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ABSTRACT 
The aim of this paper is to introduce Nano ( )21 ,ττ generalized β closed sets and Nano ( )21 ,ττ generalized β open 

sets in Nano bitopological spaces. Also the characteristics and properties of Nano ( )21 ,ττ g β closed sets and Nano 

( )21 ,ττ g β open sets are studied respectively. 
 
Keywords: Nano ( )21 ,ττ β  interior, Nano ( )21 ,ττ β  closure, Nano ( )21 ,ττ generalized β closed sets, Nano 

( )21 ,ττ generalized β open sets. 
 
 
1. INTRODUCTION 
 
The notion of Nano topology was introduced by Lellis Thivagar [6] which was defined in terms of approximations and 
boundary regions of a subset of an universe using an equivalence relation on it and he also defined Nano closed set, 
Nano interior and Nano closure. Levine [7] introduced generalized closed sets as a generalization of closed sets in 
topological spaces. Abd El Monsef et al. [1] introduced the notion of β -open set in topology, further investigation of 
Nano β  open sets was given by Gnanambal [4]. Shalini et al. [8] have introduced Nano generalized β closed sets in 
Nano topology. Kelly [5] introduced the concept of bitopological space in and Fukutake [3] introduced the generalized 
closed sets in bitoplogical space. Bhuvaneswari et.al [2] introduced the Nano bitopological space. In this paper we 
introduce Nano ( )21 ,ττ generalized β closed sets and Nano ( )21 ,ττ generalized β  open sets and some of its 
properties are investigated. 
 
2. PRELIMINARIES 
 
Definition 2.1[6]: Let U  be the universe, R  be an equivalence relation on U  and where UX ⊆ . Then ( )XRτ  
satisfies the following axioms: 

• U and ( )XRτφ ∈ .  

• The union of the elements of any sub collection of ( )XRτ  is in ( )XRτ . 

• The intersection of the elements of any finite sub collection of ( )XRτ  is in ( )XRτ .hence ( )XRτ  is called 

the Nano topology on U  with respect to X , ( )( )XU Rτ,  is called the Nano topological space. Elements of 

the Nano topology are known as Nano open sets in U . Elements of ( )[ ]CR Xτ  are called Nano closed sets. 
 
Definition 2.2[6]: If ( )( )XU Rτ,  is a Nano topological space where UX ⊆  and if UA ⊆ , then 

• The Nano interior of a set A  is defined as the union of all Nano open subsets contained in A  and is denoted 
by ( )AN int . ( )AN int isthe largest Nano open subset of A . 

• The Nano closure of a set A  is defined as the intersection of all Nano closed sets containing A  and is 
denoted by ( )ANcl . ( )ANcl is the smallest Nano closed set containing A . 
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Definition 2.3 [7]: A subset A  of ( )τ,X  is called generalized closed set (briefly g closed) if ( ) UAcl ⊆  whenever 

UA ⊆  and U  is open in ( )τ,X . 
 
Definition 2.4 [2]: A subset A  of ( )( )XU Rτ,  is called Nano generalized closed set (briefly Ng closed) if 

( ) VANcl ⊆  whenever VA ⊆  and V  is Nano open in ( )( )XU Rτ, . 
 
Definition 2.5 [8]: A subset A  of Nano topological space ( )( )XU Rτ,  is called Nano generalized β  closed set 

(briefly Ng β  closed) if ( ) VAclN ⊆β  whenever VA ⊆  and V  is Nano open in ( )( )XU Rτ, . 
 
Definition 2.6 [3]: A subset A  of ( )21 ,, ττX  is called ( )ji ττ , generalized closed set (briefly ( )ji ττ , g closed) if 

( ) UAcl ⊆2τ  whenever UA ⊆  and U  is 1τ open in ( )21 ,, ττX . 
 
3. NANO ( )21 ,ττ GENERALIZED β  CLOSED SETS 
 
Definition 3.1: Let U  be the universe, 1R  and 2R  are equivalence relations on U  and 1X and 2X  are subsets of U . 

Then ( )11 XRτ and ( )22 XRτ  satisfies the following axioms: 

• U and ∈φ ( )11 XRτ and ( )22 XRτ . 

• The union of the elements of any sub collection of ( )11 XRτ is in ( )11 XRτ  and ( )22 XRτ is in ( )22 XRτ . 

• The intersection of the elements of any finite sub collection of ( )11 XRτ  is in ( )11 XRτ  and ( )22 XRτ  is in

( )22 XRτ .  

Hence ( )11 XRτ and ( )22 XRτ  is called the Nano bitopology on U  with respect to 1X  and 2X , 

( ) ( )( )2211 ,, XXU RR ττ  is called the Nano bitopological space. Elements of the Nano bitopology are known 

as Nano ( )21 ,ττ  open sets inU and elements of ( )[ ]CR X 11τ  and ( )[ ]CR X 22τ  are called Nano ( )21 ,ττ
closed sets. 

 
Definition 3.2: If ( ) ( )( )2211 ,, XXU RR ττ  is a Nano bitopological space where 1X  and 2X  are subsets of U  and if

UA ⊆ , then  
• The Nano ( )21 ,ττ  interior of a set A  is defined as the union of all Nano ( )21 ,ττ  open subsets contained in

A  and is denoted by ( )AN int21ττ . ( )AN int21ττ is the largest Nano ( )21 ,ττ  open subset of A . 

• The Nano ( )21 ,ττ  closure of a set A  is defined as the intersection of all Nano ( )21 ,ττ closed sets 

containing A  and is denoted by ( )AclN 21ττ . ( )AclN 21ττ is the smallest Nano ( )21 ,ττ closed set 
containing A . 

 
Definition 3.3: Let ( ) ( )( )2211 ,, XXU RR ττ  be a Nano bitopological space and UA ⊆ . Then A is said to be 

(i) Nano ( )21 ,ττ  semi open if ( )( )ANclNA int12 ττ⊆  

(ii) Nano ( )21 ,ττ pre open if ( )( )AclNNA 12 int ττ⊆  

(iii) Nano ( )21 ,ττ α open if ( )( )[ ]ANclNNA intint 121 τττ⊆  

(iv) Nano ( )21 ,ττ  regular open if ( )( )AclNNA 12 int ττ=  

(v) Nano ( )21 ,ττ β  open(Nano (1,2) semi-pre open) if ( )( )[ ]AclNNclNA 121 int τττ⊆  
 
The family of Nano ( )21 ,ττ  semi open (resp. Nano ( )21 ,ττ pre open, Nano ( )21 ,ττ α open, Nano ( )21 ,ττ regular 

open, Nano ( )21 ,ττ β open) sets in U is denoted by N ( )21 ,ττ ( )XUSO ,  (resp. N ( )21 ,ττ ( )XUPO , , N

( )21 ,ττ ( )XUO ,α ,N ( )21 ,ττ ),( XURO and N ( )21 ,ττ ( )XUO ,β ).  
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The complement of Nano ( )21 ,ττ  semi open (resp. Nano ( )21 ,ττ pre open, Nano ( )21 ,ττ α open, Nano ( )21 ,ττ  

regular open, Nano ( )21 ,ττ β open) sets in U is Nano ( )21 ,ττ  semi closed (resp. Nano ( )21 ,ττ  pre closed, Nano 

( )21 ,ττ α closed, Nano ( )21 ,ττ  regular closed, Nano ( )21 ,ττ β closed). 
 
Definition 3.4: A subset A  of ( ) ( )( )2211 ,, XXU RR ττ  is called Nano ( )21 ,ττ  generalized closed set (briefly N

( )21 ,ττ g closed) if ( ) VAclN ⊆2τ  whenever VA ⊆  and V  is Nano 1τ open in ( ) ( )( )2211 ,, XXU RR ττ . 
 
Definition 3.5: If ( ) ( )( )2211 ,, XXU RR ττ  is a Nano bitopological space where 1X  and 2X  are subsets of U  and if

UA ⊆ then  

• The Nano ( )21 ,ττ β interior of a set A  is defined as the union of all Nano ( )21 ,ττ β open subsets 

contained in A  and is denoted by ( )AN int21 βττ . ( )AN int21 βττ is the largest Nano ( )21 ,ττ β open 
subset of A . 

• The Nano ( )21 ,ττ β closure of a set A  is defined as the intersection of all Nano ( )21 ,ττ β closedsets 

containing A  and is denoted by ( )AclN βττ 21 . ( )AclN βττ 21 is the smallest Nano ( )21 ,ττ β closed set 
containing A . 

 
Definition 3.6: A subset A  of Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ  is called Nano ( )21 ,ττ generalized 

β  closed set (briefly N ( )21 ,ττ g β  closed) if ( ) VAclN ⊆βτ 2  whenever VA ⊆  and V  is Nano 1τ  open in

( ) ( )( )2211 ,, XXU RR ττ . 
 
Theorem 3.8: If A is Nano 2τ  closed set in ( ) ( )( )2211 ,, XXU RR ττ then it is Nano ( )21 ,ττ g β  closed set in

( ) ( )( )2211 ,, XXU RR ττ  but not conversely. 
 
Proof: Since every Nano closed set is Nano g β closed set, the proof follows. 
 
Example 3.9: Let { }dcbaU ,,,=  with { } { } { }{ }dbcaRU ,,,1 = , { }baX ,1 = , ( ) { } { } { }{ }dbadbaUXR ,,,,,,,11 φτ = ,  

{ } { } { } { }{ }dcbaRU ,,,2 = , { }daX ,2 = , ( ) { }{ }daUXR ,,,22 φτ = . Here the set { }dca ,, is Nano ( )21 ,ττ g β
closed but notNano 2τ closed inU . 
 
Theorem 3.10: Every Nano 2τ  pre closed set is Nano ( )21 ,ττ  g β  closed set but not conversely. 
 
Proof: Let A  be Nano 2τ pre closed set in ( ) ( )( )2211 ,, XXU RR ττ  and let G be a Nano 1τ open set such that 

GA ⊆ . Since every Nano pre closed is Nano g β  closed, we have ( ) GAclN ⊆βτ 2 . Hence A  is Nano(1,2) g β
closed set in ( ) ( )( )2211 ,, XXU RR ττ . 
 
Example 3.11: Let { }dcbaU ,,,=  with { } { } { } { }{ }dcbaRU ,,,2 = , { }daX ,1 = , ( ) { }{ }daUXR ,,,11 φτ = ,

{ } { } { }{ }dbcaRU ,,,2 = , { }baX ,2 = , ( ) { } { } { }{ }dbadbaUXR ,,,,,,,22 φτ = . Here the set { }ba, is Nano 

( )21 ,ττ  g β closed but not Nano 2τ pre closed inU . 
 
Theorem 3.12: Every Nano 2τ  regular closed set is Nano ( )21 ,ττ  g β  closed set but not conversely. 
 
Proof: Since every Nano regular closed set is Nano g β closed set, the proof follows.  

Example 3.13: Let { }dcbaU ,,,= with { } { } { } { }{ }dcbaRU ,,,1 = , { }daX ,1 = , ( ) { }{ }daUXR ,,,11 φτ = ,

{ } { } { }{ }dbcaRU ,,,2 = , { }baX ,2 = , ( ) { } { } { }{ }dbadbaUXR ,,,,,,,22 φτ = . Here the set { }dc, is Nano (1,2) 

g β closed but not Nano 2τ pre closed inU . 
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Remark 3.14: The union of two Nano ( )21 ,ττ g β  closed sets need not be Nano ( )21 ,ττ  g β  closed set which can 
be seen from the following example. 
 
Example 3.15: Let { }dcbaU ,,,= with { } { } { }{ }dbcaRU ,,,1 = , { }baX ,1 = , ( ) { } { } { }{ }dbadbaUXR ,,,,,,,11 φτ = ,

{ } { } { } { }{ }dcbaRU ,,,2 = , { }daX ,2 = , ( ) { }{ }daUXR ,,,22 φτ = . Here the sets { }a  and { }db, are Nano (1,2) 

g β closed sets but { } { } { }dbadba ,,, =∪  is notNano ( )21 ,ττ g β closed set inU . 
 
Theorem 3.16: If a set A isN ( )21 ,ττ  g β  closed set in a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ , then 

( ) AAclN −βτ 2 contains no non-empty Nano 1τ  closed set in ( ) ( )( )2211 ,, XXU RR ττ . 
 
Proof: Suppose that F  is a Nano 1τ  closed setsuch that ( ) AAclNF −⊆ βτ 2 . Now ( )AclNF βτ 2⊆ and 

CAF ⊆ then FUA −⊆ , FU − is Nano 1τ  open set and A  is Nano ( )21 ,ττ g β  closed. Therefore

( ) FUAclN −⊆βτ 2 . That is ( )( )AclNUF βτ 2−⊆ . Hence

( ) ( )( )( ) φφββτ ==−∩⊆ FAclNUAclNF ,2 . Therefore ( ) AAclN −βτ 2 contains no non-empty Nano 1τ  

closed set in ( ) ( )( )2211 ,, XXU RR ττ . 

 
Remark 3.17: If a set A  in a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ is Nano βτ 2  closed then

( ) φβτ =− AAclN 2 . 
 
Proof: Assume that A  is Nano βτ 2  closed. Since ( ) ,2 AAclN =βτ ( ) φβτ =− AAclN 2 .  
 
Theorem 3.18: For each point x of U , a singleton{ }x  is Nano 1τ closed or { }Cx is Nano ( )21 ,ττ  g β  closed. 
 
Proof: Suppose { }x is not Nano 1τ closed. Since { }Cx is not Nano 1τ open, a Nano 1τ open containing { }Cx is onlyU
Then { }( ) UxclN C ⊆βτ 2 and { }Cx is Nano (1,2) gβ  closed. 
 
Theorem 3.19: If A  is Nano ( )21 ,ττ g β  closed then ( ) φβτ ≠∩ AxclN 2 for some ( )AclNx βτ 2∈ but not 
conversely. 
 

Proof: If ( ) φβτ =∩ AxclN 2 for ( )AclNx βτ 2∈ ,then ( )( )CxclNA βτ 2⊆ . Since A is Nano ( )21 ,ττ g β  

closed set, we have ( ) ( )( )CxclNAclN βτβτ 22 ⊆ . This implies ( )AclNx βτ 2∉  which is a contradiction. 
 
Theorem 3.20: If A  is Nano ( )21 ,ττ g β  closed in a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ and 

( )AclNBA βτ 2⊆⊆ , then B  is also Nano (1,2) gβ  closed in ( ) ( )( )2211 ,, XXU RR ττ . 
 
Proof: Let GB ⊆  where G  is Nano 1τ  open set in U . Then BA ⊆ implies GA ⊆ . As A  is Nano (1, 2) g β  

closed, we have ( ) GAclN ⊆βτ 2 . Now ( )AclNB βτ 2⊆ , implies 
 

( ) ( )( ) ( ) GAclNAclNclNBclN ⊆=⊆ βτβτβτβτ 2222 . Thus ( ) GBclN ⊆βτ 2 . Therefore B is Nano (1,2) g
β  closed set inU . 
 
4. NANO ( )21 ,ττ  GENERALIZED β  OPEN SETS 

Definition 4.1: A subset A of a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ  is called Nano ( )21 ,ττ  generalized

β open (brieflyN ( )21 ,ττ g β  open), if its compliment CA  is Nano ( )21 ,ττ g β  closed. 

The collection of allNano ( )21 ,ττ g β  open subsets ofU  is denoted by N ( )21 ,ττ  G ),( XUOβ . 
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Theorem 4.2: Every Nano 2τ  open set in ( ) ( )( )2211 ,, XXU RR ττ  is Nano ( )21 ,ττ g β  open set in

( ) ( )( )2211 ,, XXU RR ττ  but not conversely. 
 
Proof: Since every Nano open set is Nano g β open, the proof follows. 
 
Example 4.3: Let { }edcbaU ,,,,= with { } { } { }{ }edcbaRU ,,,,1 = , { }baX ,1 = , ( ) { } { } { }{ }dcbadcbaUXR ,,,,,,,,,11 φτ = ,

{ } { } { }{ }decbaRU ,,,,2 = , { }daX ,2 = , ( ) { } { } { }{ }dbabadUXR ,,,,,,,22 φτ = . Here the set { }eca ,, is Nano

( )21 ,ττ  g β open but not Nano 2τ open inU . 
 
Remark 4.4: The intersection of two Nano ( )21 ,ττ  g β open sets need not be Nano ( )21 ,ττ  g β  open set which can 
be seen from the following example. 
 
Example 4.5: Let { }edcbaU ,,,,= with { } { } { }{ }edcbaRU ,,,,1 = , { }baX ,1 = ,

( ) { } { } { }{ }dcbadcbaUXR ,,,,,,,,,11 φτ = , { } { } { }{ }decbaRU ,,,,2 = , { }daX ,2 = ,

( ) { } { } { }{ }dbabadUXR ,,,,,,,22 φτ = . Here the sets { }ea,  and { }ed , are Nano ( )21 ,ττ g β open sets but 

{ } { } { }eedea =∩ ,,  is not Nano ( )21 ,ττ g β open set inU . 
 
Theorem 4.6: A subset A  in a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ  isN ( )21 ,ττ  g β  open if and only 

if ( )ANF int2βτ⊆  whenever F  is Nano 1τ closed and AF ⊆  .  
 
Proof: Assume that A  is N ( )21 ,ττ  g β  open setin ( )( )XU Rτ, . Let F  be Nano 1τ closedand AF ⊆ , then

CC FA ⊆ implies CF is Nano 1τ open. Since CA  isNano ( )21 ,ττ  g β  closed set ( ) CC FAclN ⊆βτ 2 .Since 

( )( ) ( )CC AclNAN βτβτ 22 int = , ( )( ) CC FAN ⊆int2βτ . Therefore ( )ANF int2βτ⊆ .  
 
Conversely assume that ( )ANF int2βτ⊆ whenever F is Nano 1τ closed set and AF ⊆ . Then

( )( ) CC FAN ⊆int2βτ .Thus ( ) CC FAclN ⊆βτ 2 . Hence CA  is Nano ( )21 ,ττ g β  closed set and A  isNano 

( )21 ,ττ g β  open set inU .  
 
Theorem 4.7: If A isa Nano ( )21 ,ττ  g β  open set in a Nano bitopological space ( ) ( )( )2211 ,, XXU RR ττ and 

( ) ABAN ⊆⊆int2βτ , then B  is also Nano ( )21 ,ττ g β  open.  
 
Proof: Let A  is Nano ( )21 ,ττ  g β  open set and ( ) ABAN ⊆⊆int2βτ . Then ( )( )CCC ANBA int2βτ⊆⊆
implies ( )CCC AclNBA β⊆⊆ . Since CA  isNano ( )21 ,ττ g β  closed, CB  is alsoNano ( )21 ,ττ  g β  closed. 

Therefore B  isNano ( )21 ,ττ g β open. 
 
Theorem: 4.8: If a set A  isNano ( )21 ,ττ g β  open in a Nanobitopologicalspace ( ) ( )( )2211 ,, XXU RR ττ , then

UG =  whenever G is Nano 1τ  openand ( ) GAAN C ⊆∪int2βτ . 
 
Proof: Let A be Nano ( )21 ,ττ g β  open, G be Nano 1τ open set and ( ) GAAN C ⊆∪int2βτ . Then

( )( )CCC AANG ∪⊆ int2βτ ( ) CC AAclN −= βτ 2 , since CG  is Nano 1τ closed and CA  is Nano ( )21 ,ττ g β  

closed. By theorem 3.13[8] we have φ=CG . Therefore UG = . 
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