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ABSTRACT 
In this paper we show that in a Jordan ring R, for fixed n in the middle nucleus Nm, the additive subgroup B generated 
by all elements of the form (n,R,R) is an ideal of R. Then it is proved that R is either associative or the middle nucleus 
equals the center. 
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INTRODUCTION 
 
In [3] Oehmke  and  Sandler  have  proved  that  if  R is  a  simple finite dimensional algebra of  characteristic ≠ 2,3 
then the nucleus N = the center C. Their proof depends on the known structure of simple Jordan algebras. We  have  a 
second proof of this result in [1] which  is  also  valid  for  characteristic  3, using theorems  on trace functions. Klein 
feld [2] proved that in a simple Jordan ring of char ≠ 2 the middle nucleus and center coincide. In this paper we show  
that in a Jordan ring R, for fixed n in the middle nucleus Nm, the  additive subgroup B generated by all elements of the 
form (n, R, R) is an ideal of R. Then it is proved that R is either associative or the middle nucleus equals the center. 
 
PRELIMINARIES  
 
Let R be a Jordan ring. We know that a Jordan ring R is a nonassociative ring in which products are commutative, that 
is  

(x, y) = 0 or xy = yx,                                                    (1) 
and which satisfies the Jordan identity (xy)x2 = x(yx2), for all x, y in R. 
 
That is (x, y, x2) = 0                                                             (2) 
 
In Schafer [4], he linearized (2) and obtained 2(x, y, zx) + (z, y, x2) = 0 for all x, y, z∈R                                            (3) 
 
We use the right multiplication notation xy = xRy = yx, where Ry is a linear transformation on commutative algebra. 
Then it is well known that the identity Rx(yz)-(xy)z = (Rx  Rz – Rz Rx) Ry – Ry (Rx Rz – Rz Rx) holds in R. It can be written 
as  

w(x, y, z) = (Ry (Rx Rz) – Ry (Rz Rx)) – Ry (Rx Rz – Rz Rx), 
                = (wy (xz) – wy (zx)) – y ((wx)z – (wz)x), 
                = (((wy)x)z – ((wy)z)x) – y ((xw)z – x(wz)),  
                = ((x(wy))z – x((wy)z)) – y ((xw)z – x (wz)). 

Then w(x, y, z) = (x, wy, z) – y (x, w, z). 
 ∴ (x, wy, z) = w (x, y, z) + y (x, w, z),                                                                             (4) 
 
This identity is valid in a Jordan ring R. 
 
The following identity is valid in any ring: 
 (wx, y, z) – (w, xy, z) + (w, x, yz) – w (x, y, z) – (w, x, y)z = 0                                        (5) 
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Let N be the nucleus and C be the center of R.  
 
The left nucleus Nl of R is defined as Nl ={n∈R/(n, R, R) = 0}. 
 
The right nucleus Nr of R is defined as Nr = {n∈R/(R, R, n) = 0}. 
 
The middle nucleus Nm of R is defined as Nm = {n∈R / (R, n, R) = 0}.                                                                         (6) 
 
By the nucleus N of a ring R, we mean the set of all elements n in R such that (n, R, R) = (R, n, R) = (R, R, n) = 0. 
 
The center C of R is defined as C = {c ∈N / (c, R) = 0}.                                                            (7) 
 
Let R be the n- divisible if nx=0 implies x = 0 for all x in R and n a natural number. 
 
Now if we take w = x, x = n in (5), then 

(xn, y, z) – (x, ny, z) + (x, n, yz) –x (n, y, z) – (x, n, y)z = 0, 
(xn, y, z) – (x, ny, z) – x (n, y, z) = 0 from (6). 
(xn, y, z) = (x, ny, z) + x(n, y, z),  
(xn, y, z) = n(x, y, z) + y (x, n, z) + x(n, y, z), using  (4).  
(xn, y, z) = n(x, y, z) + x(n, y, z), using  (6). 
(xn, y, z) = n(x, y, z) + x (n, y, z), or 
(nx, y, z) = n(x, y, z) + x (n, y, z).                                                          (8)   

 
As a consequence of (4),  
 (x, ny, z) = n (x, y, z)                                               (9) 
for  arbitrary  elements x, y, z  in  R  and  n  in  Nm. 
 
MAIN RESULTS  
 
Lemma  1:  For  fixed  n  in  Nm, the  additive   subgroup B  generated by  all  elements  of  the  form  (n, R, R)  is  an 
ideal  of  R. 
 
Proof: We have to prove B = {(n, R, R) / n∈Nm} is an ideal. 
 
Let b = (ax)y – a(xy),  here  a∈Nm, x, y∈R. 
 
Let  B  be  the  subspace  of  R  of  all  finite sums of  elements of the  form (ax)y – a(xy). Then 

b1 = ((wx)a)y – ((wx)y)a = (a(wx))y – a ((wx)y) is in B. Also 
b11 = ((wy)a) x – ((wy) x) a, 
b111 = ((xy)a)w – ((xy)w) a   are  in  B. 

 
By taking x=a, y=x, z=y in equation (4), we get 

(x, wy, z) = w(x, y, z) + y (x, w, z), 
(a, wx, y) = w(a, x, y) + x (a, w, y), 
(a.wx)y – a(wx.y) = w((ax)y – a (xy)) +x((aw)y – a(wy)) 
b1 = wb + q  
∴ wb = b1 – q                                                       (10) 

 
Here q = x((aw)y – a(wy)), 
            = x((aw)y) – x (a (wy)), 
            = ((x(aw))y – (x, aw, y)) – x (a(wy)). 
 
Using this and (4) we get q = (x (aw))y – (a(x, w, y) + w (x, a, y)) – x (a(wy)), 

  q = (x(aw))y – a(x, w, y) – x (a(wy)), 
     = (x(aw))y – a ((xw)y – x(wy)) –x (a(wy)), 
     = (x(aw))y – a ((xw)y) + ((wy) x) a – ((wy) a) x, 
  q = (x(aw))y – a((xw)y) – b11. 

 
Thus q+b11 = (x(aw))y – a ((xw)y),  
                   = ((xa)w)y – a ((xw)y), 
                   = (w(xa))y – a((w, x, y) + w (xy)), 
                   = (w, xa, y) + w((xa)y) – a (w,x,y) – a (w(xy)), 
                   = (x(w, a, y) + w((xa) y) + (a,xy,w) – (a(xy)w), using (4), 
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         = w((xa)y) – (a(xy)w + (a, xy, w) 
                   = wb + (a(xy))w – a((xy)w) 
         q+b11 = wb + b111,  
   bl-wb+bll  = wb+bl1l, using (10).      
   2wb         = bl+bll-blll.    
   ∴ wb       = bl+bll-blll. 
 
Since bl, bll and blll are in B, wb is also in B. By (1) we have wb = bw. 
 
This proves that B is an ideal of R.                                            
 
We  know  that  the  following  identities  hold in a  Jordan  ring  R : 
 (x, y, z) = - (z, y, x)  or  (x, y, x) = 0                                      (11) 
and              S (x, y, z) =  (x, y, z) + (y, z, x) + (z, x, y) = 0.                                                    (12) 
 
By taking z = n in (11) we get  

(x, y, n) = - (n, y, x).                                                 (13) 
 
Now we take z = n, n∈Nm  in  (12)  we  obtain 

(x, y, n) + (y, n, x) + (n, x, y) = 0, 
(x, y, n) + (n, x, y) = 0, 
(x, y, n) = - (n, x, y).                                        (14) 

 
Using this and (13) we get (x, y, n) = (y, x, n).                                                                                        (15) 
 
Similarly by taking x = n in (12) and using (13) we get 
 (n, x, y) = (n, y, x).                                                                  (16) 
 
Let A consists of all finite sums of elements of the form (x, y, z) or of the form w(x, y, z). 
   
Then A is an ideal in any arbitrary ring. 
 
Theorem 1: If R is a 2- and 3- divisible prime Jordan ring, then either R is associative or the middle nucleus equals the 
center. 
 
Proof: We take y=n, n∈Nm in (5).  Then  
 
We get - (w, xn, z) + (w, x, nz) = (w, x, n)z.   
 
By taking w = z in this equation and using (11) we get 

(z, x,  nz) = (z, x, n) z.                                                                                      (17) 
 
By taking x = z, y = z, z = n, w = x in (4), then we obtain 

(z, xz, n) = x (z, z, n) + z(z, x, n). Using this and (15) we get 
(xz, z, n) = x (z, z, n) + z(z, x, n).                                            (18) 

 
By taking x=z, y=x, z=n in (3) then we get 2(z, x, nz) + (n, x, z2) = 0.                                                          (19)             
 
Now we take w=x, x=z, y=z, z=n in (5), we obtain 

 (xz, z, n) – (x, z2, n) + (x, z, zn) –x (z, z, n) – (x, z, z)n  = 0, 
 (xz, z, n) – (x, z2, n) + (x, z, zn) = x(z, z, n) + (x, z, z)n. 

 
Using this, (15), (11), (19) and (17) we get  

(xz, z, n) – (z2, x, n) + (x, z, zn) = x(z, z, n) + (x, z, z)n,   
(xz, z, n) + (n, x, z2) + (x, z, zn) = x (z, z, n) + (x, z, z)n.  
- (xz, z, n) – 2(z, x, nz) + (x, z, zn) = x(z, z, n) + (x, z, z) n.  
(xz, z, n) -2(z, x, nz) + (x, z, n)z = x (z, z, n) + (x, z, z)n.  

 
Now using (15), (17) and (18) we get 

(xz, z, n) -2(z, x, nz) + (z, x, n)z = x (z, z, n) + (x, z, z)n, 
(xz, z, n) – (z, x, nz) = x(z, z, n) + (x, z, z)n, 
(xz, z, n) – x (z, z, n) – (z, x, nz) = (x, z, z)n, 
(x, z, z)n = 0. 
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By using (12) and (11), we obtain 

     (z, z, x)n = 0 and (z, x, z)n = 0. 
∴  (x, z, z)n = (z, x, z)n = (z, z, x)n = 0.                                          (20) 

 
By linearizing (20), we get 

(x, y, z)n = - (x, z, y)n = (z, x, y)n = - (y, x, z)n = (y, z, x)n. 
 
From (12) we have S(x, y, z) = 0.     
 
So S(x, y, z)n = 0.  Then   

(x, y, z)n + (y, z, x)n + (z, x, y)n = 0, 
3(x, y, z)n = 0. 

 
Since R is 3- divisible, (x, y, z)n = 0.                                                                        (21) 
 
Using this in (4), we get 

(x, ny, z) = n(x, y, z) + y(x, n, z) 
(x, ny, z) = 0. 

 
Using this in (5), we obtain 

(wn, y, z) = w(n, y, z).                                      (22) 
 
By forming the associator in (21) with r, s, where r, s∈R. 
 
We have ((x, y, z)n, r, s) = 0. 

(x, y, z) (n, r, s) = 0, using (22). 
 
That is, AB = 0. 
 
Since R is prime, either A=0 or B=0. 
 
If A = 0 then R is associative. 
 
If B = (n, r, s) = 0, then from (11), it follows that (s, r, n) = 0. 
 
Thus n is in the nucleus N and satisfies (n, r) = 0, by 1. 
 
So n ∈ C. That is, n∈Nm implies that n∈C. 
 
Hence Nm = C. 
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