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ABSTRACT 
In this paper, the Petrov-Galerkian method (PGM) is proposed to obtain approximate solutions of linear fractional 
Volterra integro-differential equation of the second kind (LFVIDEs) via the normalization Bernstein bases. The 
fractional derivatives are described in the Caputo sense. Some examples are given and  the their results shown in 
tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of 
traditional methods.                                                                   
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1. INTRODUCTION   
 
Integro-differential equations are encountered in various fields of sciences. It plays an important role in many branches 
of linear and non-linear functional analysis and their applications are in the theory of sciences, engineering and social 
sciences. Many problems can be modeled by fractional integro-differential equations from various sciences and 
engineering applications. Finding the approximate or exact solutions of fractional integro-differential equations is an 
important task. Save in a limited number, there is difficulty in finding the analytical solutions of fractional integro-
differential equations. Therefore, there have been attempts to develop new methods for obtaining analytical solutions 
which reasonably approximate the exact solutions.                                                                         
 
Let us consider the linear fractional Volterra integro-differential equation of the second kind (LFVIDEs):                                     

𝐷∗𝛼 𝑢(𝑥) = 𝑓(𝑥) + ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,𝑥
𝑎    𝑢(0) = 𝛽, 𝑥 ∈ [0,1]                                                                            (1) 

 
Where  𝐷∗𝛼 is Caputo fractional derivative, 𝛼 is a parameter describing the order of the fractional derivative, 
𝑓(𝑥), 𝑘(𝑥, 𝑡) are given continuous functions and u(x) is the unknown function to be determined.                                                                                                                           
  
However, several numbers of algorithms for solving linear fractional Volterra integro-differential equation of the 
second kind (LFVIDEs) have been investigated.  Zhao and Neville [1] use collocation methods are used for solving the 
fractional Volterra integro-differential equations with weakly singular kernels. Abdon and Necde [2] present Picard 
method to find existence and uniqueness of the solution Volterra fractional integral equation of the second kind. Saleh, 
Amer, Nagdy and Alngar [3] applied homotopy perturbation method (HPM) and variational iteration method (VIM) to 
approximate solutions for nonlinear Volterra fractional integro-differential equations with boundary conditions. Vedat 
and Shaher [4] obtain approximate analytical solutions to fractional Volterra integro-differential equations using the 
generalized differential transform method. Emran, Ezadkhah and Shateyi [5] adopt a computational approach for 
solving a class of nonlinear Volterra integro-differential equations of fractional order which is based on the Bernoulli 
polynomials approximation. Vanni and Aminatae [6] employed Operational Tau matrix method to approximation for a 
general class of fractional integro-differential equations.           
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In this paper, we show how the approximately methods which are based on the Petrov-Galerkian method (PGM) can be 
used to solve (LFVIDE's) to obtain approximate solutions via the normalization Bernstein bases.                                                                                                                                               
 
1.1. Basic Definitions of Fractional Derivatives 
 
In this section some basic definitions and properties of fractional calculus theory which are necessary for the 
formulation of the problem are given 
 
Definition 1: A real function f(t), t > 0, is said to be in the space Cμ, μ ∈ R, if there exists a real number p > 𝜇, such 
that f(t) = tph1(t); where f1(t) ∈ (0 ,∞), and it is said to be in space  Cn

μ if and only if  fn Cμ, n ∈ N.                                                                                                           
 
Definition 2: The Riemann-Liouvill fractional integral operator of order 𝛼 for a function in 𝐶𝜇, where 𝜇 ≥ −1, is 
defined as   

𝐽𝛼𝑓(𝑥) =  1
Γ (α)

 ∫ 𝑓(𝑡)
(𝑥−𝑡)1−𝛼

𝑑𝑡𝑥
0 ,  𝛼 > 0                                                                                                               

𝐽𝛼𝑓(𝑥) = 𝑓(𝑥). 
 
Definition 3: Let 𝑓 ∈ 𝐶−1𝑚  1,𝑚 ∈ 𝑁 ∪ {0}. Then the Caputo fractional derivatives of f(x) is defined as:        

𝐷𝛼  𝑓(𝑥) = �
𝐽𝑚−𝛼 𝑓𝑚 (𝑥), 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁
𝐷𝑚𝑓(𝑥)
𝐷𝑥𝑚

 ,            𝛼 = 𝑚                                
�                                                                                                                                                                                                                                                 

 
Hence, we have following properties                                                                   

1. 𝐽𝛼 𝐽𝑣 𝑓 =  𝐽𝛼+𝑣 𝑓,   𝛼, 𝑣 > 0, 𝑓 ∈  𝐶𝜇 ,𝜇 > 0 
2. 𝐽𝛼 𝑥𝛾 =  𝛤(𝛾+1)

𝛤(𝛼+𝛾+1)
  𝑥𝛼+𝛾,𝛼 > 0 , 𝛾 > −1, 𝑥 > 0                         

3. 𝐽𝛼 𝐷𝛼  𝑓(𝑥) = 𝑓(𝑥)-∑ 𝑓𝑘(0+) 𝑥
𝑘

𝑘!
𝑚−1
𝑘=0  ,𝑥 > 0,𝑚− 1 < 𝛼 ≤ 𝑚                   

4. 𝐽𝛼 𝐷𝛼  𝑓(𝑥) = 𝑓(𝑥), 𝑥 > 0,𝑚 − 1 < 𝛼 ≤ 𝑚                   
5. 𝐷𝛼𝐶 = 0, C is constant                                                

6. 𝐷𝛼𝑥𝐵 = �
0                             𝛽 ∈ 𝑁0, < [𝛼]
𝛤(𝛽+1)

𝛤(𝛽−𝛼+1)
  𝑥𝛽−𝛼  𝛽 ∈ 𝑁0,𝛽 ≥ [𝛼] 

�                               

where [𝛼] denoted the smallest integer greater than or equal to 𝛼 and 𝑁0 = {0,1,2, … }.                               
 
1.2. The Derivative for Orthonormal Brnstein Polynomials   
 
The Bernstein polynomials of 𝑛th degree are defined on the interval [0, 1] as [7]. 

𝐵𝑖,𝑛(𝑥) = �𝑛𝑖 � 𝑥
𝑖(1 − 𝑥)𝑛−𝑖 ,   �𝑛𝑖 � =  

𝒏!
𝒊! (𝒏 − 𝒊)!

    𝑓𝑜𝑟 𝑖 = 0,1,2, … ,𝑛 

              
The representation of the orthonormal Bernstein Polynomials, denoted by 𝒃𝒊,𝒏(𝒙) here, was discovered by analyzing 
the resulting orthonormal polynomials after applying the Gram-Schmidt process on sets of Bernstein polynomials of 
degree 𝐵𝑖,𝑛(𝑥), [8]. Then the following sets of orthonormal polynomials 𝑏𝑖,𝑛(𝑥), 0 ≤ 𝑖 ≤ 𝑛. For 𝑛 = 3, the four 
orthonormal Bernstein polynomials are given as: 

𝑏0,3(𝑥) = √7 (1 − 𝑥)3 , 
𝑏1,3(𝑥)= √20 �3𝑥 (𝑥 − 1)2 + 1

2
(𝑥 − 1)3� , 

𝑏2,3(𝑥)= 10
√3
�−3𝑥(𝑥 − 1)2 − 3𝑥2(𝑥 − 1) − 3

10
(𝑥 − 1)3�  

𝑏3,3(𝑥)= 4 �3𝑥 (𝑥 − 1)2 + 9
2
𝑥2(𝑥 − 1) + 1

4
 (𝑥 − 1)3 +  𝑥3�            

 
2. CONVERGENCE OF THE PETROV-GALERKIN METHOD    
 
In this section we introduce the (PGM) for Eq. (2). For the proof of all results in this section we can use the same 
manner used in [9], but for Eq. (2). Let X be a Banach space with the norm ‖. ‖ and let 𝑋∗ denote its dual space. 
Assume K: X → X is a compact linear operator. We rewrite this eq. (1) in operator from as:    

𝐷∗𝛼𝑢 −  𝐾𝑢 = 𝑓,   𝑓 ∈ 𝑋                                                                                                                                      (2) 
 

where u ∈ X is the unknown to be determined. The Peterov-Galerkin method (PGM) used for the numerical solutions of 
eq. (2). The Petrov-Galerkin methods (PGM) interpolate between the Galerkin method and the collocation method. For 
this purpose for each positive integer n, we assume that 𝑋𝑛  ⊂ X , 𝑌𝑛⊂ 𝑋∗, and Xn, 𝑌𝑛  are  finite dimensional vector 
spaces with  dim Xn = dim Yn , then X n , 𝑌𝑛 satisfy condition (H): for each  x ∈ X and  y ∈ 𝑋∗, there exists  x n ∈ X n  and  
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y n ∈ Yn  such that ∥x n   ̶   x∥→ 0 as  n → ∞. when The peterov-Galerkin method(PGM)  for Eq.(2)  is a numerical 
method for finding 𝑢𝑛 ∈ 𝑋 such that 

〈  𝐷∗𝛼𝑢𝑛   ̶  K un , yn 〉 = 〈 f , yn 〉  for all 𝑦𝑛 ∈ 𝑌𝑛                                                                                                   (3) 
 
It is clear that the Petrov-Galerkin method (PGM) is closely related to a generalized best approximation from 𝑋𝑛 to        
x ∈ X with respect to 𝑌𝑛,. Given x ∈ X, an element 𝑃𝑛𝑥 ∈ 𝑋𝑛 is called a generalized best approximation from 𝑋𝑛 to x 
with respect to 𝑌𝑛  if it satisfies the equation   

〈x ⎯ 𝑃𝑛𝑥, yn〉 = 0   for all 𝑦𝑛 ∈ 𝑌𝑛                                                                                                                        (4) 
 
Similarly, given 𝑦 ∈ 𝑋∗, an element 𝑝𝑛′ 𝑦 ∈ 𝑌𝑛 is called best approximation from 𝑌𝑛 𝑡𝑜 𝑦 with respect 𝑌𝑛 to 𝑦 if it 
satisfies the equatio  

〈𝑥𝑛 ,𝑦 − 𝑝𝑛′ 𝑦〉= 0   for all   𝑥𝑛 ∈ 𝑋𝑛 . 
 
Now will demonstrates for each x ∈ X  has a unique generalized best approximation  
 
Proposition 1: For each x ∈ X, the generalized best approximation from  𝑋𝑛 to x with respect to  𝑌𝑛 exists uniquely if 
and only if  

Y n ∩ 𝑋𝑛⊥  ={0}                                                                                                                                                     (5) 
 
Under this condition, 𝑃𝑛 is a projection; i.e.,  𝑃𝑛2 = 𝑃𝑛   
 
Assume that, for each n, there is a linear operator ∏ :  𝑋𝑛  ⟶ 𝑌𝑛 𝑛  with ∏ 𝑋𝑛𝑛  = 𝑌𝑛, and satisfying the condition  

(H-1) ‖𝑥𝑛‖ ≤ C1 〈𝑥𝑛 ,∏ 𝑥𝑛𝑛 〉
1
2   for all 𝑥𝑛 ∈ 𝑋`𝑛, 

(H-2)  ‖∏ 𝑥𝑛𝑛 ‖ ≤ C2 ‖𝑥𝑛‖            for all 𝑥𝑛 ∈ 𝑋𝑛 , 
Where C1 and C2 are positive constants independent of  n. if a pair of  sequence {𝑋𝑛 } and {𝑌𝑛} satisfy (H-1) and (H-2), 
we call { 𝑋𝑛 ,𝑌𝑛} a regular pair.       
 
For each x ∈ X, let 𝑄𝑛𝑥 be a best approximation from 𝑋𝑛 to x, that is, 𝑄𝑛𝑥 ∈ 𝑋𝑛  satisfies the equation   

‖𝑥−𝑄𝑛𝑥‖ = ‖𝑥 − 𝑥𝑛‖𝑥𝑛∈𝑋𝑛
𝑖𝑛𝑓 . 

 
If a regular Pair  {𝑋𝑛 ,𝑌𝑛}  satisfies dim Xn = dim Yn and condition (H), then the corresponding generalized projection  
𝑃𝑛 satisfies:     

(1) for all  𝑥 ∈ 𝑋, ‖𝑃𝑛𝑥 − 𝑥‖ → 0  as n→ ∞    
(2)   there is a constant 𝐶 > 0  such that, ‖𝑃𝑛‖ < C,    n = 1,2,.. 
(2) for some constant 𝐶 > 0 independent of n, ‖𝑃𝑛𝑥 − 𝑥‖ ≤ 𝐶‖𝑄𝑛𝑥 − 𝑥‖ where 𝑄𝑛𝑥 is the best approximation 

from X n to x. 
 
if { 𝑋𝑛 ,𝑌𝑛} a regular pair is with a linear operator ∏ :  𝑋𝑛  ⟶ 𝑌𝑛 𝑛  with  ∏ 𝑋𝑛𝑛  = 𝑌𝑛, then eq. (3) may be rewritten                                   

〈𝐷∗𝛼𝑢𝑛 −  𝐾𝑢𝑛 ,∏ 𝑥𝑛𝑛 〉 = 〈𝑓 ,∏ 𝑥𝑛𝑛 〉   for all 𝑥𝑛 ∈ 𝑋𝑛                                                                                      (6) 
 
Using the projection 𝑃𝑛 defined earlier, eq. (3) is equivalent to                                                                 

𝐷∗𝛼𝑢𝑛 − 𝑃𝑛𝐾𝑢𝑛= 𝑃𝑛𝑓                                                                                                                                          (7) 
                                         
eq. (7) can also be derived from the fact that 𝑃𝑛x = 0 for an 𝑥 ∈ 𝑋 if and only if 〈𝑥 ,𝑦𝑛〉 = 0 for all 𝑦𝑛 ∈ 𝑌𝑛. This 
equation indicates that the Petrov-Galerkin method is a projection method.                                                  
 
Now, assume un ∈ X n and �𝑏𝑗�𝑗=1

𝑛
 is a basis for Xn (trial space) and {𝑏𝑖∗}𝑖=1𝑛  (test space) is a basis for Yn. Therefore the 

(PGM) on [𝑎, 𝑏]  for Eq. (2) is: 
〈𝐷∗𝛼𝑢𝑛 − 𝐾 𝑢𝑛, 𝑏𝑖∗〉 = 〈𝑓, 𝑏𝑖∗〉,  i = 1,.. ,n                                                                                                        (8) 

  
3. PETROV⎯GALERKIN METHOD (PGM) FOR APPROXIMATE SOLUTION OF LINEAR FRACTIONAL 
VOLTERRA INTEGRO-DIFFERENTIAL EQUATION (LFVIDES) VIA ORTHONORMAL BERNSTEIN 
POLYNOMIALS BASIS 
 
We recall the eq. (1) of the Linear fractional Volterra integro- differential equation (LFVIDEs) of the form: 

𝐷∗𝛼 𝑢(𝑥) = 𝑓(𝑥) + � 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,      
𝑥

𝑎
𝑢(0) = 𝛽, 𝑥 ∈ [0,1] 

 
Our approach being by taking the fractional integration to both sides of eq. (1) we get  

𝑢(𝑥) = 𝑢(0) + 𝐼𝛼𝑓(𝑥) + 𝐼𝛼(∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 )𝑥
0                                                                                                (9) 
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To approximate solution of eq. (1), we use the normalization polynomial basis on [𝑎, 𝑏] as: 

𝑢(𝑥) = ∑ 𝑎𝑖𝑛
𝑖=0 𝑏𝑖,𝑛(𝑥)                                                                                                                                      (10) 

Where ( 𝑎𝑖 , 𝑖 = 0,1, … . . ,𝑛) are unknown constants to be determined substituting eq. (10) in to eq. (9), we get  
∑ 𝑎𝑖𝑛
𝑖=0 𝑏𝑖,𝑛(𝑥) = 𝑢(0) + 𝐼𝛼 𝑓(𝑥) + 𝐼𝛼�∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑖𝑛

𝑖=0
𝑥
0 𝑏𝑖,𝑛(𝑡)𝑑𝑡�                                                             (11) 

Hence 
∑ 𝑎𝑖𝑛
𝑖=0 𝑏𝑖,𝑛(𝑥) − 𝐼𝛼(∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑖𝑛

𝑖=0
𝑥
0 𝑏𝑖,𝑛(𝑡)𝑑𝑡 ) = 𝑢(0) + 𝐼𝛼 𝑓(𝑥)                                                            (12) 

 
In the next step, apply Petrov-Galerkin method (PGM) for eq. (1) is a numerical method for finding                       
𝑢(𝑥) = ∑ 𝑎𝑖𝑛

𝑖=0 𝑏𝑖,𝑛(𝑥) ∊ X n, such  that 𝒂𝒊 is unknown and must be determined  from eq. (12). 
 
From eq. (8) it is clear that the eq.(12) can be written as :  

<∑ 𝐚𝐢𝐧
𝐢=𝟎 𝐛𝐢,𝐧(𝐱) − 𝐈𝛂�∫ 𝐤(𝐱, 𝐭)∑ 𝐚𝐢𝐧

𝐢=𝟎
𝐱
𝟎 𝐛𝐢,𝐧(𝐭)𝐝𝐭 �,𝐛𝐣,𝐧∗ >=< 𝐮(𝟎) + 𝐈𝛂 𝐟(𝐱) ,𝐛𝐣,𝐧∗ >                                        (13) 

Thus  

∫ { ∑ ai n
i=0 bi,n (x) − Iα1

0 �∫ k(x, t)∑ ain
i=0

x
a bi,n (t)dt�}bj,n∗ = ∫ {u(0) − Iα f(x)dx}1

0 bj,n∗                                  (14) 
 
The Petrov-Galerkin using regular pairs {𝑋𝑛 ,𝑌𝑛} of piecewise polynomial spaces are called Petrov-Galerkin element. 
 
Then, Eq. (14) is equivalent to linear system can be formed as follows:                                                           

�R(x, 𝑎𝑖) = ∫ [∑ 𝑎𝑖𝑛
𝑖=0

1
0 𝑏𝑖,𝑛(𝑥) − 𝐼𝛼 (∫ 𝑘(𝑥, 𝑡)∑ 𝑎𝑖𝑏𝑖,𝑛 

𝑛
𝑖=0

𝑥
0 (𝑡)𝑑𝑡)]   

ℎ𝑗 = ∫ [𝑢(0) + 𝐼𝛼𝑓(𝑥)]𝑏𝑗,𝑛
∗  1

0

�                                                             (15) 

 
We can represent the system eq.(15) as a matrix form:             

RA = H                                                                                                                                                              (16) 
where                                      

 𝑅 = �
∫ 𝑅(𝑥, 𝑎0)𝑏0,𝑛

∗1
0 𝑑𝑡 ⋯ ∫ 𝑅(𝑥, 𝑎𝑛)𝑏0,𝑛

∗ 𝑑𝑡1
0

⋮ ⋱ ⋮
∫ 𝑅(𝑥, 𝑎0)𝑏𝑛,𝑛

∗1
0 𝑑𝑡 ⋯ ∫ 𝑅(𝑥, 𝑎𝑛)𝑏𝑛,𝑛

∗1
0 𝑑𝑡

�,𝐴 = �

𝑎0
𝑎1
⋮
𝑎𝑛

�,𝐻 = �

ℎ0
ℎ1
⋮
ℎ𝑛

�         

 
Then we are solving the system to calculate the value  𝑎𝑖                                                                                                                          
                                                                                                         
 6. NUMERICAL EXAMPLES   
 
Example 1: consider th e following linear volterra fractional linear integro-differential equation: 

𝐷𝑥  
𝛼 𝑦(𝑥) = 1 − 𝑥2

2
+ ∫ 𝑦(𝑡)𝑑𝑡𝑥

0 ,  y(0)= 0,  0 < 𝛼 ≤ 1 with the exact solution 𝑦(𝑥) = 𝑥   
 

Table-1: represent a comparison between the exact solution and approximate solution  
with different value 𝛼 = 0.25, 0.5, 1 

X Exact solution  Approximate solution 
𝜶 = 𝟏          𝜶 = 𝟎.𝟓       𝜶 = 𝟎.𝟐𝟓 

0 0 0.0001  0.44006 
0.1 0.1 0.1006 0.36432 0.64414 
0.2 0.2 0.20209 0.52486 0.79142 
0.3 0.3 0.30393 0.65311 0.90025 
0.4 0.4 0.40548 0.76384 0.98899 
0.5 0.5 0.50611 0.87186 1.0760 
0.6 0.6 0.60516 0.99198 1.1796 
0.7 0.7 0.70200 1.1390 1.3182 
0.8 0.8 0.79599 1.3277 1.5101 
0.9 0.9 0.88649 1.5728 1.7737 
1 1 0.97286 1.8893 2.1273 
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Figure-1: comparison between the approximate solution and exact solution  

 
Example 2: consider  the following linear volterra  fractional integro-differential equation: 

𝐷𝑥  
𝛼 𝑦(𝑥) = 2 cos 𝑥 − 1 + ∫ 𝑦(𝑡)𝑑𝑡𝑥

0  , y(0) = 0,  0 < 𝛼 ≤ 1 
With the exact solution y(x) = sin 𝑥 

 
Table-2: represent a comparison between the exact solution and approximate solution 

with different value 𝛼 = 0.25,0.5,1 
X Exact solution  Approximate solution 

 𝜶 = 𝟏         𝜶 = 𝟎.𝟓       𝜶 = 𝟎.𝟐𝟓 
0 0 0 0.15616 0.43945 
0.1 0.09983 0.10041 0.36302 0.64068 
0.2 0.19867 0.20063 0.5182 0.77708 
0.3 0.29552 0.29909 0.63544 0.86648 
0.4 0.38942 0.39417 0.72849 0.92672 
0.5 0.47943 0.48422 0.81108 0.97564 
0.6 0.56464 0.56764 0.89695 1.0311 
0.7 0.64422 0.64277 0.99984 1.1109 
0.8 0.71736 0.7080 1.1335 1.2329 
0.9 0.78333 0.76168 1.3117 1.4149 
1 0.84147 0.8022 1.5481 1.6748 

 

 
Figure-2: comparison between the approximate solution and exact solution 
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Example 3: consider the following linear volterra fractional integro-differential equation: 

𝐷𝑥  
𝛼 𝑦(𝑥) = 𝑒𝑥 − 𝑥𝑒𝑥 + 𝑥 + ∫  𝑥𝑦(𝑡)𝑑𝑡𝑥

0  , y(0)=1,  0 < 𝛼 ≤ 1 
With the exact solution y(x) = 𝑒𝑥 

 
Table-3: represent a comparison between the exact solution and approximate solution 

with different value 𝛼 = 0.25,0.5,1 
X Exact solution  Approximate solution 

𝜶 = 𝟏          𝜶 = 𝟎.𝟓      𝜶 = 𝟎.𝟐𝟓 
0 1.000 1.000 1.1541 1.4379 
0.1 1.1052 1.1049 1.3804 1.6703 
0.2 1.2214 1.2191 1.5706 1.857 
0.3 1.3499 1.3418 1.738 2.0148 
0.4 1.4918 1.4722 1.8958 2.1604 
0.5 1.6487 1.6093 2.057 2.3105 
0.6 1.8221 1.7523 2.235 2.4818 
0.7 2.0138 1.9002 2.4429 2.691 
0.8 2.2255 2.0521 2.6938 2.9547 
0.9 2.4596 2.2072 3.0009 3.2898 
1 2.7183 2.3644 3.3775 3.7129 

 
Figure-3: comparison between the approximate solution and exact solution 

 
7. CONCLUSION 
 
In this paper, Petrov-Galerkin method (PGM) has been successfully applied to finding the approximate solution of 
linear fractional Volterra integro-differential equation of the second kind (LFVIDEs) via the normalization Bernstein 
basis. This method is very powerful and efficient in finding analytical as well as numerical solutions for wide classes of 
linear fractional Volterra integro-differential equation of the second kind (LFVIDEs), for the special case α = 1 is 
shown in Figure 1 Figure 2 and Figure3. It can be seen from this figures that the solution obtained by the present 
method is identical with the exact solution. In our paper, we use the Matlab language to calculate the Petrov-Galerkin 
method by using normalization Bernstein basis. 
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