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ABSTRACT 
In this paper we study the geometry of conformal curvature tensor in Lorentzian β -Kenmotsu manifolds. It is proved 
that conformally flat, ϕ -conformally flat and conformally recurrent Lorentzian β -Kenmotsu manifolds are η -
Einstein manifolds. 
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1. INTRODUCTION      
 
In the Gray Hervella classification of almost Hermitiation manifolds, there appears a class 4W of Hermitian manifolds 
which are closely related to the locally conformal Kaehler manifolds [1]. An almost contact metric manifold 

( )gM n ,,, ηξϕ  is said to be trans-Sasakian manifold if ( ), ,M R J G×  belongs to the class 4W of Hermitian manifolds 
where J is the almost complex structure on RM ×  defined by 

(1.1)                                              ( ) ( )( ), ,d dJ Z f Z f Z
dt dt

φ ξ η= −  

for any vector field Z on M and smooth function f on RM × and G is the product metric on RM ×  [3]. This may be 
stated by the condition 
(1.2)   ( ) ( ) ( ){ } ( ) ( ){ }XYYXgXYYXgYX ϕηξϕβηξαϕ −+−=∇ ,,  

where βα , are smooth functions on M and we say that such a structure is the trans-Sasakian structure of type ( )βα ,
[3,5]. 
 
Trans-Sasakian structure of type (0, 0), ( )0,α  and ( )β,0  are the cosympletic, α -Sasakian and β -Kenmotsu manifold 
respectively. Kenmotsu manifolds defined in [2] are particular examples with 1=β i.e., Kenmotsu manifolds are the 
trans-Sasakian structure of type (0, 1). Lorentzian β -Kenmotsu manifolds have been studied by Prakasha et al. [4], 
Shreenivasa et al. [7] and others. 
 
2. PRELIMINARIES 
 
An n -dimensional differentiable manifold M is called Lorentzian β -Kenmotsu manifold if it admits a (1, 1) tensor 
field ,ϕ  a contravariant vector field ,ξ a 1-form η and a Lorentzian metric g which satisfy 

(2.1)   ( ) ( ) ( ) ( ) ,0,0,,1 2 ==+=−= XXXX ϕηϕξξηϕξη  

(2.2)     ( ) ( ),, XXg ηξ =  

(2.3)    ( ) ( ) ( ) ( ),,, YXYXgYXg ηηϕϕ +=  

(2.4)           ( )[ ],ξηβξ XXX −=∇  

(2.5)             ( )( ) ( ) ( ) ( )[ ],, YXYXgYX ηηβη −=∇  

(2.6)   ( )( ) ( ) ( ) ( ) ( )[ ],,,, 2 XZYgYZXgZYXR ηηβη −=  
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(2.7)    ( ) ( ) ( )[ ],,, 2 ξηβξ YXgXYYXR −=  

(2.8)    ( ) ( ) ( )[ ],, 2 XYYXYXR ηηβξ −=  

(2.9)         ( ) ( ) ,1, 2





−= XnXS ηβξ  

(2.10)     ( ) ,1 2ξβξ nQ −=  

(2.11)         ( ) ( ) ( ) ( ) ( ).1,, 2 YXnYXSYXS ηηβϕϕ −+=  
where SR, and Q are the curvature tensor, the Ricci tensor and the Ricci operator respectively. 
 
3. CONFORMALLY FLAT LORENTZIAN β -KENMOTSU MANIFOLDS  
 
In this section we prove the following results 
 

Theorem 3.1: A conformally flat Lorentzian β -Kenmotsu manifold ( )gnM ,,, ηξϕ  is an η -Einstein manifold. 
 
Proof: Let us consider a Lorentzian β -Kenmotsu manifold ( ) .3,, >ngM n  The Weyl conformal curvature tensor C of 
type (1, 3) on a Riemannian manifold is defined by [8] 

(3.1)                
( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ].,,[
21

],                   

,,,[
2

1
,,

YZXgXZYg
nn

r
QYZXg

QXZYgYZXSXZYS
n

ZYXRZYXC

−
−−

+−

+−
−

−=
 

 
For conformally flat β -Kenmotsu manifold we have ( ) 0, =ZYXC and then (3.1) reduces to 

(3.2)                
( ) ( ) ( ) ( ) ( ) ( )[ ]

( )( ) ( ) ( )[ ].,,
21

                  

,,,,
2

1
,

YZXgXZYg
nn

r

QYZXgQXZYgYZXSXZYS
n

ZYXR

−−
−−

−

−+−
−

=

 

 
Taking inner product by W in (3.2) we obtain 

(3.3)               

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )],,,,,[
21

                        

],,,,                         

,,,,[
2

1
,,,~

WYgZXgWXgZYg
nn

r

ZXgWYSZYgWXS

WYgZXSWXgZYS
n

WZYXR

−
−−

−

−+

−
−

=

 

where ( ) ( )( ).,,,,,~ WZYXRgWZYXR =  
 
Putting ξ=W in (3.3) and using (2.2), (2.6) and (2.9) we get 

(3.4)            ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }.,,
1

,, 2 XZYgYZXg
n

r
YZXSXZYS ηηβηη −

−
+−=− 






  

 
Replacing ix ξ= in (3.4) and using (2.1), (2.2) and (2.9) we obtain 

(3.5)                           ( ) ( ) ( ) ( ),,, 21 ZXZXgZXS ηηλλ +=  

where 
1

2

1 −
+=

n
r

βλ  and .
1

2

2 −
+=

n
r

nβλ  

 
From (3.5) we conclude that the manifold is η -Einstein. This completes the proof of the theorem. 
 
Now, taking an orthonormal frame field and contracting over X and Z in (3.5) we get 
(3.6)  ( ) ,1 2β−−= nnr  
where r is the scalar curvature. This leads to the following corollary: 
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Corollary 3.1: A conformally flat Lorentzian β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is of constant scalar curvature   

( ) .1 2β−−= nnr  
 
Again, in view of (3.5) and (3.6) we obtain 
(3.7) ( ) ( ) ( ).,1, 2 ZXgnZXS β−=  
 
This implies that the manifold is an Einstein manifold. Hence we have next result 
 
Theorem 3.2: A conformally flat β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is an Einstein manifold with scalar curvature 

( ) .1 2β−−= nnr  
 
4. ϕ -CONFORMALLY FLAT LORENTZIAN β -KENMOTSU MANIFOLDS 
 
Definition 4.1: A Lorentzian β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is said to be ϕ -conformally flat if the condition  

(4.1)    ( )( ) 0,, =WZYXCg ϕϕϕϕ  
holds for any vector fields TMZYX ∈,, [6]. 
 
Theorem 4.1: A ϕ -conformally flat Lorentzian β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is an η -Einstein manifold. 
 
Proof: Let us consider an n -dimensional Lorentzian β -Kenmotsu manifold .M Suppose that the condition (4.1) 
holds in ,M then in view of (3.1) and (4.1) we obtain 

(4.2)             

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )],,,,[
21

                                  

],,,,                                  

,,,,[
2

1
,,,~

WYgZXgWXgZYg
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n
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ϕϕϕϕϕϕϕϕ

ϕϕϕϕϕϕϕϕϕϕϕϕ
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−−

−
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−
−

=

 

where ( ) ( )( ).,,,,,~ WZYXRgWZYXR ϕϕϕϕϕϕϕϕ =  
 
By virtue of (2.3), (2.6), (2.11) and (4.2) we get 

(4.3)                    
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )],,

,,,,,[2

ZYWXgZXWYg

WYZXgWXgZYgWYgZXg

ηηηη

ηηβ

−+

+−
 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )].,,,,   

,,,,[
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],1,,,   
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2
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−

=

 

 
Let{ }niei ,...,2,1: =  be an orthonormal basis of the tangent space at any point of the manifold. Putting ieWX == in 
(4.3) and taking summation over ,1, nii ≤≤ we get 

(4.4) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ).
1

1
,

1
144

, 2

2

2

223

ZY
n

rnn
ZYg

n
rnnn

ZYS ηη
ββ

















−

+−
−+

−

−−+−
−=  

 
This implies that 
(4.5)    ( ) ( ) ( ) ( )ZYbZYagZYS ηη+= ,,  

where   
( )

( )

3 2 2

2

4 4 1

1

n n n r
a

n

β− + − −
= −

−
and 

( )
( ) .

1
1

2

2

−

+−
−=

n
rnn

b
β  
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From (4.5), it follows that the manifold is η -Einstein. Hence the theorem is proved. 
 
Taking an orthonormal frame field at any point of the manifold and contracting over Y and Z in (4.4), we get 
(4.6)              ( ) .1 2β−−= nnr  
 
By virtue of (4.6) and (4.4), we obtain 
(4.7)    ( ) ( ) ( ).,1, 2 ZYgnZYS β−−=  
 
This implies that the manifold is Einstein. 
 
Thus we can state the following result: 
 
Theorem 4.2: A ϕ -conformally flat Lorentzian β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is an Einstein manifold with 

scalar curvature ( ) .1 2β−−= nnr  
 
5. CONFORMALLY RECURRENT LORENTZIAN β -KENMOTSU MANIFOLDS 
 
Definition 5.1: A non-flat Riemannian manifold M is said to be conformally recurrent if the conformal curvature 
tensor C satisfies the condition 
(5.1)     ,CAC ⊗=∇  
where A is an everywhere non-zero 1-form. 
 
We now define a function f on M by ,,2






= CCgf where the metric g is extended to the inner product between the 

tensor fields in the standard fashion. Then we know that  
     ( ) ( ).2 YAfYff =  
So from this equation we have 
(5.2)       ( ),YfAYf =  since .0≠f  
From (5.2), we obtain 
 

(5.3)    ( ) ( ) ( ) ( )( ) .fYXAXf
f

Yf
YfX +=  

 
Similarly,  
(5.4)     ( ),XfAXf =  
 
From which we get 

(5.5)    ( ) ( ) ( ) ( )( ) .fXYAYf
f

Xf
XfY +=  

 
From (5.3) and (5.5), we obtain 
         ( ) ( ) ( )( ) ( ){ } .fXYAYXAXfYYfX −=−  
 
Therefore we get 
  ( ) ( ) ( ){ } .fXYAYXAfXYYX −=∇∇−∇∇  

Adding [ ] fYX ,∇− and using definition of recurrent on right side we obtain 

(5.6) [ ]( ) ( ) ( ) [ ]{ } .,, fYXAXYAYXAfYXXYYX −−=∇−∇∇−∇∇  
 
Since the left hand side of (5.6) is identically zero and 0≠f on M by our assumption we obtain 
(5.7)                                                                               ( ), 0.dA X Y =  
 
This implies that the 1-form A is closed. 
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Now, from (5.1), we get 
             ( )( ) ( ) ( ) ( ){ } ( ) .,, ZYXCVAUAVUAZYXCVU +=∇∇  
 
Hence from (5.7), we obtain 

( )( )( ) ( )[ ] ( ), . , 2 , , 0.R X Y C U V Z d A X Y C U V Z= =  
 

Therefore for a conformal recurrent manifold, we have 
(5.8)     ( ) 0., =CYXR  
for all ., TMYX ∈  
 
Equation (5.8) implies that the manifold is conformally semi-symmetric. This completes the proof of the theorem. 
 
It is known that a conformally semi-symmetric Lorentzian β -Kenmotsu manifold is an η -Einstein manifold [7]. 
 
This leads to the following theorem: 
 
Theorem 5.2: A conformally recurrent Lorentzian β -Kenmotsu manifold ( )gM n ,,, ηξϕ  is an η -Einstein manifold. 
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