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ABSTRACT 
In this paper, the terms, Maximal Γ-ideal, primary Γ-semigroup, prime Γ-ideal, simple Γ-semigroup, U- Γ-semigroup 
and V- Γ-semigroup  are introduced. It is proved that Γ-semigroup S is a U- Γ-semigroup if either S has a left (right ) 
identity or S is generated by a Γ-idempotent.  Also it is proved that a Γ-semigroup S is a U- Γ-semigroup if and only if 
every proper Γ-ideal is contained in a proper prime Γ-ideal.  Also it is proved that if A is a proper Γ-ideal in the finite 
dimensional U- Γ-semigroup S, then A is contained in maximal Γ-ideal and also it is proved that if S is a globally 
idempotent Γ-semigroup with maximal Γ-ideals, then either S is aV- Γ-semigroup or S has a unique maximal Γ-ideal 
which is prime.  
 
Mathematical subject classification (2010): 20M07; 20M11; 20M12. 
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1. INTRODUCTION 
 
Γ- semigroup was introduced by Sen and Saha [8] as a generalization of semigroup. Anjaneyulu. A [1], [2] and [3] 
initiated the study of pseudo symmetric ideals and radicals in semigroups. Giri and Wazalwar [4] intiated the study of 
prime radicals in semigroups. Madhusudhana Rao, Anjaneyulu and Gangadhara Rao [5], [6] initiated the study of 
prime radicals and primary and semiprimary Γ-ideals in Γ-semigroups. In this paper we introduce the notions of  
U- Γ-semigroups and V- Γ-semigroups in the class of arbitrary Γ-semigroups. We study prime Γ-ideals and maximal  
Γ-ideals in a U- Γ-semigroup and we characterize V- Γ-semigroups. 
 
2. PRELIMINARIES 
 
Definition 2.1: Let S and Γ be any two non-empty sets. Then S is said to be a Γ-semigroup if there exist a mapping 
from S × Γ × S to S which maps (a, 𝛾 , b) → a 𝛾  b satisfying the condition: (a 𝛼 b) 𝛽 c = a 𝛼 (b 𝛽 c) for all  
a, b, c ∈ S and  𝛼,𝛽, 𝛾 ∈ Γ. 
 
Note 2.2: Let S be a Γ-semigroup.  If A and B are two subsets of S, we shall denote the set {a𝛾b : a ∈ A, b ∈ B and       
𝛾 ∈ Γ} by AΓB. 
 
Definition 2.3: A Γ-semigroup S is said to be commutative Γ-semigroup provided aγb = bγa for all a,b ∈ S and 
 γ ∈ Γ. 
 
Note 2.4: If S is a commutative Γ-semigroup then a Γb = b Γa for all a, b ∈ S. 
 
Note 2.5: Let S be a Γ-semigroup and a, b ∈ S and α ∈ Γ. Then aαaαb is denoted by (aα)2b and consequently 
 a α a α a α…..(n terms)b is denoted by (aα)nb.  
 
Definition 2.6: A Γ-semigroup S is said to be quasi commutative provided for each a, b ∈ S, there exists a natural 
number n such that ( )  na b b aγ γ γ= ∀ ∈Γ . 
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Note 2.7: If a Γ-semigroup S is quasi commutative then for each a, b ∈ S, there exists a natural number n such that, 
aΓb = (b Γ)na. 
 
Definition 2.8: An element a of a Γ- semigroup S is said to be a left identity of S provided a∝s = s for all  
s ∈ S and ∝ ∈ Γ. 
 
Definition 2.9: An element a of a Γ- semigroup S is said to be a righ tidentity of S provided s∝a = s for all  
s ∈ S and ∝ ∈ Γ. 
 
Definition 2.10: An element a of a Γ- semigroup S is said to be a two sided  identity or an identity provided it is both a 
left identity and a right identity of S. 
 
Notation 2.11:  Let S be a Γ- semigroup.  If S has an identity , let S1 = S and if S does not have an identity, let S1 be the 
Γ- semigroup S with identity adjoined, usually denoted by the symbol 1.  
 
Definition 2.12: A non empty subset A of a Γ-semigroup S is said to be a left Γ-ideal of S if , ,s S a A α∈ ∈ ∈Γ
implies s a Aα ∈ . 
 
Note 2.13: A nonempty subset A of a Γ-semigroup S is a left Γ- ideal of S iff S Γ A ⊆ A. 
 
Definition 2.14: A nonempty subset A of a Γ-semigroup S is said to be a right Γ-ideal of S if , ,s S a A α∈ ∈ ∈Γ
implies a s Aα ∈ . 
 
Note 2.15: A nonempty subset A of a Γ-semigroup S is a right Γ- ideal of S iff AΓS ⊆ A. 
 
Definition 2.16: A nonempty subset A of a Γ-semigroup S is said to be a two sided Γ- ideal or simply a Γ- ideal of S if 
s ∈ S, a ∈ A, 𝛼 ∈ Γ imply s𝛼a ∈ A, a𝛼s ∈ A. 
 
Definition 2.17: A Γ-ideal A of a Γ-semigroup S is said to be a maximal 𝚪-ideal provided A is a proper Γ-ideal of S 
and is not properly contained in any proper Γ-ideal of S.  
 
Definition 2.18: A  Γ- ideal P of a Γ-semigroup S is said to be a prime Γ- ideal provided  A, B are two Γ-ideals of S 
and AΓB ⊆ P ⇒ either A ⊆ P or B ⊆ P. 
 
Definition 2.19: A Γ- ideal A of a Γ-semigroup S is said to be a semi prime Γ- ideal provided x ∈ S,  xΓS1Γx ⊆ A  
implies x ∈ A . 
 
Definition 2.20: If A is a Γ-ideal of a Γ-semigroup S, then the intersection of all prime Γ-ideals of S containing A is 
called prime Γ-radical or simply Γ-radical of A and it is denoted by √A or rad A. 
 
Theorem 2.21[5]: If A is a 𝚪-ideal of a 𝚪-semigroup S then √A is a semi prime 𝚪-ideal of S. 
 
Theorem 2.22[5]: A Γ- ideal Q of Γ-semigroup S is a semi prime Γ-ideal of S iff √(Q) = (Q)  implies x ΓS1Γy ⊆ A. 
 
Definition 2.23: A Γ-ideal A of a Γ- semigroup S is said to be a left primary Γ-ideal provided  

1) If X, Y are two Γ-ideals of S such that X ΓY ⊆ A and Y ⊈ A then X ⊆ √A.  
2) √A is a prime Γ-ideal of S. 

 
Definition 2.24: A Γ-ideal A of a Γ- semigroup S is said to be a right primary Γ-ideal provided 

1) If X, Y are two Γ-ideals of  S such that  X ΓY  ⊆ A and X ⊈A then Y ⊆ √A.  
2)  √A is a prime Γ-ideal of S. 

 
Example 2.25: Let S = {a, b, c} and Γ = {x, y, z}. Define a binary operation. in S as shown   in  the following table. 
 
 
 
 

 
 
 
Define a maping S XΓ X S → S by a α b = ab, for all a, b ∈ S and α ∈ Γ.  It is easy to see that S is a Γ-semigroup.   
 

. a b c 
a a a a 
b a a a 
c a b c 
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Now consider the Γ-ideal <a> = S1 Γa ΓS1 = {a}. Let p Γq ⊆ <a>, p ∉ <a> ⇒ q ∈ √<a> ⇒   (q Γ)n-1q ⊆ <a> for some  
n ∈ N. Since b Γc ⊆ <a>, c ∉ <a> ⇒ b∈ <a>. Therefore <a> is left primary. If b ∉ <a> then (c Γ) n-1c ∉ <a> for any 
 n ∈ N ⇒ c ∉ √<a>.  Therefore <a> is not right primary. 
 
Definition 2.26: A Γ-ideal A of a Γ- semigroup S is said to be a primary Γ-ideal provided A is both left primary        
Γ-ideal and right primary Γ-ideal. 
 
Definition 2.27: A Γ-ideal A of a Γ- semigroup S is said to be a principal Γ-ideal provided A is a Γ-ideal generated by 
a single element a. It is denoted by J[a] = <a>.  
 
Definition 2.28: An element a of a Γ-semigroup S with 1 is said to be left invertible or left unit provided there is an 
element b ∈ S such that b Γa = 1. 
 
Definition 2.29: An element a of a Γ-semigroup S with 1 is said to be right invertible or right unit provided there is an 
element b∈ S such that aΓb = 1. 
 
Definition 2.30: An element a of a Γ-semigroup S is said to be invertible or a Unit in S provided it is both left and 
right invertible element in S. 
 
Definitoin 2.31: A Γ- semigroup S is said to be a simple Γ- semigroup provided S has no proper Γ- ideals. 
 
Definition 2.32: An element a of a Γ- semigroup S is said to be a Γ-idempotent provided a ∝ a = a for all ∝ ∈ Γ. 
 
Note 2.33: If an elementa of a Γ- semigroup S is a Γ-idempotent, then a Γa = a.  
 
Definition 2.34: A Γ- semigroup S is said to be an idempotent Γ- semigroup or a band provided every element in S is a 
Γ-idempotent. 
 
Definition 2.35: A Γ- semigroup S is said to be a globally idempotent Γ- semigroup provided S ΓS = S.   
 
3). U-Γ-SEMIGROUPS AND V-Γ-SEMIGROUPS  
 
Definition 3.1: A Γ- semigroup S is said to be U-Γ-semigroup, provided for any Γ-ideal A in S, √A = S implies 
 A = S. 
 
Example 3.2:  Let S is a Γ-semigroup with S = Γ under the multiplication given in the following table. (S× Γ ×S ⟶ S 
as aαb = ab) 
 

 
 
 
 
 
 
 
Since S = {a ,b ,c, d } and  S = Γ. Now <a>, {a, b}, {a, c}, {a, b, c} and {a, b, c, d} are the Γ-ideals of S. 
 
If A = <a> then √< a> = intersection of all prime Γ- ideals containing <a> = {a, b, c} ∩ {a, b, c, d} = {a, b, c} ≠ S. 
Similarly √{ a, b} = {a, b, c} ≠ S. √{ a, b, c} = {a, b, c} ≠ S, √{ a, c}={a, b, c} ≠ S and if A = { a, b, c, d} then  
√A=√{a, b, c, d}={a, b, c, d}=S implies A=S. Therefore √A= S is true for only A=S. Therefore S is  
U-Γ-semigroup. 
 
Theorem 3.3:  A Γ-semigroup S is a U-Γ-semigroup if either S has a left (right) identity or S is generated by a            
Γ- idempotent. 
 
Proof: Suppose S has a left identity e. Let A be any proper Γ-ideal such that √A=S. Since 
√A ⊆ {x ∈ S: (x Γ)n-1x ⊆ A for some natural number n} = S.  So there is a natural number n such that (e Γ)n-1 e ⊆ A and 
hence e ∈A. Thus S = e ΓS ⊆ A, it is a contradiction.  Therefore S is a U- Γ-semigroup.  Suppose S is generated by a 
Γ–idempotent e.  As above we can prove that for any Γ- ideal A in S, if √A = S, then e ∈ A and hence A = S.  So S is a 
U- Γ-semigroup. 
 
 
 

. a b c d 
a a a a a 
b a a a b 
c a a a a 
d a a c d 
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Theorem 3.4: A Γ-semigroup S is a U- Γ-semigroup if and only if every proper Γ- ideal is contained in a proper prime 
Γ-ideal. 
 
Proof: Suppose S is a U-Γ-semigroup. Let A be any proper Γ- ideal in S.  If A is not contained in any proper prime 
 Γ- ideal, then √A = S. Since S is a U-Γ-semigroup.  We have A = S, this is a contradiction.  So every proper Γ-ideal is 
contained in a proper prime Γ-ideal. Conversely if every proper Γ- ideal is contained in a proper prime Γ-ideal, Then 
√A ≠ S implies A ≠ S then clearly S is a U-Γ-semigroup.   
 
Theorem 3.5:  Let S be a U-Γ-semigroup. Then S = S Γ S and hence every maximal Γ- ideal is prime. 
 
Conversely if {Pα} is the collection of all prime Γ- ideals in S and if P is a maximal element in this collection, then P is 
a maximal  Γ- ideal in S. 
 
Proof: Clearly √S Γ S = S.  Since S is a U-Γ-semigroup, we have S Γ S = S and hence every maximal Γ- ideal is prime.  
If P is not a maximal Γ- ideal in S, then there exists a proper Γ- ideal A in S, containing P properly. Since P is a 
maximal element in the collection of all proper prime Γ- ideals in S, we have A is not contained in any proper prime  
Γ- ideal.  So √A = S. Since S is a U-Γ-semigroup, A = S. This is a contradiction. Therefore P is a maximal Γ- ideal in S. 
 
Definition 3.6: A Γ-semigroup S is said to have dimension n or n – dimensional if there exist a strictly ascending chain 
P0 ⊂ P1 ⊂ P2 ⊂…….⊂ Pn of prime (proper) Γ- ideals in S, but no such a chain of n+2 proper prime Γ- ideals exists in S. 
 
Theorem 3.7: If A is a proper Γ- ideal in the finite dimensional U-Γ-semigroup S, then A is contained in a maximal     
Γ-ideal. 
 
Proof: By theorem 3.4, A is contained in a proper prime Γ- ideal P0, If P0 is not a maximal Γ- ideal, then by theorem 
3.5, there exists a proper prime Γ- ideal P such that P0 ⊂ P1.  If P1 is maximal we are through.  Otherwise P1 is properly 
contained in a proper prime Γ- ideal P2 in S.  The process of choosing Pi’s must cease in a finite number of steps 
because of the finite dimensionality of S.  Hence A is contained in a maximal Γ- ideal. 
 
Note 3.8: In a commutative ring, it is proved that every finite dimentional v -ring is a union of maximal Γ- ideals.  But 
in Γ- semigroups this is not true, as the Γ- semigroup S in example 3.2 is a finite dimensional U-Γ-semigroup with the 
unique maximal Γ- ideal {a, b, c}. 
 
Definition 3.9:  A Γ- semigroup S is said to be V- Γ- semigroup provided for any element a ∈ S, √<a> = S implies  
<a> = S. 
 
Note 3.10:  Every U-Γ-semigroup is a V- Γ-semigroup.  But a V- Γ-semigroup is not necessarily a U- Γ-semigroup. 
 
Example 3.11:  Let S be the Γ-semigroup of all natural numbers greater than 1, under usual multiplication.  The Γ-ideal 
A = {3, 4…..} is not contained in any proper prime Γ-ideal and hence by theorem 3.4, S is not a U-Γ-semigroup. 
Clearly every principal Γ-ideal is contained in a proper prime Γ-ideal.  So S is a V- Γ-semigroup. 
 
Theorem 3.12: If S is a globally idempotent Γ-semigroup with maximal Γ-ideals, then either S is a V-Γ-semigroup or S  
has a unique maximal Γ-ideal which is prime. 
 
Proof: Let T = {a ∈ S: √<a> ≠ S} If T = ϕ, then for every a ∈ S, √< a> = S and so S has no proper prime 
Γ-ideals. But maximal Γ-ideals are prime.  Hence this case is inadmissible. Clearly T is a Γ-ideal in S. If T ≠ S then T is 
the unique maximal Γ-ideal. Since S = S ΓS, M is a prime Γ-ideal and so √M = M. Now if a ∈ M∖T then  
S = √< a> ⊆√M = M. Thus M ⊆ T and so M = T. Then only other possibility is T = S, in which case S is a   
V- Γ-semigroup. 
 
Note 3.13: It is clear that a Γ-semigroup S is globally idempotent if and only if maximal Γ-ideals  in S  is prime. So if a 
Γ-semigroup S contains unique maximal Γ-ideal which is prime, then S is globally idempotent. But from the example 
3.11, we remark that there are V- Γ-semigroups containing maximal Γ-ideals which are not globally idempotent.   
 
Theorem 3.14: A Γ-semigroup S is a V- Γ-semigroup if and only if S has atmost one proper prime Γ-ideal   and if {Pα} 
is the family of all proper prime  Γ-ideals then <x> = S for x ∈ S∖∪ Pα  or S is a simple Γ-semigroup. 
 
Proof: Let S be a V- Γ-semigroup which is not a simple Γ-semigroup. If S has no proper prime Γ-ideals, then  
√<a> = S for a ∈ S. This implies <a> = S and hence S is a simple Γ-semigroup. So assume S has proper prime  
Γ-ideals. Then for any a ∈ S∖∪ Pα, √<a> = S, since a does not belong to any proper prime Γ-ideals. Then 
 <a> = S. Conversly let ‘a’ be any element of S such that <a> ≠ S. If a ∈ S∖∪ Pα, then <a> = S. So a ∈ ∪ Pα and hence 
√<a> ≠ S. Therefore S is a V- Γ-semigroup.  
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