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ABSTRACT 
In the present paper ,we  have considered the problem  in which  {𝜉𝑖}𝑖=1𝑛  and  {𝜉𝑖∗}𝑖=1𝑛  be  the two  sets of  interscaled  
nodal  points on the interval  [0,∞) .  Here we deal with the problem in which one set consists of the nodes of 𝐿𝑛𝑘 (x) and 
other consists of the nodes of 𝐿𝑛𝑘−1(x). We investigate the existence, uniqueness explicit representation of interpolatory 
polynomial. Estimation of the fundamental polynomials have also been obtained. 
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1. INTRODUCTION 
                            
J. Balázs [2] was the first to give the solution of the problem with the nodes as the zeros of ultra spherical polynomial 

𝑃𝑛
(𝛼)(𝑥) (𝛼 > −1)  and the weight function (𝑥) = (1 − 𝑥2)

(1+𝛼)
2 , 𝑥 ∈ [−1,−1]. He proved that generally there do 

exist any polynomial 𝑅𝑛(𝑥)  of degree ≤ 2n-1 satisfying the conditions: 
  𝑅𝑛(𝜉𝑖∗) = 𝑔𝑖∗,  (𝜔𝑅𝑛)′(𝜉𝑖∗) = 𝑔𝑖∗∗       𝑓𝑜𝑟 𝑖 = 1(1)𝑛 
where  𝑔𝑖∗ and  𝑔𝑖∗∗ are arbitrary real numbers. However taking an additional condition 

𝑅𝑛(0) = ∑ 𝛼𝑖𝑙𝑖2(0)𝑛
𝑖=1   

where 0 is not a nodal point. In 1984, L. Szili [13] studied analogous problem with the nodes as the roots of 𝐻𝑛(𝑥), the 
Hermite polynomial and weight function 𝜔(𝑥) = 𝑒(−12𝑥

2). Pál [10] proved that for a given arbitrary numbers {𝛼𝑖∗}𝑖=1𝑛  
and {𝛽𝑖∗}𝑖=1𝑛  there exists a unique polynomial of degree ≤ 2n-1 satisfying the conditions: 
                               𝑅𝑛(𝜉𝑖∗) = 𝛼𝑖∗, 𝑓𝑜𝑟 𝑖 = 1(1)𝑛      (𝜔𝑅𝑛)′(𝜉𝑖∗) = 𝛽𝑖∗ 𝑓𝑜𝑟 𝑖 = 1(1)𝑛 − 1, with an initial condition 
𝑅𝑛(𝑎) = 0    where a is a given point, different from the nodal points  {𝑥𝑖}𝑖=1𝑛  and {𝑦𝑖}𝑖=1𝑛 . In this paper we study Pál – 
type interpolational polynomial with 𝜔𝑛+𝑘(𝑥) = 𝑥𝑘𝐿𝑛

(𝑘)(𝑥).we have determined  the existence, uniqueness, explicit  
representation and  estimation  of  fundamental  polynomials of  such special  kind  of  mixed  type   of  interpolation   
on  interval [0,∞). Let  {𝜉𝑖}𝑖=1𝑛   and  {𝜉𝑖∗}𝑖=1𝑛  be the two sets of interscaled nodal points on the interval [0, ∞). We seek to 
determine a polynomial 𝑅𝑛(𝑥)  of minimal possible degree ≤ 3n+k satisfying the interpolatory conditions: 
                             𝑅𝑛(𝜉𝑖) = 𝑔𝑖,  𝑅𝑛′(𝜉𝑖) = 𝑔𝑖∗,     𝑅𝑛(𝜉𝑖∗) = 𝑔𝑖∗∗,       𝑓𝑜𝑟 𝑖 = 1(1)𝑛              
(1.3)                       𝑅𝑛

(𝑗)(𝜉0) = 𝑔0
(𝑗)                                                    ,        𝑗 = 0,1, … , 𝑘 

where 𝑔𝑖, 𝑔𝑖∗, 𝑔𝑖∗∗and 𝑔0
(𝑗)  are arbitrary real numbers. Here Laguerre polynomials  𝐿𝑛

(𝑘)(𝑥) and 𝐿𝑛
(𝑘−1)(𝑥)  have zeroes 

{𝜉𝑖}𝑖=1𝑛  and {𝜉𝑖∗}𝑖=1𝑛   respectively and 𝑥0 = 0. We prove existence, uniqueness, explicit representation and estimation of 
fundamental polynomials.  
 
2. PRELIMINARIES 
 
In this section we shall give some well-known results which are as follws: 
 
As we know that the Laguerre polynomial is a constant multiple of a confluent hypergeometric function so the 
differential equation is given by 
(2.1)  𝑥𝐷2𝐿𝑛𝑘 (𝑥) + (1 + 𝑘 − 𝑥)𝐷𝐿𝑛𝑘 (𝑥) + 𝑛𝐿𝑛𝑘 (𝑥) = 0 
 
(2.2)  𝐿𝑛

(𝑘−1)′(𝑥) = −𝐿𝑛−1
(𝑘) (𝑥) 
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Also using the identities 
(2.3)  𝐿𝑛

(𝑘)(𝑥) = 𝐿𝑛
(𝑘+1)(𝑥) − 𝐿𝑛−1

(𝑘+1)(𝑥) 
 
(2.4)  𝑥𝐿𝑛

(𝑘)′(𝑥) = 𝑛𝐿𝑛
(𝑘)(𝑥) − (𝑛 + 𝑘)𝐿𝑛−1

(𝑘) (𝑥) 
 
We can easily find a relation 
(2.5)  𝑑

𝑑𝑥
[𝑥𝑘𝐿𝑛𝑘 (𝑥)] = (𝑛 + 𝑘)𝑥𝑘−1𝐿𝑛

(𝑘−1)(𝑥) 
 
By the following conditions of orthogonality and normalization we define Laguerre polynomial 𝐿𝑛

(𝑘)(𝑥), 𝑓𝑜𝑟 𝑘 > −1 
(2.6)  ∫ 𝑒−𝑥𝑥𝑘𝐿𝑛

(𝑘)(𝑥)𝐿𝑚
(𝑘)(𝑥)𝑑𝑥 = 𝛤(𝑘 + 1) �𝑛 + 𝑘

𝑛 � 𝛿𝑛𝑚𝑛,𝑚 = 0,1,2, … . .∞
0  

 

(2.7)  𝐿𝑛
(𝑘)(𝑥) = ∑ �𝑛 + 𝑘

𝑛 − 𝜇�
(−𝑥)𝜇

𝜇!
𝑛
𝜇=0  

 
The fundamental polynomials of Lagrange interpolation are given by 

(2.8)  𝑙𝑗(𝑥) = 𝐿𝑛
(𝑘)(𝑥)

𝐿𝑛
(𝑘)′�𝑥𝑗��𝑥−𝑥𝑗�

= 𝛿𝑖,𝑗 

 

(2.9)  𝑙𝑗∗(𝑥) = 𝐿𝑛
(𝑘−1)(𝑥)

𝐿𝑛
(𝑘−1)′�𝑥𝑗��𝑥−𝑥𝑗�

= 𝛿𝑖,𝑗 

 

(2.10)  𝑙𝑗∗
′(𝑦𝑗) =

⎩
⎨

⎧ 𝐿𝑛
(𝑘−1)′(𝑦𝑖)

𝐿𝑛
(𝑘−1)′�𝑦𝑗�(𝑦𝑖−𝑦𝑗)

             𝑖 ≠ 𝑗

−
(𝑘−𝑦𝑗)

2𝑦𝑗
                         𝑖 = 𝑗

�  𝑖, 𝑗 = 1(1)𝑛 

 

(2.12)  𝑙𝑗′(𝑦𝑗) = 1
�𝑦𝑗−𝑥𝑗�

[
𝐿𝑛

(𝑘)′(𝑦𝑗)

𝐿𝑛
(𝑘)′(𝑥𝑗)

−
𝐿𝑛

(𝑘)(𝑦𝑗)

𝐿𝑛
(𝑘)′(𝑥𝑗)�𝑦𝑗−𝑥𝑗�

],   𝑗 = 1(1)𝑛 

 
For the roots of 𝐿𝑛

(𝑘)(𝑥) we have 
(2.13)  𝑥𝑘2~ 𝑘2

𝑛
 

 
(2.14)  𝜂(𝑥)�𝑆𝑛

(𝑙)(𝑥)� = О(1)  where 𝜂(𝑥) is the weight function 
 
(2.15)  �𝐿𝑛

(𝑘)′(𝑥𝑗)�~𝑗−𝑘−
3
2𝑛𝑘+1 , (0 < 𝑥𝑗 ≤ Ω,𝑛 = 1,2,3, … … . ) 

 

(2.16)  �𝐿𝑛𝑘 (𝑥𝑗)� = � 𝑥
−𝑘2−

1
4О �𝑛

𝑘
2−

1
4� , 𝑐𝑛−1 ≤ 𝑥 ≤ Ω

О(𝑛𝑘),                  0 ≤ 𝑥 ≤ 𝑐𝑛−1   
� 

                                                                  
3. NEW RESULTS 
 

Theorem 1: For n >1 fixed integer let {𝑔𝑖}𝑖=1𝑛 , {𝑔𝑖∗}𝑖=1𝑛 , {𝑔𝑖∗∗}𝑖=1𝑛  and, {𝑔0
(𝑗)}𝑗=0𝑘  are arbitrary real numbers then there 

exists a unique polynomial 𝑅𝑛(𝑥) of minimal possible degree ≤ 3n+k on the nodal points (1.1) satisfying the condition 
(1.2) and (1.3).  The polynomial 𝑅𝑛(𝑥) can be written in the form  
 
(3.1)  𝑹𝒏(𝒙) = ∑ 𝑼𝒋(𝒙)𝒈𝒋𝒏

𝒋=𝟏 + ∑ 𝑽𝒋(𝒙)𝒈𝒋∗ +𝒏
𝒋=𝟏 ∑ 𝑾𝒋(𝒙)𝒈𝒋∗∗ + ∑ 𝑪𝒋(𝒙)𝒈𝟎

(𝒋)𝒌
𝒋=𝟎

𝒏
𝒋=𝟏  

 
where 𝑈𝑗(𝑥), 𝑉𝑗(𝑥 ), 𝑊𝑗(𝑥) and 𝐶𝑗(𝑥) are fundamental polynomials of degree ≤ 3n+k given by 

(3.2)  𝑈𝑗(𝑥) =   
𝑥(𝑘+1)  𝐿𝑛

(𝑘−1)(𝑥) [𝑙𝑗(𝑥)]2[1−2�𝑥−𝑥𝑗�]

𝑥𝑗
(𝑘+1)𝐿𝑛

(𝑘−1)�𝑥𝑗�
                     

 

(3.3)  𝑉𝑗(𝑥) =
𝑥(𝑘+1) 𝑙𝑗(𝑥) 𝐿𝑛

(𝑘)(𝑥)𝐿𝑛
(𝑘−1)(𝑥)

𝑥𝑗
𝑘+1 𝐿𝑛𝑘−1(𝑥𝑗) 𝐿𝑛

(𝑘)′(𝑥𝑗)
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(3.4)  𝑊𝑗(𝑥) =
𝑥𝑘+1𝑙𝑗

∗(𝑥)[𝐿𝑛
(𝑘)(𝑥)]2

𝑦𝑗
𝑘+1[𝐿𝑛𝑘 (𝑦𝑗)]2

,   

 

(3.5)  𝐶𝑗(𝑥) = 𝑝𝑗(𝑥)𝑥𝑗�𝐿𝑛
(𝑘−1)(𝑥)�

2
𝐿𝑛

(𝑘)(𝑥) 𝑥𝑘𝐿𝑛
(𝑘)(𝑥)𝐿𝑛

(𝑘−1)(𝑥) �𝑐𝑗 −
𝐿𝑛

(𝑘−1)(𝑥)𝑝𝑗(𝑥)+𝑞𝑗(𝑥)𝐿𝑛
(𝑘)(𝑥)

𝑥𝑘−𝑗
�, 

                                                                                                                                                                                    𝑗 = 0,1, … , 𝑘 − 1 
(3.6)  𝐶𝑘(𝑥) = 1

𝑘!𝐿𝑛𝑘(0)[𝐿𝑛
(𝑘−1)(0)]2

𝑥𝑘𝐿𝑛
(𝑘−1)(𝑥)[𝐿𝑛

(𝑘)(𝑥)] 2    

where 𝑝𝑗(𝑥) and 𝑞𝑗(𝑥) are polynomials of degree at most k-j-1.  
 
Theorem 2: Let the interpolatory function 𝑓:ℛ → ℛ be continuously differentiable such that, 

𝐶(𝑚) = {𝑓(𝑥): 𝑓 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑖𝑛 [0,∞), 𝑓(𝑥) = О(𝑥𝑚) 𝑎𝑠 𝑥 → ∞;                                       
where 𝑚 ≥ 0 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , then for every 𝑓 ∈ 𝐶(𝑚) and  𝑘 ≥ 0  
(3.7)  𝑅𝑛(𝑥) = ∑ 𝛼𝑗∗∗𝑈𝑗(𝑥)𝑛

𝑗=1 + ∑ 𝛽𝑗∗∗𝑉𝑗(𝑥)𝑛
𝑗=1  +∑ 𝛾𝑗∗∗𝑊𝑗(𝑥) +𝑛

𝑗=1 ∑ 𝜑0∗∗
(𝑗)𝐶𝑗(𝑥)𝑘

𝑗=0  
 
satisfies the relations: 
 (3.8)  |𝑅𝑛(𝑥) − f(x)| = О(1)𝜔 �𝑓, log 𝑛 

√𝑛
�,     for  0 ≤ 𝑥 ≤ 𝑐𝑛−1 

 
 (3.9)  |𝑅𝑛(𝑥) − f(x)| = О(1)𝜔 �𝑓, log 𝑛 

√𝑛
�,     for  𝑐𝑛−1 ≤ 𝑥 ≤ Ω 

 where ω is the modulus of continuity. 
 
4. PROOF OF THEOREM 1 
 
Let  𝑈𝑗(𝑥) , 𝑉𝑗(𝑥) , 𝑊𝑗(𝑥) and 𝐶𝑗(𝑥) are polynomials of degree ≤ 3n+k satisfying conditions (4.1), (4.2), (4.3) and  (4.4) 
respectively. 
 
 (4.1)   For j = 1 ,2, … . , n   
 

(4.1)  

⎩
⎪
⎨

⎪
⎧ 𝑈𝑗(𝑥𝑖) = �

0                      𝑖≠𝑗
𝑓𝑜𝑟

1                      𝑖=𝑗
�  ,       𝑈𝑗′(𝑥𝑖) = 0,                 𝑈𝑗(𝑦𝑖) = 0 ,      

𝑎𝑛𝑑                                                                                                                
𝑈𝑗

(𝑙)(0) = 0,                               𝑖 = 1(1)𝑛,              𝑙 = 0,1, … , 𝑘   

  

    

� 

 
For j = 1,2, … . , n   

(4.2)  

⎩
⎪
⎨

⎪
⎧  𝑉𝑗(𝑥𝑖) = 0 ,          𝑉𝑗′(𝑥𝑖) = �

0                      𝑖≠𝑗
𝑓𝑜𝑟

1                      𝑖=𝑗
�  ,                          𝑉𝑗(𝑦𝑖) = 0  

𝑎𝑛𝑑                                                                                                                       
𝑉𝑗

(𝑙)(0) = 0 ,                                      𝑖 = 1(1)𝑛   , 𝑙 = 0,1, … , 𝑘                 
    

� 

 
For  j = 1,2, … . , n   

(4.3)  

⎩
⎪
⎨

⎪
⎧  𝑊𝑗(𝑥𝑖) = 0,               𝑊𝑗

′(𝑥𝑖) = 0,               𝑊𝑗(𝑦𝑖) = �
0                      𝑖≠𝑗

𝑓𝑜𝑟
1                      𝑖=𝑗

�  ,

𝑎𝑛𝑑                                                                                                                   
𝑊𝑗

(𝑙)(0) = 0,                             𝑖 = 1(1)𝑛  , 𝑙 = 0,1, … , 𝑘                  

 

    

� 

  
and for  l = 0,1, … … , k                     
 

  (4.4)  

⎩
⎪
⎨

⎪
⎧ 𝐶𝑘(𝑥𝑖) = 0,                    𝐶𝑘′(𝑥𝑖) = 0,                         𝐶𝑘(𝑦𝑖) = 0  
𝑎𝑛𝑑                                                                                                      

𝐶𝑘
(𝑙)(0) = �

0                      𝑖≠𝑗
𝑓𝑜𝑟

1                      𝑖=𝑗
� ,                                              𝑖 = 1(1)𝑛   

   

    

�                                                             

 
To determine  𝑊𝑗(𝑥)  let 
(4.5)  𝑊𝑗(𝑥) = 𝐶1𝑥𝑘+1𝑙𝑗∗(𝑥)[𝐿𝑛𝑘 (𝑥)]2 
where   𝐶1  is a constant.  𝑙𝑗∗(𝑥) is defined in (2.8).  𝑊𝑗(𝑥)  is a polynomial of degree ≤ 3n+k   
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By using (2.9) and (4.3) we determine 
(4.6)  𝐶1 = 1

𝑦𝑗
(𝑘+1)[𝐿𝑛𝑘(𝑦𝑗)]2

 

 
Hence we find the third fundamental polynomial 𝑊𝑗(𝑥) of degree ≤ 3n+k 
 
To find second fundamental polynomial let 
(4.7)  𝑉𝑗(𝑥) = 𝐶2𝑥𝑘+1𝐿𝑛

(𝑘)(𝑥)𝐿𝑛
(𝑘−1)(𝑥)𝑙𝑗(𝑥) 

where 𝐶2 is arbitrary constants. By using (2.8) and (4.2) we determine 
(4.8)  𝐶2 = 1

𝑥𝑗
(𝑘+1)𝐿𝑛

(𝑘)′( 𝑥𝑗)𝐿𝑛
(𝑘−1)(𝑥𝑗)

  

 
Hence we find the second fundamental polynomial 𝑉𝑗(𝑥) of degree ≤ 3n+k 
 
Again let  
(4.9)  𝑈𝑗(𝑥) = 𝐶3  𝑥𝑘+1[𝑙𝑗(𝑥)]2𝐿𝑛

(𝑘−1)(𝑥) + 𝐶4  𝑥𝑘+1(𝑥 − 𝑥𝑗) [𝑙𝑗(𝑥)]2𝐿𝑛
(𝑘−1)(𝑥) 

where 𝐶3 and 𝐶4 are arbitrary constanst, 𝑙𝑗(𝑥) is defined in (2.8). 𝑈𝑗(𝑥) is polynomial of degree ≤ 3 n+k satisfying the 
conditions (4.1) by which we obtain  
(4.10)  𝐶3 = 1

𝑥𝑗
(𝑘+1)𝐿𝑛

(𝑘−1)(𝑥𝑗)
 

(4.11)  𝐶4 = − 2

𝑥𝑗
(𝑘+1)𝐿𝑛

(𝑘−1)(𝑥𝑗)
   

 
Hence we find the first fundamental polynomial  𝑈𝑗(𝑥) of degree ≤ 3n+k 
 
To find 𝐶𝑗(𝑥), we assume 𝐶𝑗(𝑥) for fixed   𝑗 𝜖 {0,1, … … . . , 𝑘 − 1} in the form 
(4.12)         𝐶𝑗(𝑥) =  𝑝𝑗(𝑥)𝑥𝑗[𝐿𝑛𝑘−1(𝑥)]2𝐿𝑛𝑘 (𝑥) + 𝑥𝑘𝐿𝑛

(𝑘)(𝑥)𝐿𝑛
(𝑘−1)(𝑥)𝑔𝑛(𝑥) 

Where 𝑝𝑗(𝑥) and 𝑔𝑛(𝑥) are polynomials of degree k-j-1 and n respectively. Now it is clear that  𝐶𝑗
(𝑙)(0) = 0 𝑓𝑜𝑟  

(𝑙 = 0, … … , 𝑗 − 1)   and since   𝐿𝑛
(𝑘)(𝑥𝑖) = 0   and 𝐿𝑛

(𝑘−1)(𝑦𝑖) = 0   we get 𝐶𝑗(𝑥𝑖) = 0 𝑎𝑛𝑑  𝐶𝑗(𝑦𝑖) = 0 𝑓𝑜𝑟 𝑖 = 1(1)𝑛 . 
The coefficient of the polynomial 𝑝𝑗(𝑥) are calculated by the system 

(4.13)  𝐶𝑗
(𝑙)(0) = 𝑑𝑙

𝑑𝑥𝑙
�𝑝𝑗(𝑥)𝑥𝑗[𝐿𝑛𝑘−1(𝑥)]2𝐿𝑛𝑘 (𝑥)�

𝑥=0
= 𝛿𝑖,𝑗      (𝑙 = 𝑗, … … , 𝑘 − 1) 

 
Now from the equation 𝐶𝑗

(𝑘)(0) = 0, we get 

(4.14)  𝑐𝑗 = 𝑔𝑛(0) = −1

�𝑛+𝑘𝑘 �𝑘!𝐿𝑛
(𝑘−1)(0)

𝑑𝑘

𝑑𝑥𝑘
�𝑝𝑗(𝑥)𝑥𝑗[𝐿𝑛𝑘−1(𝑥)]2𝐿𝑛𝑘 (𝑥)�

𝑥=0
 

 
Now using the condition  𝐶𝑗′(𝑥𝑖) = 0  of (4.7), we get 
(4.15)  𝑔𝑛(𝑥𝑖) = −(𝑥𝑖)𝑗−𝑘𝐿𝑛𝑘 (𝑥𝑖)𝑝𝑗(𝑥𝑖) which implies 𝑔𝑛(𝑥)  as follows    
 

(4.16)  𝑔𝑛(𝑥) = −
𝐿𝑛𝑘−1(𝑥)𝑝𝑗(𝑥)+𝑞𝑗(𝑥)𝐿𝑛𝑘 (𝑥)

𝑥𝑘−𝑗
 

where   𝑞𝑗(𝑥)  is  a  polynomial  of degree   k-j   
 
Using (4.12) and (4.14) we obtain  𝐶𝑗(𝑥) of degree ≤ 3n+k satisfying the conditions (4.4) 
                                          
5. ESTIMATION OF THE FUNDAMENTAL POLYNOMIALS  
 
Lemma 5.1: Let  𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑈𝑗(𝑥), 𝑓𝑜𝑟    𝑗 = 1,2, … ,𝑛 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 (3.2) 𝑡ℎ𝑒𝑛  𝑤𝑒 ℎ𝑎𝑣𝑒 
(5.1)                            ∑ �𝑈𝑗(𝑥)� = О(1 ),        𝑛

𝑗=1        for  0 ≤ 𝑥 ≤ 𝑐𝑛−1    
 
(5.2)                               ∑ �𝑈𝑗(𝑥)� = О(1),           𝑛

𝑗=1       for  𝑐𝑛−1 ≤ 𝑥 ≤ Ω          
where   𝑈𝑗(𝑥)  is given in equation (3.2)    
 
Proof:    From (3.2) we have 

(5.3)  �𝑈𝑗(𝑥)� ≤  
�𝑥𝑘+1�  [𝑙𝑗

∗(𝑥)]2 �𝐿𝑛
(𝑘−1)(𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘−1)(𝑥𝑗)�
+ 

2�𝑥𝑘+1� �𝑙𝑗
∗(𝑥)� �𝐿𝑛

(𝑘−1)(𝑥)� �𝐿𝑛𝑘 (𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘)′(𝑥)� �𝐿𝑛
(𝑘−1)(𝑥𝑗)�
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(5.4)  ∑ �𝑈𝑗(𝑥)� ≤ ∑
�𝑥𝑘+1�  [𝑙𝑗

∗(𝑥)]2 �𝐿𝑛
(𝑘−1)(𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘−1)(𝑥𝑗)�
𝑛
𝑗=1 + 𝑛

𝑗=1 ∑
2�𝑥𝑘+1� �𝑙𝑗

∗(𝑥)� �𝐿𝑛
(𝑘−1)(𝑥)� �𝐿𝑛𝑘 (𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘)′(𝑥)� �𝐿𝑛
(𝑘−1)(𝑥𝑗)�

𝑛
𝑗=1  

                                                  = 𝜁1 + 𝜁2 
where      

𝜁1 = ∑
�𝑥𝑘+1�  [𝑙𝑗

∗(𝑥)]2 �𝐿𝑛
(𝑘−1)(𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘−1)(𝑥𝑗)�
𝑛
𝑗=1   

𝜁2 =   ∑
2�𝑥𝑘+1� �𝑙𝑗

∗(𝑥)� �𝐿𝑛
(𝑘−1)(𝑥)� �𝐿𝑛𝑘 (𝑥)�

�𝑥𝑗
(𝑘+1)�  �𝐿𝑛

(𝑘)′(𝑥)� �𝐿𝑛
(𝑘−1)(𝑥𝑗)�

𝑛
𝑗=1   

 
Thus by (3.2) and (2.16) equations (5.1) and (5.2) follows at once. 
 
Lemma 3.3.2: Let  𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑉𝑗(𝑥), 𝑓𝑜𝑟  𝑗 = 1,2, … ,𝑛 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 (3.3) 𝑡ℎ𝑒𝑛  𝑤𝑒 ℎ𝑎𝑣𝑒  
(5.4)  ∑ �𝑉𝑗(𝑥)� = О(𝑛−1),          𝑛

𝑗=1       for  0 ≤ 𝑥 ≤ 𝑐𝑛−1         
 
(5.5)                       ∑ �𝑉𝑗(𝑥)� = О(1),         𝑛

𝑗=1            for  𝑐𝑛−1 ≤ 𝑥 ≤ Ω,         
where  𝑉𝑗(𝑥)  is given in equation (3.3)    
 
Proof: From (3.3) we have  

�𝑉𝑗(𝑥)� ≤ 
�𝑥(𝑘+1)��𝑙𝑗(𝑥)��𝐿𝑛

(𝑘)(𝑥)��𝐿𝑛
(𝑘−1)(𝑥)�

�𝑥𝑗
𝑘+1��𝐿𝑛𝑘−1(𝑥𝑗)��𝐿𝑛

(𝑘)′(𝑥𝑗)�
 

   

(5.6)  ∑ �𝑉𝑗(𝑥)� ≤ ∑
�𝑥(𝑘+1)��𝑙𝑗(𝑥)��𝐿𝑛

(𝑘)(𝑥)��𝐿𝑛
(𝑘−1)(𝑥)�

�𝑥𝑗
𝑘+1��𝐿𝑛𝑘−1(𝑥𝑗)��𝐿𝑛

(𝑘)′(𝑥𝑗)�
𝑛
𝑗=1    𝑛

𝑗=1                                

                                              
Using (2.16), we get the result.  
 
Lemma 5.3: Let  𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑊𝑗(𝑥), 𝑓𝑜𝑟    𝑗 = 1,2, … ,𝑛 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 (3.4) 𝑡ℎ𝑒𝑛  𝑤𝑒 ℎ𝑎𝑣𝑒  
(5.7)  ∑ �𝑊𝑗(𝑥)� = О(𝑛−1),         𝑛

𝑗=1               for  0 ≤ 𝑥 ≤ 𝑐𝑛−1   
 
(5.8)                     ∑ �𝑊𝑗(𝑥)� = О(1),𝑛

𝑗=1                           for  𝑐𝑛−1 ≤ 𝑥 ≤ Ω          
where  𝑊𝑗(𝑥)  is given in equation (3.4).   
 
Proof:  From (3.4) we have 

(5.9)  ∑ �𝑊𝑗(𝑥)�𝑛
𝑗=1 ≤ ∑

�𝑥𝑘+1� �𝑙𝑗
∗(𝑥)� �𝐿𝑛

(𝑘)(𝑥)�
2

�𝑦𝑗
𝑘+1�  �𝐿𝑛𝑘 (𝑦𝑗)�

2
𝑛
𝑖=1  

 
By equations (5.9) and (2.16), we yield the result.                                    
 
Now we prove our main theorem in § 6. 
 
6. PROOF OF MAIN THEOREM 3.2 
 
Since 𝑅𝑛(𝑥) given by equation (3.1) is exact for all polynomial 𝑆𝑛(𝑥) of degree ≤ 3n+k, we have 
 
(6.1)  𝒬𝑛(𝑥) = ∑ 𝒬𝑛�𝑥𝑗�𝑈𝑗(𝑥)𝑛

𝑗=1 + ∑ 𝒬𝑛′�𝑥𝑗�𝑉𝑗(𝑥)𝑛
𝑗=1  +∑ 𝒬𝑛�𝑦𝑗�𝑊𝑗(𝑥)𝑛

𝑗=1 + ∑ 𝒬𝑛(𝑥0)𝐶𝑗(𝑥)𝑘
𝑗=0  

 
From equation (3.2.1) and (3.4.1) we get 
(6.2)  |𝑓(𝑥) − 𝑅𝑛(𝑥)| ≤ |𝑓(𝑥) − 𝒬𝑛(𝑥)| + |𝒬𝑛(𝑥) − 𝑅𝑛(𝑥)| 

≤ |𝑓(𝑥) − 𝒬𝑛(𝑥)| + ∑ �𝑓�𝑥𝑗� − 𝒬𝑛�𝑥𝑗��𝑛
𝑗=1 �𝑈𝑗(𝑥)�   

+∑ �𝑓′�𝑥𝑗� − 𝒬𝑛′ �𝑥𝑗��𝑛
𝑗=1 �𝑉𝑗(𝑥)�  

+∑ �𝑓�𝑦𝑗� − 𝒬𝑛�𝑦𝑗��𝑛
𝑗=1 �𝑊𝑗(𝑥)�  

+∑ �𝑓𝑙(𝑥0) − 𝒬𝑛𝑙(𝑥0)�𝑘
𝑗=0 �𝐶𝑗(𝑥)�  

 
Thus (6.2) and Lemmas 5.1, 5.2, 5.3 completes the proof of the theorem.      
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