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ABSTRACT 
In this paper we prove that the two star graph 1, m 1, nK K∪ is not a relaxed skolem mean graph if 5− >m n and the 

three star graph 1, 1,m 1,nK K K∪ ∪


is not a relaxed skolem mean graph if 6.m n− > +    
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1. INTRODUCTION 
 
We proved that K1, m is not a relaxed skolem mean graph for m ≥ 5. Also, we proved that the two star K1, m ∪ K1, n is a 
relaxed skolem mean graph if |m–n| ≤ 5. Next, we proved the existence of relaxed skolem mean graphs. In [3], the three 
star K1, 


 ∪ K1, m ∪ K1, n is a relaxed skolem mean graph if |m−n| ≤  6+   for   = 1, 2, 3, . . .; m = 1, 2, 3, . . . ;  if  n 

=   + m + 6   when   ≤ m < n. 
 
2. [4] RELAXED SKOLEM MEAN LABELING

  
Definition 2.1: A graph ( ),  G V E=  with p vertices and q edges is said to be a relaxed skolem mean graph if there 

exists a function f from the vertex set of G to{ }1, 2, 3, ... , p+1 such that the induced map f* from the edge set of G to 

{ }2,3, 4 ,..., p+1  defined by  

*

f(u)+f(v) f(u)+f(v)2=uv) =
f(u)+f(v)+1 f(u)+f(v)

if is even
f

if is odd, th2 en
(e








 

the resulting edges get distinct labels from the set { }2,3, 4 ,..., p+1 . 
 
Note 2.2: [4], In a Relaxed skolem mean graph, p q.≥  
 
Theorem 2.3: The two star

1, 1,m nG K K= ∪ is not a relaxed Skolem mean graph if 5m n− > . 
 
Proof: Without loss of generality, let us consider m n≤ . Consider the primal graph under the condition 5m n− >
that is m = 1 and n = 7. That is 

1,1 1,7G K K= ∪ . 
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Where    1, 2,( ) { : 0 1} { :0 7} = ≤ ≤ ∪ ≤ ≤j jV G v j v i

 
1,0 1,1 2,0 2,( ) { } { :1 7}= ∪ ≤ ≤jE G v v v v j   

G has 10 vertices and 8 edges. 
 
Suppose G is relaxed skolem mean graph.  
 
Then there exists a function f from the vertex set of G to {1, 2, 3,….,11} such that the induced map f* from the edge set 
of G to {2, 3,….,11} defined by       

( ) ( ) ( ) ( )
2*( )

( ) ( ) 1 ( ) ( )
2

f u f v if f u f v is even
f e uv

f u f v if f u f v is odd

+ += =  + + +


 

 
Then the resulting edges get distinct labels from the set {2, 3…..11}. 
 
Then the vertex and edge mappings of G is given by 
f : V(G)→{1,2,…..11} 
 
f*:E(G)→{2,3….11} 
 
Let, , , , ,,0( ) *( )i j i j i j i jit f v and x f v v i and j= = ∀ . 

 
Now let us consider the following cases, 
 
Case-(a): 2,0  11t = . 
 
If 2, 2, 2   2   1j kt n and t n= = + for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
11 2 11 2 1*( ) 6 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

 
Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10).These six labels are 
not sufficient to labels seven vertices, 2, jt for 7 1 j≤ ≤ . 
 
Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7   11,   1,   3 ,  2t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 6,   7,   7xx x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  11t = . 
 
Case-(b): 2,0  10t =   
 
If 2,  2 1 jt n= − and 2,  2kt n= for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
10 2 1 10 2*( ) 5 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

 
Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), 9 and 11. These six labels are 
not sufficient to label seven vertices, 2, jt for 7 1 j≤ ≤ . 
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Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7   1 0 ,   2,   4,   1t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 6,   7 ,  6x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  10t = .  
 
Case-(c): 2,0t = 9. 
 
If 2, 2, 2   2   1j kt n and t n= = +  for some n,j and k then, 

2,0 2, 2,0 2,2, 2,
9 2 9 2 1*( ) 5 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), 8, (10 or 11).These six labels are 
not sufficient to label seven vertices, 2,0t  for 7 1 j≤ ≤ . 
 
Suppose 2,7 t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 9,   1,   3,   2t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 5,   6,   6x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  9t = . 
 
Case- (d): 2,0  8t = . 
 
If 2,  2 1jt n= − and 2,  2kt n= for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
1 2 1 2 1*( ) 1 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7), (9 or 10), (11). These six labels 
are not sufficient to label seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7 t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 8 ,   2,   4,   1t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 5,   6,   5x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  8t = .  
 
Case-(e): 2,0  7t = . 

If 2,  2jt n= and 2,  2 1kt n= + for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
7 2 7 2 1*( ) 4 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  
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Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6), (8 or 9), (10 or 11). These six labels 
are not sufficient to label seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 7 ,  1,   3,   2t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 4,   5,   5x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  7t = . 
 
Case-(f): 2,0  6t = . 
 
If 2,  2 1 jt n= − and 2,  2kt n= for some n, j and k then,

2,0 2, 2,0 2,2, 2,
6 2 1 6 2*( ) 3 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5), (7 or 8), (9 or 10), (11). These six labels 
are not sufficient to labels seven vertices, 2, jt

 
for 1≤ j ≤ 7. 

 
Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 6,   1,   3,   2t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 4,   5,   4x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  6t = . 
 
Case-(g): 2,0  5t = . 
 
If 2, 2, 2   2   1j kt n and t n= = + for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
5 2 5 2 1*( ) 3 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4), (6 or 7), (8 or 9), (10 or 11).These six labels are 
not sufficient to labels seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7 t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 5,   1,   3  ,   2 .t t t t= = = =  

Then the corresponding edge labels are 2,1 2,2 2,7 3,   4,   4x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  5t = . 
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Case-(h): 2,0  4.t =  
 
If 2,  2 1 jt n= − and 2,  2kt n= for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
4 2 1 4 2*( ) 2 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3), (5 or 6), (7 or 8), (9 or 10), (11).These six labels are 
not sufficient to labels seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 4,   2,   3,   1t t t t= = = = . 

Then the corresponding edge labels are 2,1 2,2 2,7 3,   4,   3x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  4t = . 
 
Case-(i): 2,0  3t = . 
 
If 2, 2, 2   2 1j kt n and t n= = + for some n, j and k then 

2,0 2, 2,0 2,2, 2,
3 2 3 2 1*( ) 4 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2), (4 or 5), (6 or 7), (8 or 9), (10 or 11). These six labels 
are not sufficient to labels seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7 t takes any of the remaining values. 
 
Let 2,0 2,3 2,4 2,7t =3,  4, 6,  5.t t t= = =  

Then the corresponding edge labels are 2,3 2,4 2,7 4 ,   5,    4.x x x= = = In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when t2, 0 = 3. 
 
Case-(j): 2, 0   2t = . 
 
If 2,  2 1 jt n= − and 2,  2kt n=  for some n, j and k then, 

2,0 2, 2,0 2,2, 2,
2 2 1 2 2

*( ) 1 *( )
2 2

+ − +
= = + = = =   
   
   

= j kj k
n n

f v v n f v vx x  

Therefore, the possibilities for the pendent vertices are (1), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11). These six labels 
are not sufficient to labels even vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7  t takes any of the remaining values. 
 
Let 2,0 2,2 2,3 2,7 2,   3,   5,  4.t t t t= = = =  

Then the corresponding edge labels are 2,2 2,3 2,7  3,   4,  3.x x x= = = In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
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Therefore, G is not a relaxed skolem mean graph when 2,0  2t = . 
 
Case (k): 2,0  1t = . 
 
If 2, 2, 2   2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
3 2 3 2 1*( ) 2 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10 or 11). These five labels 
are not sufficient to labels seven vertices, 2, jt  for 7 1 j≤ ≤ . 
 
Suppose 2,7t takes any of the remaining values. 
 
Let 2,0 2,1 2,2 2,7 1,   2,   4,   3 .t t t t= = = =  
Then the corresponding edge labels are 2,1 2,2 2,7 2,   3,   2 .x x x= = =  In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 2,0  1t = . 

⇒G is not a relaxed skolem mean graph for all values of 2,0t .  

 
Therefore G is not a relaxed skolem mean graph. 
 
In general, we see that G is not a relaxed skolem mean graph if 6m n− = . 
 
Similar argument asserts that 7m n− = is not a relaxed skolem mean graph. 
 
Similarly, we can prove for all greater values of m. 
 
Therefore, G is not a relaxed skolem mean graph if 5m n− > . 
 
 Definition 2.4: The three star is the disjoint union of

1, 1, 1,, m nK K and K


. 
1, 1, 1,   m nIt is denoted by K K K∪ ∪


. 
 
Theorem 2.5: The three star 

1, 1, 1,m nK K K∪ ∪


 is not a relaxed Skolem mean graph if 6m n− > + . 
 
Proof: Let us consider the primal graph under the condition 6m n− > + and m = 1; n = 9. 
 
Therefore  

1, 1 1, 1 1, 9G K K K= ∪ ∪ 1, 1 1, 92K K= ∪  

Where     , 3,( ) { : 1 2, 0 1} { : 0 9}= ≤ ≤ ≤ ≤ ∪ ≤ ≤i j jV G v i j v j

 
,0 ,1 3,0 3,( ) { : 1 2} { : 1 9}= ≤ ≤ ∪ ≤ ≤i i jE G v v i v v j  

G has 14 vertices and 11 edges. 
 
Suppose G is relaxed skolem mean graph. 
Then there exists a function f from the vertex set of G to {1,2,...,15} such that the induced map f* from the edge set of 
G to {2, 3,…,15} defined  by 

( )
f (u) f (v) if f (u) f (v) is even

2f * e uv
f (u) f (v) 1 if f (u) f (v) is odd

2

+ += =  + + +
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Then the resulting edges get distinct label from the set {2, 3…., 15}. 
 
Then the vertex and edge mappings of G is given by  
f : V(G)→{1,2,….15} 
 
f*:V(G)→{2,3,….15} 
 
Let , , , ,,0( ) *( )i j i j i j i jit f v and x f v v i and j= = ∀ . 

 
Now let us consider the following cases, 
 
Case (a): 3,0 1 5t = . 
 
If 3, 2, 2    2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
15 2 15 2 1*( ) 8 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10 or 11), (12 or 13), 
14.These eight labels are not sufficient to label nine vertices, 3, jt for 1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,9 1 5,   1,   3,   2t t t t= = = = . 

Then the corresponding edge labels are 3,1 3,2 3,9 8,   9,   9x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 3,0 1 5t = . 
 
Case (b): 3,0  14.t =   

 If 3, 2, 1  2j kt n and t n= − = for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
14 2 1 14 2*( ) 7 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11 or 12), (13), 
(15). These eight labels are not sufficient to label nine vertices 3,9t  for1 9j≤ ≤ . 
 
Suppose 3,9t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,914,  2,  4, 3t t t t= = = .  

Then the corresponding edge labels are 3,1 3,2 3,9 8,   9,   9x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 3,0  14.t =  
 
Case-(c): 3,0  13t = . 
 
If 3, 2, 2    2 1j kt n and t n= = +

 
for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
13 2 13 2 1

*( ) 7 *( )
2 2j kj k

n n
f v v n f v vx x+ + +

= = + = = =   
   
   

=  
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Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10 or 11), (12 or 13), 14. 
These eight labels are not sufficient to label nine vertices, 3, jt for1 9j≤ ≤ . 
 
Suppose 3,9t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,9 1 3,   1,   3,   2t t t t= = = = . 

Then the corresponding edge labels are 3,1 3,2 3,9 7 ,  8,   8x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0  13t = . 
 
Case (d): 3,0 1 2t = . 
 
If 3, 2, 2 1   2j kt n and t n= − = for some n, j and k then 

3,0 3, 3,0 3,3, 3,
12 2 1 12 2*( ) 6 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11), (13or 14), 
(15).These eight labels are not sufficient to label nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9t takes any of the remaining values. 
 
Let 3,0 3,8 3,7 3,912,  15,  13,  14.t t t t= = = =  

Then the corresponding edge labels are 3,8 3,7 3,9 14,   13,   13.x x x= = =  In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0 1 2t = . 
 
Case-(e): 3,0  11t = . 
 
If 3, 2, 2    2 1j kt n and t n= = + for some n, j and k then,  

3,0 3, 3,0 3,3, 3,
11 2 11 2 1*( ) 6 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
= . 

Therefore, the possibilities for the pendent vertices (1), (2 or 3), (4 or 5), (6 or 7), (8 or 9), (10), (12 or 13), (14 or15). 
These eight labels are not sufficient to label nine vertices, 3, jt for1 9j≤ ≤ . 
 
Suppose 3,9t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,91 1,  1,  3,  2t t t t= = = = . 

Then the corresponding edge labels are 3,1 3,2 3,9 6,   7 ,  7x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0  11t = . 
 
 
 



A. Manshath1, V. Balaji*2 and P. Sekar3 /  
Non Existence of Relaxed Skolem Mean Labeling for Star Graphs / IJMA- 8(10), Oct.-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                    118  

 
Case-(f): 3,0  10t = . 
 
If 3, 2, 2 1   2j kt n and t n= − = for some n, j and k then 

3,0 3, 3,0 3,3, 3,
10 2 1 10 2*( ) 5 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), (7 or 8), 9, (11 or 12), (13 or 14), (15). 
These eight labels are not sufficient to label nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,9 10,   2,  4,   3t t t t= = = = . 

Then the corresponding edge labels are 3,1 3,2 3,9 6,  7  7x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0  10t = . 
 
Case-(g): 3,0  9t =  
 
If 3, 2, 2    2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
9 2 9 2 1*( ) 5 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), (6 or 7), (8), (10 or 11), (12 or 13), (14 
or15).These eight labels are not sufficient to label nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 

Let 3,0 3,1 3,2 3,9 9,  1,  3,  2t t t t= = = = . 

Then the corresponding edge labels are 3,1 3,2 3,95,  6,  6x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0  9=t . 
 
Case-(h): 3,0  8t = . 
 
If 3, 2, 2 1    2j kt n and t n= − =

 
for some n ,  j and k then, 

3,0 3, 3,0 3,3, 3,
8 2 1 8 2*( ) 4 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5 or 6), 7, (9 or 10), (11 or 12), (13 or 14), 
(15). These eight labels are not sufficient to label nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,9 8,  2,   4,  3 .t t t t= = = =  

Then the corresponding edge labels are 3,1 3,2 3,95,   6,   6x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
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Therefore, G is not a relaxed skolem mean graph when 3,0  8t = . 
 
Case-(i): 3,0  7.t =  
 
If 3, 2, 2    2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
7 2 7 2 1*( ) 4 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), (4 or 5), 6,(8 or 9), (10 or 11), (12 or 13), (14 or15). 
These eight labels are not sufficient to label nine vertices, 3, jt

 
for 1 9j≤ ≤ . 

 
Suppose 3,9t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,97 , 1,  3,  2 .t t t t= = = =  

Then the corresponding edge labels are 3,1 3,2 3,9 4,   5,   5x x x= = = . In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 3,0  7.t =  
 
Case-(j): 3,0  6=t . 
 
If 3, 2, 2 1    2j kt n and t n= − = for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
6 2 1 6 2*( ) 3 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3 or 4), (5), (7 or 8), (9 or 10), (11 or 12), (13 or 14), 
(15). These eight labels are not sufficient to label nine vertices, 3, jt  for 1 9j≤ ≤ . 
 
Suppose 3,9t

 
takes any of the remaining values. 

 
Let 3,0 3,2 3,3 3,96,  3,  5,  4 .t t t t= = = =  

Then the corresponding edge labels are 3,2 3,3 3,9  5,  6,   5.x x x= = =  In this case it is not possible to label the 
vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of them 
will induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 3,0  6=t . 
 
Case-(k): 3,0  5=t . 
 
If 3, 2, 2    2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
5 2 5 2 1*( ) 3 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2 or 3), 4, (6 or 7), (8 or 9), (10 or 11), (12 or 13), (14 
or15). These eight labels are not sufficient to label nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 

Let 3, 3,1 3,2 3,95,  1,  3,  2 .ot t t t= = = =  
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Then the corresponding edge labels are 3,1 3,2 3,93,  4,  4 .x x x= = = In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when t3,0= 5. 
 
Case-(  ): 3,0  4.t =  
 
If 3, 2, 2 1   2= − =j kt n and t n for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
4 2 1 4 2*( ) 2 *( )

2 2j kj k
n nf v v n f v vx x+ − +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1 or 2), (3), (5 or 6), (7 or 8), (9 or 10), (11 or 12), (13 or 14), 
(15). These eight lables are not sufficient to lable nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3, 3,2 3,3 3,94,  3,  5, 6 .ot t t t= = = =  

Then the corresponding edge labels are 3,2 3,3 3,9 4 ,   5,  5x x x= = = . In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0  4.t =  
 
Case-(m): 3,0  3t = . 
 
If 3, 2, 2   2 1j kt n and t n= = + for some n, j and k then,  

3,0 3, 3,0 3,3, 3,
3 2 3 2 1*( ) 2 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (2), (4 or 5), (6 or 7), (8 or 9), (10 or 11), (12 or 13), (14 or 
15). These eight lables are not sufficient to lable nine vertices, 3, jt  for1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,3 3,4 3,93,  4,  6,  5 .t t t t= = = =  

Then the corresponding edge labels are 3,3 3,4 3,9 4,  5,   4x x x= = = .In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
Therefore, G is not a relaxed skolem mean graph when 3,0  3t = . 
 
Case-(n): 3,0  2t = .  
 
If 3, 2, 2 1    2 2j kt n and t n= + = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
2 2 1 2 2 2*( ) 2 *( )

2 2j kj k
n nf v v n f v vx x+ + + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (1), (3 or 4), (5 or 6), (7 or 8), (9 or 10), (11 or 12), (13 or 14), 
(15). These eight labels are not sufficient to label nine vertices 3, jt  for1 9j≤ ≤ . 
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Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,2 3,3 3,92,  3,  5,  4t t t t= = = = . 

Then the corresponding edge labels are 3,2 3,3 3,9 3,  4,   3 .x x x= = =  In this case it is not possible to label the vertices 
without labeling three of them as consecutive integers. If there are three consecutive integers then two of them will 
induce the same edge label. 
 
Therefore, G is not a relaxed skolem mean graph when 3,0  2t = . 
 
Case-(o): 3,0  1t = . 
 
If 3, 2, 2   2 1j kt n and t n= = + for some n, j and k then, 

3,0 3, 3,0 3,3, 3,
1 2 1 2 1*( ) 1 *( )

2 2j kj k
n nf v v n f v vx x+ + +   = = + = = =   

   
=  

Therefore, the possibilities for the pendent vertices are (2 or 3), (4 or 5), (6 or 7),  (8 or 9), (10 or 11), (12 or 13), (14 or 
15). These seven labels are not sufficient to label nine vertices, 3, jt  for 1 9j≤ ≤ . 
 
Suppose 3,9 t takes any of the remaining values. 
 
Let 3,0 3,1 3,2 3,8 3,91,  3,  5,  2,  4t t t t t= = = = = . 

Then the corresponding edge labels are 3,1 3,2 3,8 3,9 2,   3,   4,   3x x x x= = = = . In this case it is not possible to label 
the vertices without labeling three of them as consecutive integers. If there are three consecutive integers then two of 
them will induce the same edge label. 
 
Therefore G is not a relaxed skolem mean graph when 3,0t = 1. 

G is not a relaxed skolem mean graph for all values of 3,0t .  

Therefore, G is not a relaxed skolem mean graph. 
 
Similarly 1,2 1,2 1,11G K K K= ∪ ∪ is not a relaxed skolem mean graph. 
 
In general we see that G is not a relaxed skolem mean graph if 7m n− = + . With similar argument we can prove 
for all greater values  
Therefore, G is not a relaxed skolem mean graph if 6m n− > + . 

 
3. APPLICATION OF GRAPH LABELING 
 
The skolem mean labeling is applied on a graph (network), such as bus topology, mesh topology and star topology in 
order to solve the problems in establishing fastness, efficient communication and various issues in that area, in which 
the following will be taken into account. 

1. A protocol, with secured communication can be achieved, provided the graph (network) is sufficiently 
connected. 

2. To find an efficient way for safer transmissions in areas such as Cellular telephony, Wi – Fi, Security systems 
and many more. 

3. Channel labeling can be used to determine the time at which sensor communicate. 
 
CONCLUSION 
 
Researchers may get some information related to graph labeling and its applications in communication field and work 
on some ideas related to their field of research. 
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