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ABSTRACT 
In this paper we introduce the concept of pre-𝑔∗ continuous functions using semiopen sets due to 𝑁. Levine (1963) and 
𝑔∗-open sets due to Veera Kumar (2000). Also, we established the basic properties of pre-𝑔∗-continuous functions and 
other related continuous functions.  
 
Key words: Semiopen sets, 𝑔∗-closed sets, 𝑔𝑠-continuous functions, 𝑔∗-continuous functions, 𝑔∗-irresolute functions. 
   
 
1. INTRODUCTION 
 
In 1963, 𝑁. Levine [11] introduced and studied the concepts of semiopen sets and semi-continuity in topological 
spaces.  𝑁 . Levine [12] introduced the class of 𝑔 -closed sets, a super class of closed sets in 1970. In 1987,                     
P. Bhattacharya et.al [4] have defined and studied the concepts of 𝑠𝑔-closed sets, 𝑠𝑔-open sets and semi-𝑇1

2
 spaces. In 

1990, Arya et.al [2] have defined and studied the notions of 𝑠𝑔-open sets and  𝑔𝑠-closed sets in connection with the 
characterizations of 𝑠 -normal spaces. In 1994, T. Noiri [17] have defined and studied the concepts of pre-                   
𝑠𝑔-continuous functions and pre-𝑠𝑔-closed functions in connection with the study of semi-normal spaces.  In, 1998, T. 
Noiri [18] have studied the notions of pre- 𝑔𝑠 -continuous functions and pre- 𝑔𝑠 -closed functions in connection with 
the study of 𝑠-normal spaces in topology. In 2000, M.K.R.S. Veera Kumar [22] has defined and studied the notions of 
𝑔∗ -closed sets, 𝑔∗ -open sets, 𝑇1

2

∗-spaces, ∗ 𝑇1
2
 –spaces,  𝑔∗ -continuous functions and 𝑔∗ -irresolute. In this paper we 

define and study the notions of pre-𝑔∗ -continuous functions and their basic characterizations using semiopen sets and 
𝑔∗ -open sets.  
 
2. PRELIMINARIES 

 
Throughtout this paper (𝑋, 𝜏)  and (𝑌,𝜎)  always represents non-empty topological spaces on which no separation 
axioms are assumed unless otherwise mentioned. Let 𝐴 be a subset of of 𝑋 We denote the closure (resp. the interior) of 
𝐴 by 𝐶𝐼(𝐴)�𝑟𝑒𝑠𝑝. 𝐼𝑛𝑡(𝐴)�.  
 
We need the following definitions in the sequel:  
 
Definition 2.1: A subset 𝐴 of a topological space (𝑋, 𝜏) is called  

(i) Semiopen[11] set, if 𝐴 ⊂ 𝐶𝑙(𝐼𝑛𝑡(𝐴))    
(ii) Semipreopen[1] set, if  𝐴 ⊂ 𝐶𝑙𝐼𝑛𝑡𝐶𝑙(𝐴)  

The complement of a semiopen (resp.semipreopen) sets is called semiclosed [5] (resp.semipreclosed [1]) sets of a space 
𝑋. The family of all semiopen (resp.semipreopen) sets of a space 𝑋 is denoted by 𝑆𝑂(𝑋)�𝑟𝑒𝑠𝑝. 𝑆𝑃𝑂(𝑋)�.    
 
Definition 2.2: A subset 𝐴of a topological space  (𝑋, 𝜏) is called 

(i) Semi- interior [5] of 𝐴, if the union of all semiopen sets contained in 𝐴 and is denoted by 𝑠𝐼𝑛𝑡(𝐴).  
(ii) semipre-interior[1] of 𝐴, if the union of all semipreopen sets contained in 𝐴, and is denoted by    𝑠𝑝𝐼𝑛𝑡(𝐴).   
(iii) semiclosure[5] of 𝐴 if the intersection of all semi-closed sets containing 𝐴 and is  denoted by 𝑠𝐶𝐼(𝐴).   
(iv) semipreclosure[1] of 𝐴, if the intersection of all semipre-closed sets containing 𝐴 and is  denoted by 𝑠𝑝𝐶𝐼(𝐴. )  
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Definition 2.3: A funct𝑖𝑜𝑛 𝑓:𝑋 → 𝑌 is called  

(i) semi-continuity [11], if 𝑓−1 (𝑉) is semiopen in 𝑋 for each open set 𝑉 of 𝑌.  
(ii) semipre-contonuity[15], if 𝑓−1 (𝑉) is semipreopen in 𝑋 for each open set 𝑉 of 𝑌. 
(iii) irresolute [6],if 𝑓−1 (𝑉)is semiopen set   in 𝑋 for each semiopen set 𝑉 of 𝑌. 
(iv) semipre-irresolute[15], if 𝑓−1 (𝑉) is semipreopen set in 𝑋 for each semipreopen set 𝑉 of 𝑌.   

 
Definition 2.4: A subset 𝐴 of a space 𝑋 is said to be  

(i) generalized closed(in brief 𝑔-closed)set[12], if 𝐶𝐼(𝐴) ⊆ 𝑈 whenever 𝐴 ⊂ 𝑈and  is  𝑈 open in 𝑋.  
(ii) semi generalized- closed(in brief 𝑠𝑔-closed)set [4] , if 𝑠𝐶𝐼(𝐴) ⊆ 𝑈whenever 𝐴 ⊂ 𝑈 and 𝑈 is semiopen in 𝑋.  
(iii) generalized semi -closed(in brief 𝑔𝑠-closed)set [2] , if  𝐶𝐼(𝐴) ⊆ 𝑈whenever  𝐴 ⊂ 𝑈and 𝑈 is open in 𝑋.  
(iv) generalizedsemipre-closed(in brief 𝑔𝑠𝑝closed) set [9] , if  𝑠𝑝𝐶𝐼(𝐴) ⊆ 𝑈 whenever  𝐴 ⊂ 𝑈and 𝑈 is open in 𝑋 . 
(v) 𝑔∗- closed set[22] , if 𝐶𝐼(𝐴)𝑈 whenever 𝐴 ⊂ 𝑈 and 𝑈 is g-open in 𝑋. 

The complement of 𝑔-closed (resp. 𝑠𝑔 -closed,𝑔𝑠  closed, 𝑔𝑠𝑝 -closed,  𝑔∗ -closed) sets of 𝑋 is called 𝑔 -open (resp.         
𝑠𝑔 –open, 𝑔𝑠 –open, 𝑔𝑠𝑝 –open, 𝑔∗-open) set in 𝑋.    
 
Definition 2.5: Afunction 𝑓:𝑋 → 𝑌 is said to be 

(i) generalized continuous [3] (in brief 𝑔-continuous),  if 𝑓−1(𝑉) is 𝑔-closed in  𝑋 for every closed  set 𝑉 of 𝑌. 
(ii) semi generalized continuous [21](in brief 𝑠𝑔-continuous),  if 𝑓−1 (𝑉) is sg-closed in  𝑋 for every closed  set 𝑉 

of 𝑌. 
(iii) generalized semi continuous [7] (in brief 𝑔𝑠-continuous), if 𝑓−1(𝑉)is 𝑔𝑠-closed in  𝑋 for every closed  set 𝑉 

of 𝑌. 
(iv) Generalized semipre continuous [9] (in brief 𝑔𝑠𝑝-continuous), if 𝑓−1(𝑉)is 𝑔𝑠𝑝-closed in  𝑋 for every closed 

set 𝑉 of 𝑌. 
(v) pre-𝑠𝑔- continuous [17],  if 𝑓−1 (𝑉)is sg-closed in  𝑋 for every semiclosed  set 𝑉 of  𝑌. 
(vi) pre- 𝑔𝑠 – continuous [19],  if 𝑓−1 (𝑉)is 𝑔𝑠-closed in  𝑋 for every semiclosed  set 𝑉 of 𝑌. 
(vii) pre-𝑔𝑠𝑝- continuous [16],  if 𝑓−1 (𝑉) is gsp-closed in  𝑋 for every semipreclosed  set 𝑉 of 𝑌. 
(viii) 𝑔∗-continuous [22], if 𝑓−1 (𝑉) is 𝑔∗-closed in  𝑋 for every closed set 𝑉 of 𝑌. 

 
Definition 2.7: A space (𝑋, 𝜏)  is said to be 

(i) 𝑠-normal space [13], if for every disjoint closed sets 𝐴 and 𝐵 of 𝑋, there exist disjoint 𝑈,𝑉 ∈ 𝑆𝑂(𝑋) such that  
𝐴 ⊂ 𝑈 𝑎𝑛𝑑 𝐵 ⊂ 𝑉 . 

(ii) semi-normal space[10] , if for every disjoint semi-closed sets 𝐴  and 𝐵  of 𝑋 , there exist disjoint                 
𝑈,𝑉 ∈ 𝑆𝑂(𝑋) such that  𝐴 ⊂ 𝑈 𝑎𝑛𝑑 𝐵 ⊂ 𝑉. 

(iii) 𝑇1
2

   spaces [12], if every 𝑔-closed set in 𝑋 is closed. 

(iv) semi-𝑇1    
2

spaces [4], if every 𝑠𝑔-closed set in 𝑋 is semi-closed. 

(v) Semipre- 𝑇1
2
  spaces [9], if every 𝑔𝑠𝑝-closed set in 𝑋 is semipreclosed. 

(vi) 𝑇1
2

∗–space [22], if every 𝑔∗-closed set of 𝑋 is a closed set. 

(vii) ∗ 𝑇1
2
–space [22], if every 𝑔 –closed set of 𝑋 is a 𝑔∗-closed set. 

 
3. Pre-g*-CONTINUOUS FUNCTIONS          
       
We define the following:  
 
Definition 3.1: A function    𝑓:𝑋 → 𝑌  is said to be pre-𝑔∗--continuous if the inverse image of each 𝑔 –open set of 𝑌 is 
𝑔∗-open in 𝑋. 
It is obvious that a function 𝑓:𝑋 → 𝑌  is said to be pre- 𝑔∗-continuous if the inverse image of each 𝑔 –closed set of  𝑌 is 
𝑔∗-closed in 𝑋. 
 
Lemma 3.2:  Every pre-𝑔∗-continuous function is 𝑔∗-irresolute.  
 
Proof: Let 𝑓:𝑋 → 𝑌 be pre-𝑔∗-continuous function and 𝑉 be any 𝑔∗-closedset in 𝑌. But every 𝑔∗-closed is 𝑔 –closed 
and hence 𝑉 is any 𝑔 –closed set in 𝑌 . Given that f is pre-𝑔∗-continuous, 𝑓−1 (𝑉) is 𝑔∗-closed set in 𝑋. This shows that 
f is 𝑔∗-irresolute. 
 
Lemma 3.3:  Let  𝑓:𝑋 → 𝑌 be 𝑔∗-continuous function and 𝑋 be 𝑇1

2

∗–space. Then 𝑓 is continuous. 

Proof: Let  𝑓:𝑋 → 𝑌  be 𝑔∗-continuous function and 𝑋 be  𝑇1
2

∗–space. Let 𝑉 be any closed set in 𝑌.  Then, 𝑓−1 (𝑉) is 

𝑔∗-closed set in 𝑋, since by hypothesis. But, as 𝑋  is 𝑇1
2

∗ -space given, 𝑓−1 (𝑉) is closed in 𝑋 . This shows that 𝑓  is 

continuous.         
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We define the following:  
 
Definition 3.4: A function 𝑓:𝑋 → 𝑌   is called strongly 𝑔 –continuous if the inverse image of each 𝑔 –closed set of 𝑌 is 
closed in 𝑋.          
 
We prove the following:  
 
Lemma 3.5:  Every strongly 𝑔 –continuous function is pre-𝑔∗-continuous.       
 
Proof is obvious, since every closed set is 𝑔∗-closed.  
 
Lemma 3.6: Every 𝑔𝑐-irresolute function is pre-𝑔∗-continuous if 𝑋 is ∗𝑇1

2
   –space.  

 
Proof: Let 𝑓:𝑋 → 𝑌  be gc-irresolute function. Let 𝑉  be any 𝑔-closed set in 𝑌 . As, 𝑓  is 𝑔𝑐 -irresolute, 𝑓−1 (𝑉) 𝑖𝑠          
𝑔-closed set in 𝑋.  But 𝑋 is given as ∗𝑇1

2
–space, then 𝑓−1 (𝑉)  is 𝑔∗-closed in 𝑋. This shows that 𝑓 is pre-𝑔∗-continuous.   

 
4. DECOMPOSITIONS OF pre-𝒈∗-CONTINUOUS FUNCTIONS 
 
Theorem 4.1: Let 𝑓:𝑋 → 𝑌 and 𝑔:𝑌 → 𝑍  be functions. Then the composition 𝑔. 𝑓:𝑋 → 𝑍  is pre-𝑔∗ -continuous, if         
𝑓 and 𝑔 satisfy one of the following conditions: 

(i)  𝑓 is pre-𝒈∗-continuous and 𝑔 is 𝑔𝑐-irresolute.  
(ii) 𝑓 is 𝒈∗-continuous and 𝑔 is strongly 𝑔-continuous.  

 
Proof:  

(i) Let 𝑉 be any 𝑔-closed set in 𝑍. Then 𝑔−1(𝑉) is g-closed set in 𝑌, since 𝑔 is 𝑔𝑐-irresolute function. Again, 𝑓 is 
pre-𝑔∗-continuous function and  𝑔−1(𝑉) is 𝑔 –closed in 𝑌, then𝑓−1� 𝑔−1(𝑉)� = (𝑔. 𝑓)−1(𝑉)  is 𝑔∗--closed set 
in 𝑋.  Thus 𝑔. 𝑓 is  pre-𝑔∗-continuous functions. 

(ii) Let 𝑉 be any 𝑔 –closed set in 𝑍. Since 𝑔 is strongly 𝑔 –continuous, 𝑔−1(𝑉)  is closed set in 𝑌. Again, 𝑓 is      
𝑔∗--continuous function and 𝑔−1(𝑉)  is closed  set in 𝑌, then  𝑓−1� 𝑔−1(𝑉)� = (𝑔. 𝑓)−1(𝑉) is 𝑔∗--closed set 
in 𝑋.  Hence 𝑔. 𝑓 is  pre-𝑔∗--continuous functions. 

  
We recall the following: 
 
Definition 4.2: A topological space 𝑋 is said to be 𝑇𝑑  space [8] if every 𝑔𝑠-closed set in 𝑋 is 𝑔 –closed. 
 
We define the following: 
 
Definition 4.3: A function  𝑓:𝑋 → 𝑌 is said to be (𝑔𝑠,𝑔∗)-continuous function if the inverse image of each  𝑔𝑠-closed 
set of 𝑌 is 𝑔∗-closed set in 𝑋. 
 
Clearly, every 𝑔𝑠-irresolute function is (𝑔𝑠,𝑔∗) −continuous if 𝑋 is  𝑇𝑑 space. 
 
Theorem 4.4: Let 𝑓:𝑋 → 𝑌  be pre-𝑔∗ -continuous function with 𝑌  as 𝑇𝑑  space and 𝑔:𝑌 → 𝑍   gs-irresolute, then 
𝑔. 𝑓:𝑋 → 𝑍 is (𝑔𝑠,𝑔∗)-continuous function. 
 
Proof is obvious. 
 
We recall the following: 
 
Definition 4.5:  A function 𝑓:𝑋 → 𝑌 is called always-𝑔∗ -closed [20] if the image of eacg 𝑔∗-closed set of 𝑋 is 𝑔∗-
closed in 𝑌. 
 
Definition 4.6: A function 𝑓:𝑋 → 𝑌 is called 𝑔-closed [21] if for each closed set 𝑉 of 𝑋, 𝑓(𝑉) is 𝑔-closed set in 𝑌. 
 
We define the following: 
 
Definition 4.7: A function  𝑓:𝑋 → 𝑌 is called (𝑔∗,𝑔)-closed if the image of each 𝑔∗-closed   set of 𝑋  is 𝑔-closed in 𝑌. 
 
Definition 4.8: A function  𝑓:𝑋 → 𝑌 is called strongly 𝑔∗- closed if the image of each 𝑔∗-closed set of 𝑋 is closed in 𝑌. 
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Theorem 4.9: Let  𝑓:𝑋 → 𝑌  and  𝑔:𝑌 → 𝑍  be functions and let composition 𝑔. 𝑓:𝑋 → 𝑍  be pre-𝑔∗-continuous. Then 
the following hold: 

(i) If 𝑓is always-𝑔∗-closed surjection, then 𝑔 is pre-𝑔∗-continuous.. 
(ii) If  𝑓 is strongly 𝑔∗-closed surjection, then 𝑔 is strongly 𝑔-continuous. 
(iii) If 𝑔 is 𝑔-closed injection, then 𝑓 is 𝑔∗-continuous. 
(iv) If 𝑔 is (𝑔∗,𝑔)-closed injection, then 𝑓 is 𝑔∗-irresolute. 

 
Proof:  

(i) Let 𝑉 be any 𝑔 –closed subset of 𝑍. As 𝑔. 𝑓 is pre-𝑔∗-continuous, (𝑔. 𝑓)−1(𝑉)  is 𝑔∗-closed set in 𝑋. As 𝑓 is 
always 𝑔∗-closed surjection, �𝑓(𝑓−1�𝑔−1(𝑉)�� = 𝑔−1(𝑉)   is  𝑔∗-closed set in 𝑌. This shows that 𝑔 is pre-𝑔∗-
continuous. 

(ii) Let 𝑉 be any 𝑔 –closed subset of 𝑍. As 𝑔. 𝑓 is pre-𝑔∗-continuous, (𝑔. 𝑓)−1(𝑉)   is 𝑔∗-closed set in 𝑋. As 𝑓 is 
strongly 𝑔∗ -closed surjection, �𝑓(𝑓−1�𝑔−1(𝑉)�� = 𝑔−1(𝑉)  is 𝑔∗ - closed set in 𝑌 . This shows that 𝑔  is 
strongly 𝑔 –continuous.  

(iii) Let 𝑉 be any closed subset of 𝑌. Then 𝑔(𝑉) is 𝑔 –closed set in 𝑍, since 𝑔 is 𝑔-closed function. Again 𝑔. 𝑓 is   
pre-𝑔∗-continuous and 𝑔 is injective, then  �(𝑔. 𝑓)−1(𝑔( 𝑉) )� =  �𝑓−1( 𝑔−1)(𝑔(𝑉) )� = 𝑓−1(𝑉) is  𝑔∗-closed 
set in 𝑋. This shows that fis 𝑔∗-continuous. 

(iv) Let 𝑉  be any 𝑔∗ - closed subset of 𝑌.  Then 𝑔(𝑉)  is 𝑔-closed set in 𝑍 , since 𝑔  is (𝑔∗,𝑔)-closed function. 
Again,𝑔. 𝑓is pre-𝑔∗-continuous and 𝑔 is injective, then �(𝑔. 𝑓)−1(𝑔( 𝑉) )� =  �𝑓−1( 𝑔−1)(𝑔(𝑉) )� = 𝑓−1(𝑉) 
is 𝑔∗-closed set in 𝑋. This shows that f  is  𝑔∗-irresolute.    
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