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ABSTRACT 
The Banach fixed point theorem guarantees the existence of unique fixed point under a contraction mapping on a 
complete metric space. A similar theorem does not hold in a complete Menger Probabilistic metric space. The problem 
is that the triangular function in such spaces is not enough to guarantee that the sequence of iterates of a point under a 
certain map is Cauchy sequence. Two different approaches have been pursued. One is to identify those triangle 
functions which guarantee that the sequence of iterates is a Cauchy sequence. The other is to modify the original 
definition of contraction map. First this was done by Hicks. In this paper I prove some fixed point  in Menger space. 
 
 
2. INTRODUCTION 
 
Menger [2] generalized the metric axioms by associating a distribution function with each pair of points of an abstract 
set X. (A distribution functions is a mapping :f R R+→  which is non-decreasing, left continuous, with inf  f = 0 and 

sup f = 1). Thus for any ordered pair of points p, q of X,  we associate a distribution function denoted by ,p qF  and, for 

any positive number x, we interpret , ( )p qF x  as the probability that the distance between p and q is less than x. This 
gives rise to a new theory of ‘probabilistic metric spaces’ which started developing rapidly after the publication of the 
paper of Schweizer and Sklar [5].  

 
PROBABILISTIC METRIC SPACES [2] 
 
Definition 2.1: A mapping :f R R+→ is called a distribution function if it is non decreasing, left continuous and   
inf f( x ) = 0, sup f( x ) = 1.  
 
We shall denote by L the set of all distribution functions. The specific distribution function H L∈  is defined by  

                             
( ) 0,   0

        1,   0 
H x x

x
= ≤ 

= > 
 

 
Definition 2.2: A probabilistic metric space (PM space) is an ordered pair, X is a nonempty set and :F X X L× → is 
mapping such that, by denoting ( , )F p q  by ,p qF  for all p, q in X, we have  
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 We note that , ( )p qF x  is value of the distribution function , ( , )  at .p qF F p q L x R= ∈ ∈       
 
Definition 2.3: A mapping :[01] [01] [01]t × →  is called t-norm if it is non- decreasing (by non-decreasing, we 
mean , ( , ) ( , )a c b d t a b t c d≤ ≤ ⇒ ≤ ), commutative, associative and ( ,1)t a a=  for all a in [0, 1], t(0,0) = 0. 
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Definition 2.4: A Menger PM space is a triple (X, F; t) where (X, F) is a PM space and t is  t-norm such that, 

( ), , ,( ) ( ), ( )     , 0p r p q q rF x y t F x F y x y+ ≥ ∀ ≥ . 

If (X, F; t) is Menger  Probabilistic  metric  space  with ( )sup , 1, 0 1t x x x= < < ,  then (X, F; t) is a Hausdorff 

topological space in the topology T induced by the family of ( , )ε λ neighborhoods { ( , ) : , 0, 0}pU p Xε λ λ∈ ∈> >

where ,( , ) { : ( ) 1 }p x pU x X Fε λ ε λ= ∈ > −  ([8]) . 
 
Definition 2.5: A sequence { }np in X is said to converge to p X∈ iff  0ε∀ > and  > 0,λ∀ there exists an integer 

M   such that , ( ) 1  
np pF n Mε λ> − ∀ ≥ .  Again { }np is a Cauchy sequence if 0 and  > 0,λ∀∈> ∀  there exists 

an integer M such that,  

, ( ) 1
n mp pF ε λ> − for all , .m n M≥  

Some  common  fixed  point  theorems  using  sequence  which  are   not necessarily obtained as a sequence of iterates 
of certain mappings are motivated by a result of Jungck [1]. He proved that a continuous self mapping f of a complete 
metric space (X,d) has a fixed point provided there exists (0,1)q∈ and a mapping :g X X→  which commute with 
f and satisfies  

(a) ( ) ( )g X f X⊆  
(b) ( , ) ( , )d gx gy qd fx fy≤ , for all ,x y X∈ . Then  g and   f  have    unique  common   fixed   point.  

In 1960. B. Schweizer and A. Sklar have been studied these spaces in depth. These spaces have also been considered by 
several other authors. The  first  result  for  a  contractive  self  mapping  on a Menger PM  space  was  obtained  by  
Sehgal  and  Bharucha  Reid  [3].   Let (X, F)  be  PM  space  and :f X X→ be a mapping. Then f is said to 

contraction if   (0 1)  s.t.   ,k p q X∃ ∈ ∀ ∈ , ( ) ( ) ( ) ( ) ,  0f p f q pqF kx F x x≥ > .   
 
Recently Piyush Kumar Tripathi [6], [7] defined dual contraction and using to it he proved some fixed point theorems. 
 
2.1 Definition: Let (X, F, t) be a Menger space. A mapping :f X X→ is called dual contraction if   1k∃ > such 

that ( ) ( )fpfq pqF kx F x≤ , x > 0  
 
2.3 Theorem: Let (X,F,t) be complete Menger space. Suppose :f X X→ is onto and  continuous  mapping  
satisfying  the  condition  of  dual  contraction.  Then  f  has a unique   fixed point. 
 
Piyush Kumar Tripathi [4] also proved the following lemma which is used in our results. 
 
2.1 Lemma: Let (X, F, t) be a Menger space, where t is continuous. If   1k∃ >  such that 

2 ( ) ( ) , 0pfpfpf p
F kx F x x≤ > .  

Suppose   :f X X→ is onto mapping  then  ∃  a  Cauchy sequence in X. 
         
3. MAIN RESULTS 
 
In this section, I have also prove some fixed point theorems under different contractive conditions using contraction 
constant k > 1 or k < 1. 
 
3.1 Theorem: Let (X,F;t) be a complete Menger probabilistic metric space where ,p qF  is strictly increasing 

distribution function and :f X X→ is continuous mapping. If  (0,1)k∃ ∈ s. t.  

( ), ( ) , , ( ) , ( ) , ( )( ) min{ ( ), ( ), ( ), ( )}f p f q p q p f p q f q q f pF kx F x F x F x F x≥ . 

Then ∃ a unique fixed point.      
 
Proof: Let 0p X∈ . Construct a sequence pn  = f (pn-1), n = 1,2,3 ……………….Then 

        1 1, ( ), ( )( ) ( )
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Therefore by lemma 2.1{Pn }is a Cauchy sequency. Since (X, F, t) is complete so np p X→ ∈ . Then by theorem 
2.1, p is a unique fixed point of f. For uniqueness suppose f(p ) = p, f(q) = q. Then   

       { }, ( ), ( ) , , , ,( ) ( ) min ( ), ( ), ( ), ( )p q f p g q p q p p q q q pF kx F x F x F x F x F x= ≥
 

i.e. ,( ) ( )pq p qF kx F x≥ . 

Which is not possible so p = q. Because ,p qF  is strictly increasing function and kx < 0   
 

3.2 Theorem: Let (X, F; t) be a complete Menger probabilistic metric space where ,p qF strictly increasing distribution 

function is and , :f g X X→ is continuous mapping. If  (0,1)k∃ ∈ such that  

{ }( ), ( ) , , ( ) , ( )( ) max ( ), ( ), ( )f p g q p q p f p q g qF kx F x F x F x≤ .  

Then f and g  have a unique common fixed point. 
 
Proof: Let 0p X∈ . Construct a sequence {pn} defined by  f(p2n ) = p2n+1, g(p2n+1) =p2n+2 ,   n = 1,2,3. If n = 2r + 1 then 

{ }1 1 1

1 1

, , ,

, , ,

( ) min ( ), ( )

( ) ( ) because  is strictly increasing and 
n n n n n n

n n n n

p p p p p p
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Again if n = 2r then   
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,
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Therefore by lemma 2.1.1, {pn}is a Cauchy sequence. Then np p X→ ∈ .  
 
Since { } { }2 1 2,n np p+ is subsequence of { }np so 2 1 2,n np p p p+ → → . Then f( p ) = p and  
g( p ) = p that is p is common fixed point of f and g. For uniqueness suppose p and q are two common fixed-point f and 
g. Then, 

 , ( ), ( ) , , , , ,( ) ( ) max { ( ), ( ), ( )} ( ) ( )p q f p g q p q p p q q p q p qF kx F kx F x F x F kx F kx F x= ≤ ⇒ ≥ , 

which is not possible because ,p qF  is strictly increasing function and kx < x . Therefore f and g have unique common 
fixed point. 
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