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ABSTRACT 
In this paper, we present a simple method to derive a intuitionistic fuzzy (n-1)-norm from intuitionistic fuzzy n-norm 
and then prove that any intuitionistic fuzzy n-normed linear space is an intuitionistic fuzzy (n-1)-normed linear space. 
Some results regarding convergence and completeness in the intuitionistic fuzzy n-normed linear spaces are obtained 
and use these results to prove a fixed point theorem in intuitionistic fuzzy n-Banach spaces. 
 
 
1. INTRODUCTION  
 
Gahler[17] introduced the theory of 2-norm and n-norm on a linear space. For a systematic development of n-normed 
linear spaces, one may refer to [1, 2, 8, 14]. The theory of fuzzy set was introduced by L. Zadeh in 1965[13]. T. Bag 
and S.K.Samanta [21] introduced the definition of fuzzy norm over a linear space. Further, Al. Narayanan and 
S.Vijayabalaji[4] defined the concept of fuzzy n-normed linear space. J.H.Park [9] introduced and studied a notion of 
intuitionistic fuzzy metric spaces. Further R.Saadati [15] defined the notion of intuitionistic fuzzy normed space. The 
definition of intuitionistic fuzzy n-normed linear space was given in the paper [20]. In this paper, we present a simple 
method to derive a intuitionistic fuzzy n-1-norm from intuitionistic fuzzy n-norm and then prove that any intuitionistic 
fuzzy n-normed linear space with n≥  2 is an intuitionistic fuzzy (n-1)-normed linear space and hence by induction an 
fuzzy (n-r)-normed linear space for all r =1, 2,…..,n-1. Further some results regarding convergence and completeness in 
the intuitionistic fuzzy n-normed linear spaces are obtained and then used to prove a fixed point theorem in 
intuitionistic fuzzy n-Banach spaces. 
 
2. PRELIMINARIES  
 
Definition 2.1[17]: Let X be a real linear space of dimension greater than 1. Let ||• ,• || be a real valued function on     
X ×X satisfying the following conditions: 

1. ||x, y|| = 0 if any only if x, y are linearly dependent, 
2. ||x, y||=||y, x|| 
3. ||ax, y||=|a|||x, y||, where a∈R(set of real numbers) 
4. ||x, y+z||≤ ||x, y||+||x, z||. 

||• ,• || is called a 2-norm on X and the pair (X, ||• ,• ||) is called a 2-normed linear space. 
 
Definition 2.2[1]: Let n ∈N (natural numbers) and X be a real linear space of dimension greater than or equal to n. A 
real valued function ||• , . . . , • || on X × · · · × X = Xn satisfying the following four properties: 
   (1) ||x1, x2, . . . , xn || = 0 if any only if x1 , x2 , . . . , xn are linearly dependent, 
   (2) ||x1, x2, . . . , xn || is invariant under any permutation, 
   (3) ||x1, x2, . . . , axn || = |a| ||x1 , x2 , . . . , xn ||, for any a ∈R (real), 
   (4) ||x1, x2, . . . , xn-1, y + z|| ≤ ||x1, x2, . . . , xn-1, y||  + ||x1, x2, . . . , xn-1, z||, 
         is called an n-norm on X and the pair (X, ||• , . . . , • ||) is called an n-normed linear space. 
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Example 2.3: Let X be a space with inner product  ••,  Then 
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it defines an n-norm on X. This n-norm is called standard n-norm. 
 
Definition 2.4[1]: A sequence { xn }in an  n-normed space (X, ||• , . . . , • ||) is said to converge to x∈X (in the n-
norm) whenever  

∞→t
lim

 ||x1 , x2 , . . . , xn-1, xn -x||=0. 

 
Definition 2.5[1]: A sequence { xn }in an  n-normed space (X, ||• , . . . , • ||) is called Cauchy sequence if 

 
∞→kn,

lim
  ||x1 , x2 , . . . , xn-1, xn -xk||=0. 

 
Definition 2.6[1]:  An n-normed linear space is said to be complete if every Cauchy sequence in it is convergent. 
 
Definition 2.7[4]: Let X be a linear space over a real field F. A fuzzy subset N of Xn × R (R-set of real numbers) is 
called a fuzzy n-norm on X if and only if: 
(N 1) For all t ∈  R with t ≤ 0, N (x1, x2 , . . . , xn, t) = 0. 
(N 2) For all t ∈  R with t > 0, N (x1, x2 , . . . , xn, t) = 1 if and only if x1, x2,     . . . , xn are linearly dependent. 
(N 3) N (x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . .    , xn. 
(N 4) For all t ∈  R with t > 0,  

N (x1, x2, . . . , cxn, t) = N (x1, x2, . . . , xn, c
t

), if c ≠  0, c ∈  F (field). 

(N 5) For all s, t ∈  R,  

  N (x1, x2, . . . , xn +
′

nx , s + t) ≥ min{N (x1, x2, . . . , xn, s), N (x1, x2, . . . , xn, t)}. 
(N 6) N (x1, x2, . . . , xn, t) is a non-decreasing function of t∈R and 

                                
∞→t

lim
N (x1, x2, . . . , xn, t) = 1. 

Then (X, N) is called fuzzy n-normed linear space or in short f-n-NLS. 
 
Example 2.8[4]: Let (X, ||• , . . . , • ||) is called an n-normed linear space as in definition .Define  

N (x1, x2,…..,xn, t) 
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Then (X, N) is an f-n-NLS. 
 
Definition 2.9[9]: A binary operation ∗ : [0,1]× [0,1]→ [0,1] is continuous t-norm if ∗  satisfies the following 
conditions: 

1. ∗  is commutative and associative 
2. ∗  is continuous  
3. a∗ 1=a, for all a∈[0,1] 
4. a∗ b≤ c∗ d whenever a≤ c and b≤ d and a, b, c, d ∈  [0,1]. 
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Definition 2.10[9]: A binary operation ◊ : [0, 1]× [0, 1]→ [0, 1] is continuous t-co-norm if ◊ satisfies the following 
conditions: 

1. ◊  is commutative and associative 
2. ◊  is continuous  
3. a ◊ 0=a, for all a∈[0,1] 
4. a ◊ b≤ c ◊ d whenever a≤ c and b≤ d and a,b,c,d ∈  [0,1]. 

 
Definition 2.11[10]: Let E any set. An intuitionistic fuzzy set A of E is an object of the form A={(x, )(),( xx AA γµ ; x

∈E}, where the functions Aµ :E→ [0,1] and Aγ :E→ [0,1] denote the degree of membership and non-membership of 

the element x∈E respectively and for every x∈E, 0≤ Aµ (x)+ Aγ (x) ≤ 1. 
 
Definition 2.12[12]: If A and B are any two intuitionistic fuzzy sets of a non-empty set E, then A⊆B if and only if for 
all x∈E, Aµ (x) ≤ Bµ (x) and Aγ (x)≥  Bγ (x); A=B if and only if for all x∈E, Aµ (x)= Bµ (x) and Aγ (x)= Bγ (x); 

A ={(x, )(),( xx AA µγ ; x∈E}; 

A B= {(x, min( Aµ (x), Bµ (x)),max( Aγ (x), Bγ (x))); x∈E}; 

A B= {(x, max( Aµ (x), Bµ (x)),min( Aγ (x), Bγ (x))); x∈E}. 
 
INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE 
 
Definition 2.13[20]: Let X be a linear space over a real field F, and fuzzy subsets N, M of X n × (0,∞ ), N denotes the 
degree of membership and M denotes the degree of non-membership of (x1, x2, . . . , xn, t) ∈Xn×(0,∞ ) satisfying the 
following conditions: 

1. N (x1, x2, . . . , xn, t) + M(x1, x2, . . . , xn, t) ≤  1 
2. For all t ∈R with t ≤ 0, N (x1, x2, . . . , xn, t) = 0. 
3. For all t ∈R with t > 0, N (x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent. 
4. N (x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . .   , xn. 

5. For all t ∈  R with t > 0, N (x1, x2, . . . , cxn, t) = N (x1, x2, . . . , xn,  c
t

),  if c ≠  0, c ∈  F (field). 

6. For all s, t ∈  R,  N (x1, x2, . . . , xn + ′
nx , s + t) ≥ min{N (x1, x2, . . . , xn, s), N (x1, x2, . . . , xn, t)}. 

7. N (x1, x2, . . . , xn, t): (0,∞ ) → [0,1] is continuous in t. 
8. For all t ∈  R with t ≤ 0, M(x1, x2, . . . , xn, t) = 1. 
9. For all t ∈  R with t > 0, M(x1, x2, . . . , xn, t) = 0 if and only if x1, x2, . . . , xn are linearly dependent. 
10. M(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . .  . , xn. 

11. For all t ∈R with t > 0, M(x1, x2, . . . , cxn, t) = M(x1, x2, . . . , xn, c
t

), if c ≠  0, c∈F (field). 

12. For all s, t ∈  R, M(x1, x2, . . . , xn + ′
nx , s + t) ≤  max{M (x1, x2, . .  . , xn, s), M(x1, x2, . . . , xn, t)}. 

13. M(x1, x2, . . . , xn, t): (0,∞ ) → [0,1] is continuous in t. 
       Then (X, N, M) is called a intuitionistic fuzzy n-normed linear space or in short i-f-n- NLS. 

 
To strengthen the above definition, we present the following example. 
 
Example 2.14 [20]: Let (X, || .,.,…,. ||) be an n-normed linear space and  

  N(x1,…,xn,t) = 
1 2|| , ,..., ||n

t
t x x x

 

  M(x1,…,xn,t) = 1

1 2

|| ,..., ||
|| , ,..., ||

n

n

x x
t x x x

 

Then (X, N, M) is i-f-n-NLS. 
 
Definition 2.15 [20]: A sequence {xn} in an i-f-n-NLS is said to x if given r>0, t>0, 0<r<1  there exists an integer n0 ∈  
N such that N (x1, x2, . . . ,xn-1, xn -x, t)>1-r and M (x1, x2, . . . ,xn-1, xn -x, t)< r, for all n≥ n0. 
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Theorem 2.16 [20]: In an i-f-n-NLS, a sequence converges to x if  and only if  

N (x1, x2, . . . ,xn-1, xn -x, t)→1 and M (x1, x2, . . . ,xn-1, xn -x, t)→0, as n ∞→ . 
 
Definition 2.17[20]: A sequence {xn}in an i-f-n-NLS, is said to be Cauchy sequence if given ε  > 0, with 0 < ε  < 1,     
t > 0 there exists an integer n0 ∈N such that N (x1, x2, . . . ,xn-1, xn –xk, t) > 1 - ε  and M (x1, x2, . . . ,xn-1, xn –xk, t)< ε
for all n, k ≥  n0. 
 
Theorem 2.18 [20]: In a i-f-n-NLS (X, N) a sequence {xk} is Cauchy if and only if   

∞→,
lim

k
N (x1,…,xn-1,xk-



x ,x,t) = 1, 

∞→,
lim

k
M (x1,…,xn-1,xk-



x ,x,t) = 0, for every x1,…,xn-1 ∈ X. 

 
Theorem 2.19[20]: In an i-f-n-NLS, every convergent sequence is a cauchy sequence. 
 
3. MAIN RESULT  
 
Suppose (X, N, M) is an i-f-n-NLS. Take a linearly independent set {a1,……, an}, define the following function 
N∞(.,.,…..,.,.) and M∞(.,.,…..,.,.) on R××××

−
  

1

...
n

XXX  by  

       N∞ (x1, x2, …,xn-1, t) = min{N(x1,x2,…,xn-1,ai,t); i=1,.., n} 
and M∞( x1, x2, …,xn-1, t) = max{N(x1,x2,…,xn-1,ai,t); i=1,.., n} 
 
Theorem 3.1: The function N∞(.,.,…,.,.) and M∞(.,.,…,.,.) defines an i-f-(n-1)-NLS on X. 
 
Proof: We will verify that N∞ (.,., …..,.,.) and M∞(.,.,…,.,.) satisfies the all properties of  i-f-(n-1)-NLS. 
(i)         N∞(x1, x2,…,xn-1, t) + M∞(x1, x2,…,xn-1, t) ≤ 1, since  

N(x1, x2,…,xn-1, ai, t) + M(x1, x2,…,xn-1, ai, t) ≤ 1,  for each i = 1,…..,n. 
(ii)  for all t ∈ R with t < 0, we have 
               N(x1, x2,…,xn-1, ai, t) = 0    for each i = 1,...,n. 

⇒ N∞(x1, x2,…,xn-1, t) = 0  
(iii)  for all t ∈ R with t > 0, we have 
  N∞(x1, x2,…,xn-1, t) = 1  

⇔ min {N(x1, x2,…,xn-1, ai, t); i  = 1, …..,n} = 1 
⇔ N(x1, x2,…,xn-1, ai, t) = 1    for each i = 1,...,n. 
⇔ x1, x2,…,xn-1, ai are linearly dependent for each i = 1, …,n. But this can only happen when x1, …., xn-1 
are linearly dependent. 

(iv) Since N(x1,…,xn-1, ai, t) is invariant under any permutation of x1,…,xn-1. 
⇒ N∞(x1,…,xn-1, t) is invariant under any permutation of x1,…,xn-1. 

(v) For all t ∈ R with t > 0 and c ∈ F, c ≠ 0,  
 N∞(x1,…,cxn-1, t)  = min {N (x1,…,cxn-1, ai, t); i = 1,...,n} 

 N∞(x1,…,cxn-1, t) = min{N (x1,…,xn-1,ai, | |
t
c

); i = 1,...,n} 

     = N∞(x1,…,xn-1, | |
t
c

) 

(vi) N∞(x1,…,xn-2, xn-1 + x'n-1, t+s)  
  = min {N (x1,…,xn-2, xn-1+ x'n-1, ai, t+s); i = 1,...,n } 
  > min {min {N (x1,…,xn-2,xn-1,ai,t), N(x1,…xn-2, x'n-1, ai, s; i = 1,...,n } 
  > min {min {N (x1,…,xn-2,xn-1,ai,t); i = 1…n}, min{N(x1,…xn-2, x'n-1, ai, s}; i = 1-n }} 

   = min {N∞(x1,…,xn-1, t), N∞(x1,…,x'n-1, s)} 
(vii) Since N (x1,…,xn-1, ai,.) is continuous, so N∞(x1,…,xn-1, t) is continuous. 
(viii)       M∞(x1,x2,…,xn-1,t)>0, for M(x1,x2,……,xn-1,ai,t)>0 for each i=1,2,…,n. 
(ix)         for all t ∈ R with t > 0, we have 

      M∞(x1,x2,…,xn-1,t) = 0 
⇔ max. {M(x1, x2,…,xn-1, ai, t); i  = 1, …..,n} = 0 
⇔ M(x1, x2,…,xn-1, ai, t) = 0   for each i = 1,...,n. 
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⇔ x1,x2,…,xn-1,ai are linearly dependent for each i = 1, …,n. But this can only happen when x1, …., xn-1 
are linearly dependent 

(x)       M∞(x1,…,xn-1, t) is invariant under any permutation of x1,…,xn-1, since    M(x1,…,xn-1,ai,t) is invariant under any 
permutation of x1,…,xn-1. 
(xi)         For all t ∈ R with t > 0 and c ∈ F, c ≠ 0,  
 M∞(x1,…,cxn-1,t) = max. {M(x1,…,cxn-1,ai, t); i = 1,...,n} 

 M∞(x1,…,cxn-1,t) = max. {M(x1,…,xn-1,ai, | |
t
c

); i = 1,...,n} 

                = M∞(x1,…,xn-1, | |
t
c

) 

(xii) M∞(x1,…,xn-2, xn-1 + x'n-1, t+s) = max.{M (x1,…,xn-2, xn-1+ x'n-1, ai, t+s); i = 1,...,n } 
≤max.{max.{M(x1,…,xn-2,xn-1,ai,t),M(x1,…xn-2,x'n-1,ai,s}; i = 1,...,n } 
≤  max.{max.{M (x1,…,xn-2,xn-1,ai,t); i = 1…n}, Max.{M(x1,…xn-2,x'n-1,ai,s}; i = 1-n }} 
= max.{M∞(x1,…,xn-1, t), M∞(x1,…,x'n-1, s)} 

(xiii) Since M(x1,…,xn-1, ai,.) is continuous function of t, so M∞(x1,…,xn-1, t) is continuous by definition. 
 Thus (X, N∞, M∞ ) becomes a i-f- (n-1)- NLS. 
 
Corollary 3.2: Every i-f-n-normed space is i-f-(n-r)-normed space for all r=1,2,…,n-1. In particular, every i-f-n-
normed space is a i-fuzzy normed linear space. 
 
Example 3.3: Suppose (X, N, M) is a i-f-n-NLS define in example (2.13). Take a linearly independent set {a1, a2,…,an} 
in X. With respect to {a1,….,an} define the following function 

( )txxN n ,,..., 11 −∞ =












=
+ −

ni
axxt

t

in

,..,1;
,,...,

min
11

  

and 

( )txxM n ,,..., 11 −∞ =












=
+ −

− ni
axxt

axx

in

in ,..,1;
,,...,

,,...,
max

11

11  

Then (X, N∞, M∞) becomes an i-f-(n-1) NLS. 
 
Proof: 

(i) Clearly N∞ (x1,…,xn-1, t) + M∞ (x1,…,xn-1, t) < 1; 
(ii) Obviously N∞ (x1,…,xn-1, t) > 0; 
(iii) N (x1,…,xn-1, t) = 1 

   ⇔ 












=
+ −

ni
axxt

t

in

,..,1;
,,...,

min
11

 = 1 

⇔ 

in axx
ni

t

t

,,...,
,...,1

max
11 −=

+
 = 1 

⇔ t = t + in axx
ni

,,...,
,...,1

max
11 −=

 

⇔ in axx
ni

,,...,
,...,1

max
11 −=

 = 0 

But it is only possible, when 1 1,..., nx x   are linearly dependent. 

(iv) N (x1,…, xn-2, xn-1,t) = 












=
+ −−

ni
axxxt

t

inn

,..,1;
,,,...,

min
121

 

= 












=
+ −−

ni
axxxt

t

inn

,..,1;
,,,...,
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211

 

= N∞ (x1,...,xn-1,xn-2,t) 
= ...... 
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(v) N∞ (x1,x2,…,xn-1, | |
t
c

) = 



















=
+ −
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axx

c
t

c
t
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,..,1;
,,...,
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11
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,,...,

min
11

 

=












=
+ −

ni
acxxt

t

in

,..,1;
,,...,

min
11

 

= N∞(x1,x2,...,cxn-1,t) 
(vi) W.L.O.G. we assume that 

N∞ (x1,x2,...x'n-1,t) < N∞ (x1,x2,...xn-1,s) 

⇒












=
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< in axx
ni

,,...,
,...,1

max
11 −=

+ in axx
ni

,,...,
,...,1

max
11 −′=

 

< 
s t

t


 in axx
ni

,,...,
,...,1

max
11 −′=  

 
 
 



Sushma Devi* / On Intuitionistic Fuzzy n-Norm / IJMA- 8(10), Oct.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                     159  

 

ts
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ni inn
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⇒          N∞ ( x1,...,xn-1+x'n-1,s+t) > min{N∞(x1,..., xn-1,s), N∞(x1,...,x'n-1,t)} 
 

(vii) Clearly N∞ (x1,...,xn-1,t) is continuous in t. 
(viii) By definition, we have M∞ (x1,x2,...,xn-1, t) ≥  0 
(ix) M∞ (x1,x2,...,xn-1, t) = 0 

M∞ (x1,...,xn-1, t) =












=
+ −

− ni
axxt

axx

in

in ,..,1;
,,...,

,,...,
max

11

11 =0 

                     ⇔ 1 n-1 i

1 1

||x ,...,x ,a ||
|| ,..., , ||n it x x a

 = 0                         for each i=1,……,n. 

 
⇔ 1 2 n-1 i||x ,x ,...,x ,a ||  = 0                            for each i=1,……,n. 
 
⇔ x1, x2, …, xn-1 are linearly dependent. 

(x) M∞ (x1,x2,...,xn-1,t) =












=
+ −−

−− ni
axxxxt

axxxx

inn

inn ,..,1;
,,,...,,

,,...,,.
max

1221

1,221
  

=












=
+ −−

−− ni
axxxxt

axxxx

inn

inn ,..,1;
,,,...,,

,,...,,.
max

2121

2,121
 

= M∞  (x1, x2, …, xn-1,xn-2,t) 
= … 

(xi) M∞ (x1,x2,...,cxn-1, t) =












=
+ −

− ni
acxxt

acxx

in

in ,..,1;
,,...,

,,...,
max

11

11   

= 












=
+ −

− ni
axxct

axxc

in

in ,..,1;
,,...,

,,...,
max

11

11  

 = 



















=
+ −

− ni
axx

c
t

axx

in

in ,..,1;
,,...,

,,...,
max

11

11  

= M∞  (x1,..…, xn-1, | |
t
c

). 

(xii) Without loss of generality assume,  
M∞(x1,...,xn-1,s) < M∞(x1,...,x'n-1, t) 
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=
+ −

− ni
axxs

axx

in

in ,..,1;
,,...,

,,...,
max

11

11 ≤  












=
′+

′

−

− ni
axxt

axx

in

in ,..,1;
,,...,

,,...,
max

11

11  

              ⇒












+ −

−

in

in

axxs
axx
,,...,

,,...,

11

11 ≤












′+

′

−

−

in

in

axxt
axx
,,...,

,,...,

11

11                    for each i=1,...,n 

              ⇒
inn

inn

axxxts
axxx

,,.....,
,,......,

111

111

−−

−−

′+++

′+
≤

in

in

axxt
axx
,,.....,

,,......,

11

11

−

−

′+

′
      for each i=1,...,n 

 

               ⇒ 











=
′+++

′+

−−

−− ni
axxxts

axxx

inn

inn ,..,1;
,,...,

,,...,
max

111

111 ≤












=
′+

′

−

− ni
axxt

axx

in

in ,..,1;
,,...,

,,...,
max

11

11  

               ⇒ M∞(x1,...,xn-1+x'n-1,s+t) < M∞(x1,x2,...,x'n-1,t) 
 
Similarly, 
                  M∞(x1,...,xn-1+x'n-1, s+t) < M∞(x1, x2,...,xn-1, s) 
             ⇒ M∞(x1,...,xn-1+x'n-1, s+t) < 
 

max{M∞(x1, x2,...,xn-1, s), M∞(x1, x2,...,x'n-1, t)} 

(xiii) Clearly 
M∞ (x1,...,xn-1,t) is continuous in t.  
Thus (X, N∞, M∞) is an i-f-(n-1) NLS. 

 
Example 3.4: Let (X, || .,.,...,. ||s) be standard n-norm space and 

Ns (x1, x2,...,xn, t) = 
1 2|| , ,..., ||n s

t
t x x x

 

and                       Ms (x1, x2,...,xn, t) = 1 2

1 2

|| , ,..., ||
|| , ,..., ||

n s

n s

x x x
t x x x

 

Then (X, Ns , Ms) is an i-f-n-NLS space and the space (X, Ns, Ms) is called  standard i-f-n-NLS space. 
 
Proposition 3.5: On a i-f-n-NLS X, the derived i-f-(n-1)-NLS N∞(.,.,…,.,.) and M∞(.,.,…,.,.) defined with respect to 
{e1,…,en} and NS(.,.,…,.,.), MS(.,.,…,.,.) standard i-f-(n-1)-norm. The, we have 

N∞(x1,…,xn-1,t) > NS(x1,…,xn-1,t) > N∞(x1,…,xn-1,
t
n

)  

and                      M∞(x1,…,xn-1,t) < MS(x1,…,xn-1,t) < M∞(x1,…,xn-1,
t
n

)  

Proof: Assume that x1,…,xn-1 are linearly independent. For each i = 1,….,n write ei = ⊥+ ii ee 0  where o
ie  ∈ span 

{x1,…,xn-1} and ⊥⊥
ie span{x1,…,xn-1}. Then we have 

NS (x1,…,xn-1, ei, t) = 
1 1|| ,..., , ||n i S

t
t x x e

 

As 
sin exx 0

11 ,,..., − = 0,  

 And                    
sin exx ,,..., 11 − =

siin eexx ⊥
− +0
11 ,,..., ≤

sin exx 0
11 ,,..., − +

sin exx ⊥
− ,,..., 11                                                                               

                                                         = 
sin exx ⊥

− ,,..., 11      

 Therefore, 

NS (x1,…,xn-1, ei, t) ≥  

sin exxt
t

⊥
−+ ,,..., 11

 

> 
1 1|| ,..., ||n S

t
t x x 

 

= NS (x1,…,xn-1,t) 
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⇔ min NS( x1,…,xn-1,ei,t ) > NS( x1,..,xn-1, t ) 
∴ N∞(x1,…,xn-1,t) > NS( x1,..,xn-1, t )                                   (1) 

 
Next, take a unit vector e = α1e1 + ….+αnen such that e ⊥ span {x1,…,xn-1}. (We still assume that x1,…,xn-1 are linearly 
independent). We have 

NS( x1,…,xn-1, t ) = 
1 1|| ,..., ||n S

t
t x x 

 

= 
1 1|| ,..., , ||n S

t
t x x e

 

snnsn exxexxt
t

,,....,.........,,......, 1121111 −− +++
≥

αα
 

 

as   nn ≤+++ ααα ....21 ,  therefore, 

 NS(x1,…,xn-1, t ) ≥  
1 n-1 i Smax  ||x ,...,x ,e ||

t
t n

 

= min 

1 n-1 i S||x ,...,x ,e ||

t
n

t
n


 

= 







−∞ n

txxN n ,,..., 11  

Hence we obtain 

NS (x1,…,xn-1, t) ≥ 







−∞ n

txxN n ,,..., 11 .                    (2) 

Hence by (1) and (2), we get  

N∞(x1,…,xn-1,t) > NS(x1,…,xn-1,t) > N∞(x1,…,xn-1,
t
n

)  

Now consider, by (1) 

       











=
+ −

ni
exxt

t

sin

,.....,1;
,.....,

min
,11

≥  
snxxt

t

11 ,...., −+
 

⇒   1-












=
+ −

ni
exxt

t

sin

,.....,1;
,.....,

min
,11

≤  1-
snxxt

t

11 ,...., −+
 

⇒    












=
+

−
−

ni
exxt

t

sin

,.....,1;
,.....,

1max
,11

≤  
sn

sn

xxt
txxt

11

11

,....,
,.....,

−

−

+

−+
 

⇒     












=
+ −

− ni
exxt

xx

sin

sn ,.....,1;
,.....,

,.....,
max

,11

11 ≤  
sn

sn

xxt
xx

11

11

,....,
,.....,

−

−

+
 

⇒       M∞ (x1,…,xn-1,t) < MS (x1,…,xn-1,t)                                                            (3) 
 
And by (2), 

                              
snxxt

t

11 ,...., −+
≥

sin exx
n
t

n
t

,,...., 11 −+
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⇒   1-
snxxt

t

11 ,...., −+
≤



















=
+

−

−

ni
exx

n
t

n
t

sin

,....,1;
,,......,

1max
11

 

⇒   
sn

sn

xxt

xx

11

1,1

,....,

......,

−

−

+
≤



















=
+ −

− ni
exx

n
t

xx

sin

sn ,....,1;
,,......,

,.......,
max

11

11  

⇒    MS (x1,…,xn-1,t) < M∞ (x1,…,xn-1, 
t
n

).                                              (4) 

Thus we obtain 

M∞ (x1,…,xn-1,t) < MS (x1,…,xn-1,t) < M∞ (x1,…,xn-1, 
t
n

). 

 
The finite-dimensional case 3.6:  
 
For finite-dimensional i-f-n-NLS (X, N,M), we can derive an i-f-(n-1)-norm from the i-f-n-norm by taking  N∞(x1,…,xn-

1,t) = min {N(x1,…,xn-1,ai,t); i = 1,…,m} and M∞(x1,…,xn-1,t) = max.{M(x1,…,xn-1,ai,t); i = 1,…,m} and where the set 
{a1,……,an} is linearly independent in X with n≤m≤ d (where d is the dimension of  X) Then, as in theorem [1.6], the 
function N∞(.,.,.…,.,.) and M ∞ (.,.,….,.,.) defines i-f- (n-1)- norm on X. 
 
Theorem 3.7: If {xk} converges to x ∈ X in i-f-n-norm. Then {xk} also converges to x in the derived i-f-(n-1)-norm N∞ 
and M∞. 
 
Proof:  Let   xk   x  in i-f-n-norm then 

∞→k
lim

N (x1,…,xn-2,xk-x,ai,t) = 1 

and                       
∞→k

lim
M (x1,…,xn-2,xk-x,ai,t) = 0  for every x1,…,xn-2 and i = 1,…,n. 

 
Thus we have 

 
∞→k

lim
N (x1,…,xn-2,xk-x,t) = 1 

∞→k
lim

M (x1,…,xn-2,xk-x,t) = 0 

 
Proposition 3.8: A sequence in a standard i-f-n normed space X is convergent in i-f-n-norm if and only if it is 
convergent in the derived i-f-(n-1)-norm N∞ and M∞. 
 
Proof: Suppose xk  x in the derived i-f-(n-1)-norm. Then  
  NS (x1,…,xn-2,xn-1,xk-x,t) 

  > NS (x1,…,xn-2,xk-x, 
1|| ||n S

t
x 

) 

  > N∞ (x1,…,xn-2,xk-x, 
1|| ||n S

t
n x 

) 

 
Here ||.||s on right-hand side denote the usual norm on X. 
 

But            
∞→k

lim
N∞ (x1,…,xn-2,xk-x, 

1|| ||n S

t
n x 

) = 1 

 



Sushma Devi* / On Intuitionistic Fuzzy n-Norm / IJMA- 8(10), Oct.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                     163  

So, 

∞→k
lim ( )txxxxN kns ,,,..., 21 −− =1 

And  

Ms(x1,x2,…..,xn-2,xn-1,xk-x,t) < M∞ (x1,…,xn-2,xk-x, 
1|| ||n S

t
n x 

) 

But  
∞→k

lim
M∞ (x1,…,xn-2,xk-x, 

1|| ||n S

t
n x 

)=0 

So,  
∞→k

lim
MS (x1,…,xn-1,xk-x,t) = 0 

i.e.                 xk  x in i-f-n-norm. 
 
Remark 3.9: A sequence in a standard i-f-n-normed space is convergent in the i-f-n-norm if and if only it is convergent 
in the standard i-f-(n-1)-norm and, by induction, in the standard i-f-(n-r)-norm for all r=1, 2,……,n-1. In particular, a 
sequence in a standard n-normed space is convergent in the i-f-n-norm if and only if it is convergent in i-f-n-norm if 
and only if it is convergent in the standard intuitionistic fuzzy norm.  
 
Now, for finite-dimensional cases, we can obtain a better i-f-(n-1)-norm by using a set of d vectors, rather than just       
n, linearly independent vectors in X (that is, by using a basis for X). Let {b1,…,bd} be a basis for X and we define the 
following function N∞' (.,.,…,.,.) and M∞' (.,.,…,.,.)  on Xn-1 x R by 
  N∞' (x1,…,xn-1,t) = min{N(x1,…,xn-1,bi,t); i = 1,…,d} 

M∞' (x1,…,xn-1,t) = max.{M(x1,…,xn-1,bi,t); i = 1,…,d} 
Then, the function N∞' (.,.,…,.,.) and M∞' (.,.,…,.,.) defines an i-f-(n-1)- norm on X with respect to {b1,…,bd}. With this 
derived i-f- (n-1)- norm, we have the following result. 
 
Theorem 3.10: A sequence in the finite-dimensional i-f-n-normed space X is convergent in the i-f-n-norm if and only 
if it is convergent in the derived i-f- (n-1)- norm N∞' (.,.,…,.,.), M∞' (.,.,…,.,.). 
 
Proof: If a sequence in X is convergent in the i-f-n-norm, then it will certainly be convergent in the i-f-(n-1)-norm      
N∞' (.,.,…,.,.),M∞' (.,.,…,.,.). Conversely suppose {xk} converges to an x ∈ X in N∞' (.,.,…,.,.),M∞' (.,.,…,.,.). Take       
x1, …., xn-1 ∈ X. Writing xn-1 = α1b1 +….+ αdbd We get  

N(x1,…,xn-1, xk-x, t) > N∞' ( x1,…,xn-2,, xk-x,
d

t
αα ++ .......1

 ) 

But   
∞→k

lim
N∞'(x1,…,xn-2,xk-x, 

d

t
αα ++ .......1

) = 1 and so 

We obtain 

∞→k
lim

N (x1,…,xn-1,xk-x,t) = 1 

And M(x1,…,xn-1, xk-x, t) ≤M∞' ( x1,…,xn-2,, xk-x,
d

t
αα ++ .......1

 ) 

But   
∞→k

lim
M∞'(x1,…,xn-2,xk-x, 

d

t
αα ++ .......1

) = 0 and so  

We obtain 

∞→k
lim

M (x1,…,xn-1,xk-x,t) = 0 

that is, {xk} converges to x in the i-f-n-norm. 
 
CAUCHY SEQUENCES, COMPLETENESS AND FIXED POINT THEOREM 
 
The results for Cauchy sequences for standard and finite dimensional cases can be obtained similarly as the results 
(theorem 3.7-3.10) obtained above for convergent sequences by replacing “xk converges to x” with “xk is Cauchy” and 
“xk-x with xk-x



”. 
Hence we obtain: 
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Theorem 3.11:  

(a) A standard i-f-n-NLS is complete if and only if it is complete with respect to one of the three i-f-(n-1) norms 
(N∞ ,M ∞ ) (N∞',M∞') or (NS ,Ms). 

(b) A finite dimensional i-f-n-NLS is complete if and only if it is complete with respect to the derived i-f-(n-1)-
norm N∞' (.,.,…,.,.), M∞'(.,.,….,.) 

Using the above theorem (3.10) we obtained the following fixed point theorem 
 
Fixed Point Theorem 3.12: Let (X, N) be a standard or finite dimensional complete i-f-n-NLS and T a contractive 
mapping of X into itself, that is there exist a constant k ∈ (0, 1) s.t. 

N(x1,…,xn-1, Ty-Tz, kt) > N(xi,…,xn-1,y-z,t)  
M(x1,…,xn-1, Ty-Tz, kt) > M(xi,…,xn-1,y-z,t), for all x1,…,xn-1, y, z in X. Then T has a unique fixed point in X. 

 
Proof: First consider the case n=2. By above proposition, we know that X is complete with respect to the derived          
i-f-norm N∞, M ∞ or N∞', M ∞'. Since the mapping T is also contractive with respect to N∞, M ∞ or N∞', M ∞' we conclude 
by the fixed point theorem for intuitionistic Fuzzy Banach space that T has a unique fixed point is X. For n > 2, the 
result follows by induction. 
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