2,...;2,1 >= rx  ;   0< q <1. The mean and variance of NBGD are μ = (r-1) qp-1 and        
σ2 = (r-1) qp-2  
 
Definition 1.4: A random variable X is said to be Log-Geometric Distribution if it satisfies the probability law          
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with   0
1

1 dαpθP −= ; where, ( ){ } 1θ1log α −−−= . The mean and variance of LGD are μ = αθ(1- θ)-1-p-1 and     
σ2 = [αθ(1-θ)-1] [(1-θ)-1- αθ] – p-2.  
 
2. NEW DERIVED POWER SERIES DISTRIBUTION  
 
Let X be the random variable follows a power series probability distributions of Kulasekera and Tonkyn (1992), and Y 
be the random variable follows Geometric distribution. Let P1(s) and P2(s) are the probability generating functions of 
the two power series distributions in s and convergent for | s | ≤1   , 
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The convolution of P1(s) and [P2(s)]-1 is   
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Therefore, P(s) is a power series in ‘s’ which converges for 1s ≤ . Under appropriate conditions for the coefficients of 
the power series P(s) to be non-negative, one can consider this as the probability generating function of a random 
variable, where from, the p.m.f. can be obtained by identifying the coefficients in P(s). 
 
Theorem 3.1: The vector P = (p0, p1, p2, … …) where px is given by (2.2) defines a proper probability distribution, for 
0 < 21 pp <  < 1.  
 
Proof: The probabilities specified in equation (2.2) is  
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Let P =[ p0  p1  p2 … … ] be the vector of probabilities generated from Probability  distribution, then we must have,       

px ≥ 0 and ∑
∞

=0x
xp =1.  

 
Let dx=[(x+1)q1

x-xq1
x-1q2]= [xq1

x 
+ q1

x - xq1
x-1q2]  ⇒ dx ≥ 0, x = 1, 2 …  Hence px, x = 1, 2, … defined in (2.2) are 

positive.  
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Theorem 3.2: The mean of the derived power series distribution is difference between the means of numerator and the 

denominator power series distributions 1
2
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Theorem 3.2: The variance of the derived power series distribution is the difference between the variances of the 
distributions whose probability generating functions were considered in the numerator and the denominator 
respectively 
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From (3.2) and (3.3)             
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Applications:  

1. In statistical quality control the control limits for the shewhart control chart based on probability can be set, 

satisfying   
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, where, α1 and α2 are specified, in such a 

way that α1 + α2 is the probability of false alarm. Since ∑
=
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1i
in xT has Negative Binomial distribution with 

parameters (n,q) , the UCL and the LCL can be obtained from the tails of that distribution. Further, the OC-
function ( )21 q,qP  can be obtained from the SJS-4 distribution for  21 qq ≠  .So also the ARL function 

( )21 q,qARL  can be obtained in the usual manner as ( ) ( ){ } 1
1 2  ARL q  q 1, P q

−
= − .            

2. In testing of hypotheses 211210 qq:HVs.qqq:H ≠==  at l.o.s. α, under H0, from remark (3.5) one 
can observe that the SJS-4 distribution in (3.6) collapses to the geometric distribution, in which, the sufficient 

statistics for q is given by ∑
=

n

1i
ix and the distribution of ∑

=

n

1i
ix is Negative Binomial (n,q) where n is the size 

of the random sample drawn from the SJS-4 distribution. Hence the cut-off points of the test are obtained 
corresponding to a given level α of significance and thereby, the power of the test can be obtained.. 
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