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ABSTRACT 
In this paper, we consider the fractional Korteweg–de Vries (KdV) equation. A relatively new method called the q-
homotopy analysis method (q-HAM) is adopted to obtain an analytical solution of the fractional Korteweg–de Vries 
(KdV) equation in series form. Our analysis shows the simplicity nature of the application of q-HAM to nonlinear 
fractional differential equations. The convergence rate of the method used is faster in the sense that just very few terms 
of the series solution are needed for a good approximation due to the presence of the auxiliary parameter h 
comparable to exact solutions. Numerical solution obtained by this method is compared with the exact solution. Our 
error analysis shows that the analytical solution converges very rapidly to the exact solution. Numerical results are 
obtained using the software Mathematica. 
 
Keywords: q-homotopy analysis method (q-HAM), fractional Korteweg–de Vries (KdV) equation, approximate 
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1. INTRODUCTION 
 
In recent decades, fractional calculus has found diverse applications in different scientific and technological fields       
[1, 2], such as thermal engineering, acoustics, electromagnetism, control, robotics, viscoelasticity, diffusion, edge 
detection, turbulence, signal processing, information sciences, communications, and many other physical processes and 
also in medical sciences. Fractional differential equations (FDEs) have also been applied in modeling many physical 
and engineering problems and fractional differential equations in nonlinear dynamic [3]. The importance of getting 
approximate and exact solutions of nonlinear fractional differential equations in mathematics and physics remains an 
important problem that requires the discovering new methods of approximate and exact solutions. However, finding the 
exact solutions to these non-linear fractional differential equations are difficult to obtain it [4]. Therefore, the numerical 
methods used to deal with these equations [5] and they have largely been using some semi analytical techniques to 
solve these equations such as, differential transform method [6, 7, 8], Laplace decomposition method [9], homotopy 
perturbation method [10], variational iteration method [11, 12] and homotopy analysis method (HAM) [13, 14, 15]. 
The HAM initially proposed by Liao in his Ph.D. and thesis [13] is a powerful method to solve the non-linear 
problems. In recent years, this method has been successfully employed to solve many types of non-linear problems in 
science and engineering [16, 17, 18]. The HAM contains a certain auxiliary parameter ℎ, which provides us with a 
simple way to adjust and control the convergence region and the rate of convergence of the series solution. Many 
workers applied the HAM to solve fractional differential equations [19, 20]. El-Tawil and Huseen [21] established a 
method namely q-homotopy analysis method (q-HAM) which is a more general method of HAM, The q-HAM contains 
an auxiliary parameter n  as well as h  such that the case of 1=n  (q-HAM; 1=n ) the standard homotopy analysis 
method (HAM) can be reached. In this paper, we have applied the q-homotopy analysis method (q-HAM) [22, 23] to 
solve the fractional Korteweg–de Vries (KdV) equation [24] with given initial condition. The main advantage of the 
method is the fact that it provides its user with an analytical approximation solution, in a rapidly convergent series with 
elegantly computed terms. The structure of this paper is organized as follows: 
 
In section 2, we begin with the basic definition of Caputo’s fractional derivative. In section 3, we give the basic concept 
of the q-homotopy analysis method (q-HAM). In section 4, we apply this method to solve the fractional Korteweg–
de Vries (KdV) equation with given initial condition. 
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2. PRELIMINARIES 
 
This section is devoted to some definitions and some known results. Caputo’s fractional derivative is adopted in this 
work. 
 
Definition 2.1: The Riemann-Liouville’s (RL) fractional integral operator of order ,0≥α of a function ),(1 baLf ∈  
is given as  
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where    Γ  is the Gamma function and ).()(0 tftfI =  

 
Definition 2.2: The fractional derivative in the Caputo’s sense is defined as [4]  
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3. BASIC CONCEPTS OF Q-HOMOTOPY ANALYSIS METHOD 
 
Considering the following differential equation of the form: 

,0),()],([ =− txftxuDN t
α                                                                                                                         (4)  

where N  is a nonlinear operator, α
tD denote the Caputo’s fractional derivative, ),( txu  is an unknown function, x  

and t  denote the space and time variables and ),( txf is a known function, respectively. To generalize the original 
homotopy method, the zeroth-order deformation equation is constructed as 
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                                      (5)          

where 
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qn 1,0,1  denotes the so called embedding parameter, 0≠  is a non-zero auxiliary parameter, 

),( txH is a non-zero auxiliary function, L is an auxiliary linear operator, ),(0 txu is an initial guess of ),( txu  and 

);,( qtxϕ  is an unknown function. It is important to note that one has great freedom to choose the auxiliary things in 

q-HAM. Clearly, when 0=q  and ,1
n

q =  it holds that: 
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Thus, as q  increases from 0 to
n
1

, the solution );,( qtxϕ  varies from the initial guess ),(0 txu  to the solution 

).,( txu  If ),(,,),,(0 txHhLtxu  are chosen approximately, the solution );,( qtxϕ  of equation (5) exists 

for 
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q 1,0 . Expanding );,( qtxϕ  in Taylor’s series about ,0=q  we have: 
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We suppose that the auxiliary linear operator L, the initial guess ,0u the nonzero auxiliary function ),( txH  and the 

nonzero auxiliary parameter   are properly chosen such that the above series (7) converges at ,1
n

q =  and then we 

have: 
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which must be one of the solutions of the original non-linear differential equation. Let the vector nu be defined as 
follows: 

)}.,(...,),,(),,(),,({ 210 txutxutxutxuu nn =                                                                                          (10) 
 
Differentiating the equation (5), m-times with respect to the (embedding) parameter q , then evaluating at 0=q  and 

finally dividing them by !m  throughout, we obtain the m-th order deformation equation (Lioa [13]) as: 
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3.1. Remark: It should be emphasized that 1),( ≥mfortxum is governed by the linear operator (11) with the linear 

boundary conditions that come from the original problem. The existence of the factor
m

n






 1

, more chances for 

convergence may occur or even much faster convergence can be obtained better than the standard HAM. It should be 
noted that the cases of )1( =n in equation (5), the standard HAM can be reached. 
 
4. APPROXIMATE SERIES SOLUTION OF THE PROBLEM 
 
In this section, we shall apply the q-HAM to obtain the series solution of the fractional Korteweg–de Vries (KdV) 
equation with given initial condition. 
 
4.1. THE FRACTIONAL KORTEWEG-DE VRIES (KDV) EQUATION: 
We first consider the fractional Korteweg–de Vries (KdV) equation given by [24] as, 

,10,0,06 ≤<>=++ αα tuuuuD xxxxt                                                                                           (14) 

with initial conditions .
22
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The true solutions for 1=α of the equation (14) which is obtained by the MFRDTM [24] is given by 

.
22
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=
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Let us now solve the equation (14) by the q-homotopy analysis method (q-HAM). 
 
We choose the linear noninteger order operator as:     

),;,()];,([ qtxDqtxL t ϕϕ α=                                                                                                                       (17) 

with the property ,0)( 1 =cL where 1c  is constant. Also, we use 



=
22

1)0,( 2 xSechxu as the initial 

approximation. From the equation (15), we define the non-linear fractional partial differential operator as: 
).;,();,();,(6);,()];,([ qtxqtxqtxqtxDqtxN xxxxt ϕϕϕϕϕ α ++=                                                  (18) 
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Using the above definitions, we construct the zero-order deformation equation: 

)].;,([),()],();,([)1( 0 qtxNtxHqtxuqtxLnq ϕϕ =−−                                                                   (19) 
 
Choosing the ,1),( =txH  we define the mth-order deformation equation as: 

)),,(()],(),([ 11
* txuRtxutxuL mmmmm

→

−− =− χ                                                                                       (20) 

with the initial condition for ,1≥m ,0)0,( =xum  

where     


 ≤

=
otherwisen
m

m ,
,1,0*χ  

and  

.)),(()),((),(6),()),(( 11

1

0
11 xxxmxjm

m

j
jmtmm txutxutxutxuDtxuR −−−

−

=
−

→

− ++= ∑α                               (21) 

 
Now the solution of equation (20), for 1≥m becomes  
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It is straightforward to choose the initial approximation )0,(),(0 xutxu = which is given by the equation (15). 
Therefore, using the q-HAM, we obtain the components of the solution successively as follows. 
 

We, therefore, obtain: ,
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From the equations (23), (24) and (25), we obtain ),(),(),,( 321 txuandtxutxu similarly by putting ...,5,4=m  

in equation (22), we can obtain 4),,( ≥itxui by using the Methematica. Therefore, the four-terms approximate series 

solution to the problem (14) in terms of convergence parameter nandh  is given by 
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4.2. Remark: It should be emphasized that );( txum for 1>m , is governed by the linear operator (7) with the linear 

boundary conditions that come from the original problem. The existence of the factor
i

n






 1

 gives more chances for 

better convergence, faster that the solution obtained by the standard HAM. Of course, when ,1=n we are in the case of 
the standard HAM. 
 
4.3. The h-curve: 
The question that comes to the mind when the following this method of solution is how one chooses the auxiliary 
parameter h to get a good approximate solution. The answer is in the h-curve. Apparently, our choice in the plots can be 
seen directly from the graph, the range of which is by drawing a horizontal line on the curve parallel to x-axis. Fig. 1 is 
made with .1,1 == αandn  

 

 
Figure-1: The h-curve of ),,,( hntxu of the four-terms approximate series solution of the equation (26) obtained by 
q-HAM for fixed the value of .1,1 == αandn  
 
5. NUMERICAL ANALYSIS 
 
In this section, we give some numerical results using series solution obtained above. Comparison is made with the 
exact solution for a special case using the four-terms series solution. We also seen the graph displaying the best choice 
of h for fast convergence and the effects of different fractional orderα on the solution obtained. 
 
5.1. Comparison of the approximate solution with exact solution  
Exact solution is known in the case of 1=α  and so we present the numerical result (four-terms series solution) 
obtained by the q-homotopy analysis method and the exact solution of equation the (14) under some conditions. 
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Figure-2: The seven-terms approximation solution of the q-HAM plot of ),( txu for 1,88.0 == nh  and 1=α  
against the exact solution obtained by MFRDTM.  
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(a)                                                                                            (b) 

Figure-3: Fig. 3(a) is the exact solution (16) obtained by MFRDTM and fig. 3(b) is the four-terms approximate series 
solution (26), obtained by the q-HAM for .1,1,95.0 ==−= αnh  
 
5.2. Remark: It should be noted that we have used only the four-terms of the series solution obtained by the q-
homotopy analysis method to make fig.2 as against the solution obtained by the modified fractional reduced differential 
transform method [MFRDTM]. Fig.2 and 3 shows a perfect match with exact solution. This shows the effectiveness of 
the homotopy analysis method over other analytical methods due to the ability to control or choose appropriately the 
auxiliary parameter h. 
 
5.3. Solution plots with different fractional values of α  
Here, we give the solution plots of the four-terms series solution (26) of the equation (14) using the MATHEMATICA 
obtained by q-homotopy analysis method (q-HAM). This shows the effect of the different fractional values of α  on 
the obtained solution (26) in figure 4 and 5. 
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Figure-4: The q-HAM solution plot of Eq. (14) for different fractional values of α with fixed 

.188.0,75.0 =−== nandhx  
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Figure-5: The q-HAM solution plot of Eq. (14) for different fractional values of α with fixed 

.188.0,5.0 =−== nandht  
 
Table-1: Absolute errors for u(x, t) obtained by the four-terms approximate series solution (26) the equation (14) 
obtained the q-HAM against with the exact solution obtained by MFRDTM [24] for 95.01 −== handn   
 

   t    x     1=α  75.0=α  50.0=α  25.0=α  

             
 
 
 .01 
        
            
               

  -3 
  -2 
  -1 
   0 
   1 
   2 
   3 

6.4341854E-8 
1.4465059E-7 
1.7481382E-7 
0.0000000 
1.2350665E-7 
2.0084081E-7 
1.1208361E-7 

1.9513911E-3 
3.8500738E-3 
4.4864765E-3 
0.0000000 
4.3880173E-3 
3.9583612E-3 
2.0431764E-3 

7.8501271E-3 
1.576909E-2 
1.9548745E-2 
0.0000000 
1.8153032E-2 
1.7302939E-2 
9.1512339E-3 

2.4518746E-2 
4.9665235E-2 
7.7083517E-2 
0.0000000 
6.1261918E-2 
6.7066096E-2 
3.9267895E-2 

 
 
 
.02 

  -3 
  -2 
  -1 
   0 
   1 
   2 
   3 

3.1070078E-9 
7.1011681E-8 
6.6448348E-8 
0.0000000 
2.7269763E-7 
2.9403599E-7 
1.8776022E-7 

2.9774284E-3 
5.9132759E-3 
7.0280876E-3 
0.0000000 
6.7578813E-3 
6.2104572E-3 
3.2293205E-3 

1.0377445E-2 
2.1049732E-2 
2.7218635E-2 
0.0000000 
2.4441339E-2 
2.4104253E-2 
1.2966486E-2 

2.8903930E-2 
5.7875504E-2 
9.5709924E-2 
0.0000000 
7.3353075E-2 
8.2463946E-2 
4.9745348E-2 

 
 
 
.03 

  -3 
  -2 
  -1 
   0 
   1 
   2 
   3 

2.8630366E-7 
3.8130087E-7 
1.1900928E-6 
0.0000000 
1.6579801E-6 
1.1399201E-7 
1.4277332E-7 

3.7519086E-3 
7.4954524E-3 
9.0750797E-3 
0.0000000 
8.5903517E-3 
8.0285838E-3 
4.2037871E-3 

1.2071311E-2 
2.4649702E-2 
3.2995673E-2 
0.0000000 
2.8850929E-2 
2.9208179E-2 
1.5935114E-2 

3.1876547E-2 
6.3103487E-2 
1.0897626E-1 
0.0000000 
8.1623805E-2 
9.3186198E-2 
5.7374956E-2 

 
 
 
.04 

  -3 
  -2 
  -1 
   0 
   1 
   2 
   3 

8.6912112E-7 
1.3709774E-6 
3.6612943E-6 
0.0000000 
4.5026128E-6 
5.0666361E-7 
1.0724971E-7 

4.3796942E-3 
8.7973092E-3 
1.0843835E-2 
0.0000000 
1.0112703E-2 
9.6014813E-3 
5.0612894E-3 

1.3351203E-2 
2.7397237E-2 
3.7816055E-2 
0.0000000 
3.2318003E-2 
3.3444148E-2 
1.8476598E-2 

3.4200079E-2 
6.6967149E-2 
1.1964957E-2 
0.0000000 
8.8105309E-2 
1.0166012E-2 
6.3606173E-2 

 
 
 
.05 

  -3 
  -2 
  -1 
   0 
   1 
   2 
   3 

1.8353558E-6 
3.0550361E-6 
7.9440418E-6 
0.0000000 
9.2777139E-6 
1.7371032E-6 
6.4680586E-7 

4.9067225E-3 
9.9061081E-3 
1.2426918E-2 
0.0000000 
1.1423800E-2 
1.1009503E-2 
5.8418999E-3 

1.4377785E-2 
2.9611832E-2 
4.2039288E-2 
0.0000000 
3.5202075E-2 
3.7131662E-2 
2.0751599E-2 

3.6139437E-2 
7.0027067E-2 
1.2873086E-2 
0.0000000 
9.3513577E-2 
1.0875979E-2 
6.8969615E-2 

 
A very good agreement between the results of the q-HAM and the exact solutions is observed in Figures 2, 3 and     
Table 1, which confirms the validity of the q-HAM. 
 

25.0=α  50.0=α  75.0=α  1=α  
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6. CONCLUSION 
 
In this paper, we have successfully applied q-homotopy analysis method (q-HAM) to obtain an approximation of the 
analytic solution of the fractional Korteweg–de Vries (KdV) equation. In this method, the solution is found in the form 
of a convergent series with easily computed terms. The results obtained by the q-homotopy analysis method (q-HAM) 
are compared with the modified fractional reduced differential transform method (MFRDTM) solution, which show a 
very good agreement, even using only few terms of the recursive relations. In general, this method provides highly 
accurate numerical solutions and can be applied to a wide class of nonlinear problems. Also, the method avoids 
linearization and physically unrealistic assumptions. The results demonstrate reliability and efficiency of the                 
q-homotopy analysis method (q-HAM). The fact that this technique solves the linear and nonlinear problems can be 
considered as a clear advantage of this algorithm over the decomposition method. Finally, we conclude that the q-HAM 
can be considered as a nice refinement in existing numerical techniques and have wide applications in different fields 
of sciences. 
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