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ABSTRACT 

In this paper, we examine conservative autonomous dynamic vibration equation,  , which is time 

vibration of the displacement of a structure due to the internal forces, with no damping or external forcing. Numerical 

results using Newmark are tabulated. The stability of the algorithm employed is also discussed. 
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1. INTRODUCTION  

 

Most structures are in a continuous state of dynamic motion because of random loading such as wind, vibration 

equipment, or human loads. Therefore a lot of consideration has been given in the design of certain facilities or 

structures which need to resist sudden but strong vibrations. Small surrounding vibrations are normally near the natural 

frequencies of the structure and are terminated by energy dissipation in the real structure. In this study of dynamic 

system we are mainly interested in examining the time vibration of the displacement of a structure due to the internal 

forces, with on damping or external forcing. Practically, vibrations decay with time but in theory these vibrations do not 

actually decay. For vibrations due to purely internal forces, the dynamic systems are referred to as conservative 

systems. The methods of solution adopted for solving non-linear single-degree-of-freedom problems may be extended 

to multi-degree-of-freedom problems. There are many studies in literature on the application of these methods of 

solution to linear problems and yet so few have been applied to the non-linear problems. 

 

2. NON-LINEAR CONSERVATIVE AUTONOMOUS SECOND ORDER SYSTEM 

 

Let us consider the non-linear conservative autonomous second order system equation which is generally given by 

 

                                                                                                                                              (2.0.1) 

 

with some initial conditions  and , where  and  are real positive numbers and  is the 

damping force. As an explanation to the new terms, we note that: 

 

(a) The system is conservative because dynamic systems obey the principal of conservation of energy which asserts that 

the sum of kinetic and potential energies is constant in a conservative force of field. 

 

(b) The system is autonomous because we are concerned with a system of ordinary differential equations which does 

not explicitly but implicitly contain the independent variable  (time). 

 

(c) The restoring force, , defines the position of the moving object from its equilibrium point. 

 

(d) There is no damping force i.e. no resisting medium so that . 
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Thus substituting ,  and  in (2.0.1) we have 

 

                                                                                                                                                              (2.0.2) 

 

and for this study let us consider 

 

                                                                                                                                                      (2.0.3) 

 

the dynamic vibration equation 

 

 and  at                                                                                          (2.0.4) 

 

From equation (2.0.2), we can derive an autonomous system, in the form of  

 

                                                                                                                                            (2.0.5) 

 

Where the right hand does not involve  explicitly but implicitly through the fact that  and  themselves depend on  

and thus being self-governing. The above reduction of second order non-linear to equivalent first order non-linear is by 

introducing a new independent variable 

 

 
 

and since      

 

the variables  and  satisfy the equivalent first-order system  

 

 
 

Where equivalent means that such solution to the first order system uniquely corresponds to a solution to the second 

order equation and vice versa. 

 

Specifically, equation (2.0.2) is equivalent to the autonomous system  

 

,  and  at                                                              (2.0.6) 

 

From (2.0.6) 

 

                                                                                                                                                               (2.0.7) 

 or   

                                                                                                             (2.0.8) 

 

Thus 

 

 
 

where  is the kinetic energy of the dynamic system (2.0.2),  is the potential energy of the 

dynamic system (2.0.2) while  is the constant (energy level). So equation (2.0.8) expresses 

the law of conservation of energy. 
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For the physical interpretation of the study, the nonlinear restoring force,  above, gives rise to special cases of 

nonlinear spring motion according to its behavior.  

 

Equation (2.0.2) is said to represent 

(i) A ‘hard’ spring if the magnitude of the restoring force,  acting on the mass, does increase more rapidly than 

that of a linear spring. 

(ii) A ‘soft’ spring if the magnitude of the restoring force,  acting on the mass, does  

 

increase less rapidly than that of a linear spring. 

 

The above mentioned two special cases of equation (2.0.2) form the central subject of discussion in this paper. 

 

Considering the function (2.0.2) and another situation where the restoring force is 

 

                                                                                                                                                        (2.0.9) 

 

We have two cases: (see table 1) 

 

(a)  

 

(b)  

 

 

        

        

        
 

Table 1: The table of restoring forces 

 

The trends in the above table depict clearly the idea of the ‘hard’ spring and ‘soft’ spring for the two nonlinear restoring 

forces given. 

 

Considering the magnitude of the nonlinear restoring force,  in case (a), since it does increase more 

rapidly than that of a linear spring i.e. , it represents a ‘hard’ spring. 

 

On the other hand, considering the magnitude of the nonlinear restoring force,  in case (b), since it 

does increase less rapidly than that of a linear spring i.e. , it represents a ‘soft’ spring. 

 

3. NEWMARK’S ALGORITHM 

 

Consider the equation (2.0.2) given by .Newmark’s originally proposed method applied to.it is of the 

form 

                                                                                          (3.0.10)                                             

                                                                                                             (3.0.11) 

                                                  

  or                                                                                                                       (3.0.12)                                                                    

 

where  is the time step, and  and  are the two Newmark parameters. 

 

Write  for  into (3.0.12) to get 

 

                                                                                                                                                  (3.0.13) 
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Eliminating  from (3.0.12) and 3.0.10) we have 

 

                                                                                            (3.0.14) 

                                              

Similarly, when we eliminate from (3.0.12) and (3.0.11) we have 

 

                                                                                                              (3.0.15)          

                                              

Eliminate  from (3.0.14) and (3.0.15) i.e.  we have 

 

                                                            (3.0.16)       

                          

Write  for  in (3.0.14) 

 

                                                                                                     (3.0.17)     

                                         

Where  and . 

 

Eliminate from (3.0.17) and (3.0.15) and hence by using equation (3.0.14) 

 

, 

Or 

                               (3.0.18) 

 where  is known value 

 

The scheme (3.0.18) in the displacement only is a two-step (three-time-level) scheme. 

 

For  the scheme (3.0.18) becomes explicit, i.e. 

 

                                                                       (3.0.19) 

 

The maximum accuracy for equation (2.0.2) is achieved when  i.e.  and   i.e.  .  This is 

the Trapezium rule for the linear case. 

 

Substitute  in our test equation (2.0.2) and we have  

 

 

Or  

                                                                                                                        (3.0.20) 

where    is known value. Equation (2.0.20) is nonlinear in   

(or implicit) provided , and requires a nonlinear iterative method such as Newton-Raphson for solution. 

 

4. NUMERICAL RESULTS OF THE EQUATION 

 

Using the numerical algorithm developed above, equation (3.0.18) yields the required numerical results as follows: 

Considering the scheme (3.0.18) i.e.  where  

 ) which is the displacement 

only and two-step (three-time-level) scheme. Using C++ computer programming with Newton-Raphson’s iteration,  
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 from scheme (3.0.18) 

 

 thus  

leading to   where  is expressed as  to 

be used in the computer programme. 

 

The following conditions were taken into account when compiling results: it is clearly stated just that before equation 

(3.0.20) that the maximum accuracy is achieved when  and   and so our choice of the parameters was 

influenced by the given parameters. Secondly, the stability of the numerical schemes is governed by small step size, .  

Given that  , let   and  , thus  leading to the 

following results: 

 

 

t 

 

x when  � = 0.2 

and  � = 0.1 

 

x when  and  

 

x when  � = 0.05 

and  � = 0.4 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.0 

0.2 

0.35 

0.478593 

0.567135 

0.598426 

0.562833 

0.461835 

0.308038 

0.121116 

-0.0802323 

-0.288008 

-0.511782 

-0.779739 

-1.13535 

-1.63076 

-2.31625 

-3.22819 

-4.38406 

-5.78896 

-7.44377 

-9.34856 

-11.5034 

-13.9082 

-16.563 

-19.4678 

-22.6226 

-26.0273 

-29.6821 

-33.5869 

-37.7417 

-42.1465 

0.2 

0.35 

0.471592 

0.54544 

0.558432 

0.508191 

0.403806 

0.262878 

0.104905 

-0.0567865 

-0.220356 

-0.396754 

-0.609934 

-0.898417 

-1.31534 

-1.91814 

-2.74816 

-3.82302 

-5.14714 

-6.72119 

-8.54524 

-10.6193 

-12.9433 

-15.5174 

-18.3414 

-21.4155 

-24.7395 

-28.3136 

-32.1376 

-36.2117 

-40.5357 

0.2 

0.35 

0.473478 

0.550679 

0.567087 

0.518565 

0.412827 

0.267165 

0.102021 

-0.067801 

-0.239619 

-0.424675 

-0.648008 

-0.949256 

-1.38177 

-2.00176 

-2.84913 

-3.94118 

-5.28242 

-6.87359 

-8.71475 

-10.8059 

-13.1471 

-15.7382 

-18.5794 

-21.6706 

-25.0117 

-28.6029 

-32.4441 

-36.5352 

-40.8764 

 

 

5. STABILITY OF THE NUMERICAL ALGORITHM 

 

From the result of the two-step (three-time-level) scheme tabulated above, it is clearly evident that for zero damping or 

no damping dynamic equation, the Newmark method is conditionally stable when the parameter chosen, for instance � 

= 0.05 and � = 0.4 are within the neighbourhood of the parameters associated with maximum accuracy i.e.��  and 

  . As we move away from maximum accuracy parameters, the method no longer conditionally stable. 
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6. CONCLUSION 

 

In this paper, we have looked at implicit nonlinear numerical scheme that can be used to solve the implicit nonlinear 

dynamic vibration equations. In the nonlinear dynamic method applied, that is, Newmark method, we used a 

displacement only, two-step (three-time-level) scheme with a C++ computer programming which is fast and accurate in 

producing results.  The equation has been solved using Newton-Raphson iteration method which converges fast to a 

meaningful solution. The results are tabulated. For the stability of the numerical schemes, a small step size is needed, 

with maximum accuracy achieved when the Newmark parameters,  and  are  and  respectively. The results of 

our study indicate that Newmark algorithm exhibit stable case for the solution of the softening spring, equation (2.0.4) 

when parameters chosen are very close to the maximum accuracy parameters, otherwise unstable when parameters 

chosen are not close to the maximum accuracy parameter. 
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