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ABSTRACT

In this paper we introduce the concept of pre-g* continuous functions using semiopen sets due to N. Levine (1963) and
pap ptorpre-g g p

g -open sets due to Veera Kumar (2000). Also, we established the basic properties of pre-g*-continuous functions and

other related continuous functions.
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1. INTRODUCTION

In 1963, N. Levine [11] introduced and studied the concepts of semiopen sets and semi-continuity in topological
spaces. N. Levine [12] introduced the class of g-closed sets, a super class of closed sets in 1970. In 1987,
P. Bhattacharya et.al [4] have defined and studied the concepts of sg-closed sets, sg-open sets and semi-T1 spaces. In

2
1990, Arya et.al [2] have defined and studied the notions of sg-open sets and gs-closed sets in connection with the
characterizations of s-normal spaces. In 1994, T. Noiri [17] have defined and studied the concepts of pre-
sg-continuous functions and pre-sg-closed functions in connection with the study of semi-normal spaces. In, 1998, T.
Noiri [18] have studied the notions of pre- gs -continuous functions and pre- gs -closed functions in connection with
the study of s-normal spaces in topology. In 2000, M.K.R.S. Veera Kumar [22] has defined and studied the notions of
g~ -closed sets, g* -open sets, Tl -spaces, * T1 —spaces, g~ -continuous functions and g* -irresolute. In this paper we

deflne and study the notions of pre g” —contlnuous functions and their basic characterizations using semiopen sets and
g* -open sets.

2. PRELIMINARIES

Throughtout this paper (X,7) and (Y, o) always represents non-empty topological spaces on which no separation
axioms are assumed unless otherwise mentioned. Let A be a subset of of X We denote the closure (resp. the interior) of
A by CI(A)(resp. Int(A)).

We need the following definitions in the sequel:

Definition 2.1: A subset A of a topological space (X, 7) is called

(i) Semiopen[11] set, if A < Cl(Int(A))

(if) Semipreopen[1] set, if A c ClintCIl(A)
The complement of a semiopen (resp.semipreopen) sets is called semiclosed [5] (resp.semipreclosed [1]) sets of a space
X. The family of all semiopen (resp.semipreopen) sets of a space X is denoted by SO (X) (resp. SPO (X)).

Definition 2.2: A subset Aof a topological space (X, t) is called
(i) Semi- interior [5] of 4, if the union of all semiopen sets contained in A and is denoted by sint(A).
(ii) semipre-interior[1] of 4, if the union of all semipreopen sets contained in A4, and is denoted by spInt(A).
(iii) semiclosure[5] of A if the intersection of all semi-closed sets containing A and is denoted by sCI(A).
(iv) semipreclosure[1] of A, if the intersection of all semipre-closed sets containing A and is denoted by spCI(A.)
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Definition 2.3: A function f: X — Y is called
(i) semi-continuity [11], if £~ (V) is semiopen in X for each open set V of Y.
(ii) semipre-contonuity[15], if £~ (V) is semipreopen in X for each open set V of Y.
(iii) irresolute [6],if £~ (V)is semiopen set in X for each semiopen set VV of Y.
(iv) semipre-irresolute[15], if £~ (V) is semipreopen set in X for each semipreopen set V of Y.

Definition 2.4: A subset A of a space X is said to be
(i) generalized closed(in brief g-closed)set[12], if CI(A) < U whenever A c Uand is U openin X.
(if) semi generalized- closed(in brief sg-closed)set [4] , if sCI(A) S Uwhenever A c U and U is semiopen in X.
(iii) generalized semi -closed(in brief gs-closed)set [2] , if CI(A) < Uwhenever A c Uand U is openin X.
(iv) generalizedsemipre-closed(in brief gspclosed) set [9] , if spCI(A) S U whenever A c Uand U isopenin X .
(v) g~-closed set[22] , if CI(A)U whenever A < U and U is g-open in X.
The complement of g-closed (resp. sg-closed, gs closed, gsp-closed, g*-closed) sets of X is called g-open (resp.
sg —open, gs —open, gsp —open, g*-open) set in X.

Definition 2.5: Afunction f: X — Y is said to be

(i) generalized continuous [3] (in brief g-continuous), if f~1(V) is g-closed in X for every closed set V of Y.

(ii) semi generalized continuous [21](in brief sg-continuous), if £~ (V) is sg-closed in X for every closed setV
of Y.

(i) generalized semi continuous [7] (in brief gs-continuous), if f~1(V)is gs-closed in X for every closed setV
of Y.

(iv) Generalized semipre continuous [9] (in brief gsp-continuous), if £~ (V)is gsp-closed in X for every closed
setV of Y.

(v) pre-sg- continuous [17], if £~ (V)is sg-closed in X for every semiclosed set V of Y.

(vi) pre- gs — continuous [19], if f=1 (V)is gs-closed in X for every semiclosed set V of Y.

(vii) pre-gsp- continuous [16], if £~ (V) is gsp-closed in X for every semipreclosed set V of Y.

(viii) g*-continuous [22], if £~ (V) is g*-closed in X for every closed set V of Y.

Definition 2.7: A space (X, t) is said to be
(i) s-normal space [13], if for every disjoint closed sets A and B of X, there exist disjoint U,V € SO(X) such that
AcUandBcV.
(if) semi-normal space[10] , if for every disjoint semi-closed sets A and B of X, there exist disjoint
U,V €SO(X)suchthat AcUandB cV.
(iii) T1 spaces [12], if every g-closed set in X is closed.
2

(iv) semi-T1_spaces [4], if every sg-closed set in X is semi-closed.
2
(v) Semipre- T1 spaces [9], if every gsp-closed set in X is semipreclosed.
2
(vi) Ti-space [22], if every g*-closed set of X is a closed set.

2
(vii) * T1—space [22], if every g —closed set of X is a g*-closed set.
2

3. Pre-g*-CONTINUOUS FUNCTIONS
We define the following:

Definition 3.1: A function f:X — Y is said to be pre-g*--continuous if the inverse image of each g —open set of Y is
g -openin X.

It is obvious that a function f: X — Y is said to be pre- g*-continuous if the inverse image of each g —closed set of Y is
g -closed in X.

Lemma 3.2: Every pre-g*-continuous function is g*-irresolute.

Proof: Let f: X — Y be pre-g*-continuous function and VV be any g*-closedset in Y. But every g*-closed is g —closed
and hence V is any g —closed set in Y . Given that f is pre-g*-continuous, £~ (V) is g*-closed set in X. This shows that
fis g*-irresolute.

Lemma3.3: Let f:X — Y be g*-continuous function and X be Ty —space. Then £ is continuous.

2
Proof: Let f:X - Y be g*-continuous function and X be T:-space. Let V be any closed set in Y. Then, f=* (V) is
2
g*-closed set in X, since by hypothesis. But, as X is Tr -space given, f~* (V) is closed in X. This shows that f is
2

continuous.
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We define the following:

Definition 3.4: A function f: X — Y is called strongly g —continuous if the inverse image of each g —closed set of Y is
closed in X.

We prove the following:
Lemma 3.5: Every strongly g —continuous function is pre-g*-continuous.
Proof is obvious, since every closed set is g*-closed.

Lemma 3.6: Every gc-irresolute function is pre-g*-continuous if X is *;, —space.
2

Proof: Let f:X - Y be gc-irresolute function. Let V be any g-closed set inY. As, f is gc-irresolute, f~1 (V) is
g-closed setin X. But X is given as =, —space, then f~* (V) is g*-closed in X. This shows that f is pre-g*-continuous.
2

4. DECOMPOSITIONS OF pre-g*-CONTINUOUS FUNCTIONS
Theorem 4.1: Let f: X - Y and g:Y — Z be functions. Then the composition g.f:X — Z is pre-g*-continuous, if
f and g satisfy one of the following conditions:

(i) fis pre-g*-continuous and g is gc-irresolute.

(ii) f is g*-continuous and g is strongly g-continuous.

Proof:

(i) LetV be any g-closed set in Z. Then g~1(V) is g-closed set in Y, since g is gc-irresolute function. Again, f is
pre-g*-continuous function and g=*(V) is g —closed in Y, thenf~*( g=*(V)) = (g. )1 (V) is g*--closed set
in X. Thus g. f is pre-g*-continuous functions.

(i) LetV be any g —closed set in Z. Since g is strongly g —continuous, g~1(V) is closed set in Y. Again, f is
g*--continuous function and g=1(V) is closed setinY, then f~*(g=1(V)) = (g.f)~*(V) is g"--closed set
in X. Hence g.f is pre-g*--continuous functions.

We recall the following:
Definition 4.2: A topological space X is said to be T, space [8] if every gs-closed set in X is g —closed.
We define the following:

Definition 4.3: A function f:X — Y is said to be (gs, g*)-continuous function if the inverse image of each gs-closed
set of Y is g*-closed set in X.

Clearly, every gs-irresolute function is (gs, g*) —continuous if X is T, space.

Theorem 4.4: Let f:X - Y be pre-g*-continuous function with Y as T, space and g:Y — Z gs-irresolute, then
g-f:X = Zis (gs, g*)-continuous function.

Proof is obvious.
We recall the following:

Definition 4.5: A function f: X — Y is called always-g* -closed [20] if the image of eacg g*-closed set of X is g*-
closedinY.

Definition 4.6: A function f: X — Y is called g-closed [21] if for each closed set V of X, f(V) is g-closed setin Y.
We define the following:
Definition 4.7: A function f:X — Y iscalled (g*, g)-closed if the image of each g*-closed set of X is g-closed inY.

Definition 4.8: A function f:X — Y is called strongly g*- closed if the image of each g*-closed set of X is closed in Y.

© 2017, IIMA. All Rights Reserved 248



Savita. B.M.*, Govindappa Navalagi and Nirmala J. / Pre-g*-continuous functions / IJIMA- 8(10), Oct.-2017.

Theorem 4.9: Let f:X - Y and g:Y — Z be functions and let composition g. f: X — Z be pre-g*-continuous. Then
the following hold:

(i)

If fis always-g~-closed surjection, then g is pre-g*-continuous..

(ii) If fisstrongly g*-closed surjection, then g is strongly g-continuous.
(iii) If g is g-closed injection, then f is g*-continuous.
(iv) If g is (g*, g)-closed injection, then f is g*-irresolute.

Proof:

(i)

Let V be any g —closed subset of Z. As g. f is pre-g*-continuous, (g. f)~*(V) is g*-closed set in X. As f is
always g*-closed surjection, (f(f‘l(g‘l(V))) =g (V) is g*-closed set in Y. This shows that g is pre-g*-
continuous.

(i) LetV be any g —closed subset of Z. As g. f is pre-g*-continuous, (g. f)~*(V) is g*-closed set in X. As f is

strongly g*-closed surjection, (f(f‘l(g‘l(V))) =g 1(V) is g*- closed set in Y. This shows that g is
strongly g —continuous.

(iii) Let V be any closed subset of Y. Then g(V) is g —closed set in Z, since g is g-closed function. Again g. f is

pre-g*-continuous and g is injective, then ((g.)~*(g(V))) = (F (g H@W))) = f~*(V) is g*-closed
set in X. This shows that fis g*-continuous.

(iv) Let V be any g*- closed subset of Y. Then g(V) is g-closed set in Z, since g is (g%, g)-closed function.

Again, g. fis pre-g*-continuous and g is injective, then ((g. /)™ (g(V))) = (f (g D (@())) = F1 (V)
is g*-closed set in X. This shows that f is g~-irresolute.
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