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ABSTRACT 
In this research paper, a new class of closed sets called weakly semi closed sets (ws-closed sets) in topological spaces 
are introduced and studied.  A subset A of a topological space (X,τ) is called ws-closed set if U contains semi closure of 
A whenever U contains A and U is w-open set in (X,τ).  This new class of sets lies between the class of all semi-closed 
sets and generalised semi-pre regular closed sets in topological spaces. Also some of their properties have been 
investigated. 
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1. INTRODUCTION  
 
In 1970 N. Levine [18], first introduced the concept of generalized closed sets were defined and investigated. In 2000 
M. Sheik John [33], introduced and studied w-closed sets in topological space X. Throughout this paper X or (X,τ) 
represent non-empty topological space. Let A be subset of a topological space X. cl(A), int(A), scl(A), αcl(A) and 
spcl(A)) denote the closure of A, the interior of A, the semi-closure of A, the α-closure of A and the semi pre closure of 
A  in X respectively. 

 
2. PRELIMINARIES  
 
Definition 2.1:  A subset A of a topological space (X, τ) is called a 

i. Regular open set [32] if A=int(cl(A)) and regular closed if A=cl(int(A)) 
ii. Semi-open set [19] if A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆ A. 
iii. α-open set [20] if A ⊆int(cl(int(A))) and a α-closed set if cl(int(cl(A))) ⊆ A. 
iv. Generalized semi pre closed set (gsp-closed) [8] if spcl(A) ⊆ U whenever A ⊆ U  and U is open in (X, τ). 
v. w-closed set[33] if cl(A) ⊆ U whenever A ⊆ U and U   is semi -open in (X, τ). 
vi. gspr-closed set[10] if spcl(A) ⊆ U whenever A ⊆ U and U   is regular -open in (X, τ). 
vii. αgp-closed set[11] if cl(A) ⊆ U whenever A ⊆ U and U   is pre-open in (X, τ). 
viii. *gα–closed set [41] if cl(A) ⊆ U whenever A ⊆ U   and U  is  gα - open in (X, τ). 
ix. g#s-closed set[40] if scl(A) ⊆ U whenever A ⊆ U and U is αg -open in (X, τ). 
x. rb-closed set[24] if cl(A) ⊆ U whenever A ⊆ U and U   is  b-open in (X, τ). 
xi. gξ* -closed set[17] if  αcl(A) ⊆ U whenever A ⊆ U and U  is #gα- open in (X, τ). 
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3. BASIC PROPERTIES OF WS-CLOSED SETS IN TOPOLOGICAL SPACE    
 
Definition 3.1: A subset A of a topological space (X,τ) is called weakly semi closed (ws-closed) set if scl(A) ⊆ U, 
whenever A ⊆ U and U is w-open set in (X, τ). The family of all ws –closed sets X is denoted by WSC(X). the 
compliment of ws –closed set is called ws-open set in (X, τ).  The family of all ws-open sets in X is denoted by 
WSO(X).  
 
Example 3.2: Let X = {a, b, c, d}, τ = {X,φ, {a}, {b}, {a, b}, {a, b, c}}. Then  
Closed sets in (X,τ) are X, φ, {d},{c, d},{a ,c},{a, c, d}, {b, c, d}. 
Semi-closed sets  in  (X, τ) are X,φ,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, c, d}, {b, c, d}.  
W-closed sets in (X,τ) are X, φ, {d}, {c, d}, {a, c, d}, {b, c, d}. 
W-open sets in (X,τ) are X, φ, {a}, {b}, {a, b}, {a, b, c}. 
ws-closed sets in  (X, τ) are X,φ,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, d},{a, c, d}, {b, c, d}. 
ws-open sets in  (X, τ) are X,φ,{a},{b},{c},{a, c},{a, d},{b, c},{b, d}, {c, d},{a, b, c}, {a, b, d}, {a, c, d},{b, c, d}. 
 
We prove that the class of ws-closed sets are properly lies between the class of all semi-closed sets and generalised 
semi-pre regular closed sets in topological spaces. 
 
Theorem 3.3:- Every semi-closed [19] set in X is ws-closed set in X. 
 
Proof: Let A be a semi-closed set in X. Let U be any w-open set in X such that A ⊆ U. Since A is semi-closed, we 
have scl(A) = A ⊆ U, we have  scl(A) ⊆ U. Hence A is ws-closed set in X. 
 
Remark 3.4: The converse of the above Theorem 3.3 need not be true as seen from the following Example 3.5.  
 
Example 3.5: Let X= {a, b, c, d} and  ={X, ϕ, {a}, {b}, {a, b}, {a, b, c}} then the set A= {a, b, d} is ws-closed set 
but not semi-closed in X.   
 
Corollary 3.6: In a topological space (X,τ), 

i) Every regular closed [32] set in X is ws-closed set in X. 
ii) Every closed set in X is ws-closed set in X. 
iii) Every α-closed [20] set in X is ws-closed set in X. 
iv) Every g#-closed [37] set in X is ws-closed set in X. 
v) Every *gα -closed [41] set in X is ws-closed set in X. 
vi) Every g#s –closed [40] set in X is ws-closed set in X. 
vii) Every rb -closed [24]  set in X  is ws-closed set in X. 
viii) Every -closed set in X is ws-closed set in X. 
ix) Every gξ* -closed [17]] set in X is ws-closed set in X. 
x) Every αgp -closed [11] set in X is ws-closed set in X. 

 
Proof:   

i) In view of the fact that every regular closed is  semi-closed, therefore  by 3.3 every  regular closed is ws-
closed set. 

ii) In view of the fact that every  closed set is  semi -closed, therefore  by 3.3  every closed   set  is ws-closed set. 
iii) in view of the fact that  every  α - closed is  semi -closed, therefore  by 3.3 every  α - closed is ws-closed set. 
iv) Let A be g#-closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is  g#-closed, we have           

cl(A) = A ⊆ U, we have  scl(A) ⊆ U.   Hence A is ws-closed set in X. 
v) Let A be *gα -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is *gα -closed, we have  

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.  Hence A is ws-closed set in X. 
vi) Let A be g#s -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is  g#s -closed, we have    

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.  Hence A is ws-closed set in X. 
vii) Let A be rb -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is rb -closed, we have        

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.   Hence A is ws-closed set   in X. 
viii) Let A be  -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is    -closed, we have      

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.  Hence A is ws-closed   set in X. 
ix) Let A be gξ* -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is gξ* -closed, we have   

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.   Hence A is ws-closed    set in X. 
x) Let A be αgp -closed set in X. Let U be any w-open set in X s.t A ⊆ U. Since A is αgp -closed, we have   

scl(A) = A ⊆ U, we have  scl(A) ⊆ U.   Hence A is ws-closed   set in  X. 
 
Remark 3.7: The converse of the above Corollary 3.6 need not be true as seen from the following Example 3.8. 
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Example 3.8: Let X= {a, b, c, d} and  ={X, ϕ, {a}, {b},{a, b}, {a, b, c}} then the sets    

i. regular-closed sets in (X, τ) are X,φ,{a, c, d}, {b, c, d}.  
ii. closed sets in (X, τ) are X,φ,{d},{c, d},{a, c, d}, {b, c, d}.  
iii.  -closed, sets in (X, τ) are X,φ,{c},{d},{c, d},{a, c, d}, {b, c, d}.  
iv. g# -closed sets in (X, τ) are X,φ,{d},{c, d},{a, c, d}, {b, c, d}. 
v. *gα -closed sets in (X, τ) are X,φ,{d},{c, d},{a, c, d}, {b, c, d}.  
vi. g#s -closed sets in (X, τ) are X,φ,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, c, d}, {b, c, d}.  
vii. rb -closed sets in (X, τ) are X,φ,{c, d},{a, c, d}, {b, c, d}.  
viii.  -closed sets in (X, τ) are X,φ,{d},{c, d},{a, c, d}, {b, c, d}.  
ix. gξ*  -closed sets in (X, τ) are X,φ,{d},{c, d},{a, c, d}, {b, c, d}.  
x. αgp -closed sets in (X, τ) are X,φ,{c},{d},{c, d},{a, c, d}, {b, c, d}.  

           and  
       ws-closed sets in  (X, τ) are  X,φ,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, d},{a, c, d}, {b, c, d}. 
 
It is observed that set   A= {a, b, d} is ws-closed set but not regular closed (closed,   - closed, g#-closed, *gα –closed,  

g#s –closed, rb -closed  -closed , gξ* -closed, αgp –closed  sets) in X . 
 
Theorem 3.9: Every ws-closed set in X is gspr-closed [10] set in X. 
 
Proof:  Let A be a ws-closed set in X. Let U be any regular open set in X such that A⊆U. Since every regular open set 
is w- open set and A is ws-closed set, we have scl(A) ⊆U. Therefore scl(A) ⊆U. Therefore U is regular open in X. 
Hence A is gspr -closed in X. 
 
Remark 3.10: The converse of the above Theorem 3.9 need not be true as seen from the following Example 3.11. 
 
Example 3.11: Let X = {a, b, c d}, τ = {X,φ, {a, b}, {c, d}}.  Then the set A= {b} is gspr -closed set but not ws-closed 
set in X. 
 
Corollary 3.12:  

i) Every ws-closed set is gsp-closed [8] set in X.     
ii) Every ws-closed set is rgb-closed [22] set in X. 

 
Proof: 

i) Follow from Govindappa Navalagi et all[8], every gspr-closed set is gsp-closed set and then follows from 
Theorem 3.9 

ii) Let A be a ws-closed set in X. Let U be any regular open set in X such that A⊆U. Since every regular open set 
is w- open set and A is  ws-closed set, we have scl(A) ⊆U. Therefore scl(A)⊆U. Therefore U is regular open 
in X. Hence A is rgb -closed in X  

 
The converse of the Corollary 3.12 is need not be true in general as seen from the following Example 3.13. 
 
Example 3.13: Let X = {a, b, c d}, τ = {X, φ, {a, b},{c, d}}.  Then the set A = {b} is gsp (rgb) -closed set but not         
ws-closed set in X. 
 
Remark 3.14: The following Example 3.15, shows that ws-closed sets are independent of gpr-closed [9] sets,         

wgrα-closed [16] sets, pgrα-closed [5] sets, rg -closed sets [31], gp closed [30] sets, rgw-closed [29] sets, rw-closed 
[2] sets, rgα-closed [36] sets, βwg**-closed [35] sets. 
 
Example 3.15: Let X = {a, b, c, d}, τ = {X, φ, {a}, {b}, {a, b}, {a, b, c}}.  Then  

i) closed sets in (X, τ) are X, φ,{d},{c, d},{a, c, d}, {b, c, d}.  
ii) ws-closed sets in (X, τ) are X, φ, {a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, d}, {a, c, d},         

{b, c, d}. 
iii) gpr -closed sets in (X, τ) are X, φ,{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, c}, {a, b, d},             

{a, c, d},{b, c, d}. 
iv) wgrα -closed sets in  (X, τ) are X, φ,{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d}, {c, d},{a, b, c}{a, b, d},         

{a, c, d},{b, c, d}. 
v) pgrα -closed sets in (X, τ) are X, φ,{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, c},{a, b, d},          

{a, c, d},{b, c, d}. 
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vi) rg -closed sets in (X, τ) are X, φ,{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, c},{a, b, d},             
{a, c, d},{b, c, d}. 

vii) gprw–closed sets in (X, τ) are X, φ,{c},{d},{a, b},{c, d},{a, b, c},{a, b, d}, {a, c, d},{b, c, d}. 
viii) rgw–closed sets in (X, τ) are X, φ,{c},{d},{a, b},{c, d},{a, b, c},{a, b, d}, {a, c, d}, {b, c, d}. 
ix) rw-closed sets in (X, τ) are X, φ,{d},{a, b},{c, d},{a, b, c},{a, b, d},{a, c, d},  {b, c, d}. 
x) rgα-closed sets in (X, τ) are X, φ,{c}{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, c},{a, b, d},              

{a, c, d},{b, c, d}. 
xi) βwg**-closed sets in (X, τ) are X, φ,{c}{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, c},{a, b, d},          

{a, c, d},{b, c, d}. 
 

Therefore {a} is ws-closed in X but not gpr-closed (resp.  wgrα-closed, pgrα-closed, rg -closed, gprw-closed, rgw-
closed, rw-closed,  rgα-closed,  βwg**-closed) set  in X. 
 
Remark 3.16: The following Example 3.17, shows that ws-closed sets are independent of  sets,  wg-closed[23], gwα-
closed [3] sets, g*p-closed[ 39] sets, βwg*-closed[7] sets,**gα-closed[41] sets, -closed[38] sets, -closed[14]sets, 
#gα-closed [6] sets,  g*-preclosed [39] sets and g#p#-closed sets [28].   
 
Example 3.17: Let X = {a, b, c }, τ1 = {X, φ, {a}, {b},{a, b}} and τ2 = {X, φ, {a}, {b, c}}. Then  

i) closed sets in (X, τ1) are X, φ,{c},{a, c},{b, c}.  
ii) ws-closed sets in (X, τ1) are X, φ,{a}, {b},{c},{a, c},{b, c}. 
iii) wg-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
iv) gwα-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
v) g*p-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
vi) βwg*-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
vii) **gα-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
viii) -closed sets, in (X, τ1) are X, φ, {c},{a, c},{b, c}. 

ix) -closed sets,  in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
x) #gα-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
xi) g*-preclosed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}. 
xii) g#p#-closed sets in (X, τ1) are X, φ, {c},{a, c},{b, c}.  and also  

 
i) closed sets in (X, τ2) are X, φ,{a},{b, c}.  
ii) ws-closed sets in ( X, τ2) are X, φ,{a} ,{b, c}. 
iii) wg-closed set  in  (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
iv) gwα-closed sets in ( X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
v) g*p-closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
vi) βwg*-closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
vii) **gα-closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
viii) -closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 

ix) -closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
x) #gα-closed sets in (X, τ2) are X, φ,{a}, {b},{c},{a, b},{a, c},{b, c}. 
xi) g*-preclosed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 
xii) g#p#-closed sets in (X, τ2) are X, φ, {a}, {b},{c},{a, b},{a, c},{b, c}. 

 
Therefore {b} is ws-closed set in (X, τ1) but not in wg-closed (resp., gwα-closed, g*p-closed, βwg*-closed, **gα-
closed, 



g -closed,  -closed, #gα-closed, g*-preclosed, g#p#-closed) set in (X, τ1). 

Meanwhile {b} in in wg-closed (resp., gwα-closed, g*p-closed, βwg*-closed, **gα-closed, 


g -closed,  -closed ,  #gα-
closed , g*-preclosed, g#p#-closed )set  in (X, τ2) but not ws-closed  set in (X, τ2).  
 
Remark 3.18: The following Example 3.19 shows that ws-closed sets are independent of  sets g-closed[18] sets,       
sg-closed[14] sets, gα-closed[21] sets, sgb-closed[ 13] sets, rg*b-closed[12] sets, pgpr-closed[1] sets, gαb-closed[42] 
sets and rps-closed[34] sets   
 
Example 3.19: Let X = {a, b, c, d}, τ1 ={X, φ, {a}, {a, b},{a, b, c}} and τ2 ={ X, φ, {a, b}, {c, d}}. Then  

i)     closed sets in (X, τ1) are X, φ,{d},{c, d},{b, c, d}. 
ii)     ws-closed sets in (X, τ1) are X, φ,{a},{b},{c},{d},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, d},{a, c, d},       

{b, c, d}. 
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iii)     g-closed sets in (X, τ1) are X, φ,{d},{a, d},{b, d},{c, d}{a, b, d},{a, c, d},{b, c, d}. 
iv)     sg-closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d}. 
v)     gα- closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d}. 
vi)     sgb -closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d}. 
vii)     rg*b- closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d} 
viii)     pgpr- closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d} 
ix)     gαb- closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d} 
x)     rps- closed sets in (X, τ1) are X, φ,{b},{c},{d},{b, c},{b, d},{c, d},{b, c, d} and also 
xi)     closed sets in (X, τ2) are X, φ,{c, d},{a, b}. 
xii)     ws-closed sets in (X, τ2) are X, φ, {a, b},{c, d}. 
xiii)     g-closed sets in (X, τ2) are X, φ,{a},{b},{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d}, {c, d},{a, b, c}, 
           {a, b, d},{a, c, d},{b, c, d}. 
xiv)    sg- closed sets in (X, τ2) are X, φ,{a},{b},{c},{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d}, {a, b, c},           

{a, b, d},{a, c, d},{b, c, d}. 
xv)    gα- closed sets in  (X, τ2) are X, φ,{a},{b},{c},{d},{a, b},{a, c},{a, d},{b, c}, {b, d},{c, d}, {a, b, c},        

{a, b, d},{a, c, d},{b, c, d}. 
xvi)    sgb -closed sets in  (X, τ2) are X, φ,{a},{b},{c}{d},{a, b},{a, c},{a, d},{b, c}, {b, d},{c, d},  {a, b, c}        

{a, b, d},{a, c, d},{b, c, d}. 
xvii)  rg*b- closed sets in  (X, τ2) are X, φ,{a},{b},{c}{d},{a, b},{a, c},{a, d},{b, c}, {b, d},{c, d},{a, b, c},       

{a, b, d},{a, c, d},{b, c, d}. 
xviii)  pgpr- closed sets in  (X, τ2) are X, φ,{a},{b},{c}{d},{a, b},{a, c},{a, d},{b, c},{b, d},{c, d},{a, b, c},       

{a, b, d},{a, c, d},{b, c, d}. 
xix)    gαb- closed sets in  (X, τ2) are X, φ,{a},{b},{c}{d},{a, b},{a, c},{a, d},{b, c},{b, d}, {c, d}, {a, b, c},        

{a, b, d},{a, c, d},{b, c, d}. 
xx)    rps- closed sets in  (X, τ2) are X, φ,{a},{b},{c}{d},{a, b},{a, c},{a, d},{b, c},{b, d}, {c, d}, {a, b, c},           

{a, b, d},{a, c, d},{b, c, d}. 
 

Therefore {a} is ws-closed set in (X, τ1) but not g-closed (resp. sg-closed, gα-closed, sgb-closed sets, rg*b-closed, 
pgpr-closed, gαb-closed, rps-closed) set in (X, τ1). 
 
Meanwhile {a} is g-closed (resp.  sg-closed, gα-closed, sgb-closed, rg*b-closed, pgpr-closed, gαb-closed, rps-closed) 
set in (X, τ2) but not ws-closed set in (X, τ2).  
 
Remark 3.20: The following Example 3.21, shows that ws-closed sets are independent of  R*-closed[15] sets,          
rgβ- closed[26] sets, pgrα-closed[5] sets, rgw-closed[29] sets and  gprw-closed[ 30] sets. 
 
Example 3.21: Let X = {a, b, c}, τ = {X, φ,{a}, {b}, {a, b}}. Then  

i) closed sets in (X, τ) are X, φ,{c},{a, c},{b, c}. 
ii) ws-closed sets in (X, τ) are X, φ, {a},{b},{c},{b, c}, {a, c}. 
iii) R* -closed sets in (X, τ) are X, φ,{c},{a, b},{b, c},{a, c}. 
iv) rgβ -closed sets in (X, τ) are X, φ,{c},{a, b},{b, c},{a, c}. 
v) pgrα- closed sets in (X, τ) are X, φ,{c},{a, b},{b, c},{a, c} 
vi) rgw- closed sets in (X, τ) are X, φ,{c},{a, b},{b, c},{a, c} 
vii) gprw -closed sets in (X, τ) are X, φ,{c},{a, b},{b, c},{a, c} 

 
Therefore {a} is ws-closed set in X but not R*-closed (resp. rgβ- closed, pgrα-closed, rgw-closed, gprw-closed) set in 
X. 
 
Remark 3.22: From the above discussion and results we have the following implications.  
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A                      B means A implies B, but converse is not true. 
 
A                       B means A and B are independent of each other 
 
Theorem 3.23: The intersection of two ws-closed subsets of X is ws-closed set in X. 
 
Proof: Let A and B be are ws-closed sets in X. Let U be any semiopen set in X such that (A∩B)⊆U that is A⊆U and 
B⊆U. Since A and B are ws-closed sets then scl(A) ⊆ U and scl(B)⊆U and we know that (scl(A) scl(B)) = 

scl(A B)⊆U. Therefore A B is ws-closed set in X. 
 
Remark 3.24: The union of two ws-closed sets in X is generally not a ws-closed set in X. 
 
Example 3.25: Let X = {a, b, c} and τ = {φ, X, {a}, {b},{a, b}} then the sets A={a} and B={b}are ws-closed sets in X 
but A B ={a, b} is not a  ws-closed set in X. 
 
Theorem 3.26: If a subset A of a topological space X is ws-closed set in X then scl(A)-A does not contain any non-
empty open set in X but converse is not true. 
 
Proof: Let A is an ws-closed set in X and suppose F be an non empty w-closed subset of scl(A)-A. 
F⊆scl(A)-A⟹ F⊆scl(A)∩ (X-A)  F⊆scl(A)           (1) & F⊆X-A 

 A⊆X-F and X-F is w-open set and A is a ws-closed set, scl(A)⊆X-F 

 F⊆X-scl(A)        (2) from equations (1) and (2) we get F⊆scl(A) (X-scl(A))=  

 F=   thus scl(A)-A does not contain any non-empty w-closed set in X. 
 
Remark 3.27: The converse of the above Theorem need not be true as seen from the following Example 3.28. 
 
Example 3.28: Let X={a, b, c, d} τ= {X,φ,{a},{a, b},{a, b, c}} then the set A={b} scl{b}={b}, scl{A}-A={b} does not 
contain any non-empty w-closed set in X but A is not ws-closed set. 
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Theorem 3.29: If A is a ws-closed set in X and A⊆B⊆scl(A) then B is also ws-closed set in X. 
 
Proof: Let A be a ws-closed set in X such that B⊆scl(A). Let U be a w-open set of X such that B⊆U then A⊆U. Since 
A is ws-closed set, we have scl(A)⊆U and A⊆U. Now B⊆scl(A) ⟹ scl(B)⊆scl(scl(A))=scl(A)⊆U. That is scl(B)⊆U. 
Therefore B is a ws-closed set in X. 
 
Remark 3.30: The converse of the above Theorem 3.29 is need not be true as seen from the following Example 3.31. 
 
Example 3.31: Let X = {a, b, c }, τ = {φ, X, {a}, {b}, {a, b}}, then the set A={a}, B={a,c} such that A and B are  ws-
closed sets in X but A⊆B⊈scl(A)  because scl(A)={a}. 
 
Theorem 3.32: Let (X,τ) be a topological space then for each x  X the set X-{x} is ws-closed or semi open. 
 
Proof: Let x∈X. Suppose X-{x} is not a semiopen set. Then X is the only  semiopen set containing X-{x}, that is       
X-{x} ⊆X ⟹ cl(X-{x}) ⊆cl(X) ⟹ cl(X-{x})⊆X. Therefore X-{x} is ws-closed set in X.   
 
Theorem 3.33: Let X and Y are topological spces and A⊆Y⊆X. Suppose that A is ws-closed set in X then A is        
ws-closed relative to Y. 
 
Proof: Let A⊆Y∩G, where G is a w-open. Since A is a  ws-closed set in X, then A⊆G and scl(A)⊆G. This implies that 
Y∩scl(A) ⊆Y∩G where  Y ∩scl(A) is closed set of A in Y. Thus A is a ws-closed relative to Y. 
 
Theorem 3.34: In a topological space X if SO(X) ={X,φ} then every subset of X is a ws-closed set. 
 
Proof: Let X be a topological space and SO(X) = {X,φ}. Let A be any subset of X. Suppose A=φ. Then φ is ws-closed 
set. Suppose A≠φ. Then X is the only semiopen set containing A and so scl(A)⊆X. Hence A is a ws-closed set in X. 
 
Remark 3.35: The converse of the above Theorem need not be true in general as seen from the following Example 
3.36.. 
 
Example 3.36: Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}}. Then every subset of (X,τ) is a ws-closed set in X but   
SO={φ, X, {a}, {b, c}}. 
 
Theorem 3.37: If A is regular open and gspr-closed set in X then A is ws-closed set in X. 
 
Proof: Let A be a regular open and gspr-closed set in X. Let U be any w-open set in X such that A⊆U. Since A is 
regular open and gspr-closed set in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is ws-closed set in X. 
 
Theorem 3.38: If A is regular open and rgb-closed set then A is ws-closed set in X. 
 
Proof: Let A be a regular open and rgb-closed in X. Let U be any w-open set in X such that A⊆U. Since A is regular 
open and rgb-closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is ws-closed set in X. 
 
Theorem 3.39: If A is semiopen and swg*-closed then A is ws-closed set in X. 
 
Proof: Let A be a semiopen and swg*-closed in X. Let U be any w- open set in X such that A⊆U. Since A is semiopen 
and swg*-closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is  ws-closed set in X. 
 
Theorem 3.40: If A is semiopen and swg-closed then A is ws-closed set in X. 
 
Proof: Let A be a semiopen and swg-closed in X. Let U be any w- open set in X such that A⊆U. Since A is semiopen 
and swg-closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is  ws-closed set in X. 
 
Theorem 3.41: If A is semiopen and sg-closed then A is ws-closed set in X. 
 
Proof: Let A be a semiopen and sg-closed in X. Let U be any w- open set in X such that A⊆U. Since A is semiopen 
and sg-closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is ws-closed set in X. 
 
Theorem 3.42: If A is semiopen and sgb-closed then A is ws-closed set in X. 
 
Proof: Let A be a semiopen and sgb-closed in X. Let U be any w- open set in X such that A⊆U. Since A is semiopen 
and sgb-closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is ws-closed set in X. 
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Theorem 3.43: If A is semiopen and αgs-closed then A is ws-closed set in X. 
 
Proof: Let A be a semiopen and αgs -closed in X. Let U be any w- open set in X such that A⊆U. Since A is semiopen 
and αgs -closed in X, by definition, scl(A)⊆A then scl(A)⊆A⊆U. Hence A is ws-closed set in X. 
 
Theorem 3.44: If A is β-open and βwg*-closed then A is ws-closed set in X. 
 
Proof: Let A be a β-open and βwg*-closed in X. Let U be any regular semiopen set in X such that A⊆U. Since A is    
β-open and βwg*-closed in X, by definition, gcl(A)⊆A then gcl(A)⊆A⊆U. Hence A is ws-closed set in X. 
 
Theorem 3.45: If A is both open and g-closed then A is ws-closed set in X. 
 
Proof: Let A be open and g-closed set in X. Let U be any regular open set in X such that A⊆U. By definition, 
cl(A)⊆A⊆U and gcl(A)=A. This implies that cl(A)⊆gcl(A) ⊆A⊆U gcl(A)⊆U. Hence A is ws-closed set. 
 
Theorem 3.46: If A is regular semiopen and rw-closed then A is ws-closed set in X. 
 
Proof: Let A be a regular semiopen and rw-closed set in X. Let U be any w-open set in X such that A⊆U. Now A⊆A 
by hypothesis cl(A)⊆A then we know that cl(A) ⊆scl(A)⊆A. Hence scl(A)⊆U therefore A is  ws-closed set in X. 
 
Theorem 3.47: If A is regular semiopen and R*-closed then A is ws-closed set in X. 
 
Proof: Let A be a regular semiopen and R*-closed set in X. Let U be any w-open set in X such that A⊆U. Now A⊆A 
by hypothesis cl(A)⊆A then we know that cl(A) ⊆scl(A) ⊆A. Hence scl(A)⊆U therefore A is  ws-closed set in X. 
 
Theorem 3.48: If A is regular semiopen and gprw-closed then A is ws-closed set in X. 
 
Proof: Let A be a regular semiopen and gprw -closed set in X. Let U be any w-open set in X such that A⊆U. Now 
A⊆A by hypothesis cl(A)⊆A then we know that cl(A) ⊆scl(A) ⊆A. Hence scl(A)⊆U therefore A is  ws-closed set in X. 
 
Theorem 3.49: If A is regular semiopen and rgw-closed then A is ws-closed set in X. 
 
Proof: Let A be a regular semiopen and rgw -closed set in X. Let U be any w-open set in X such that A⊆U. Now A⊆A 
by hypothesis cl(A)⊆A then we know that cl(A) ⊆scl(A) ⊆A. Hence scl(A)⊆U therefore A is  ws-closed set in X. 
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