International Journal of Mathematical Archive-8(8), 2017, 41-44
 \$MA Available online through www.ijma.info ISSN 2229-5046

U-COVERING SETS AND U-COVERING POLYNOMIALS OF CHAINS

A. VETHAMANICKAM ${ }^{1}$, K. M. THIRUNAVUKKARASU*2
${ }^{1}$ Associate Professor of Mathematics, Rani Anna Government College for Women, Tirunelveli, India,
${ }^{2}$ Head, Department of Mathematics, Sivanthi Aditanar College, Pillayarpuram, Nagercoil, India.

(Received On: 13-07-17; Revised \& Accepted On: 31-07-17)

Abstract

Let P be a finite poset. For a subset A of P, the upper cover set of A is defined as $U(A)=\{x \in P \mid x$ covers an $a \in A\}$. The upper closed neighbours of A is defined as $U[A]=U(A) \cup A$ and A is called an U - covering set of P if $U[A]=P$. The U - covering number $V(P)$ is the minimum cardinality of a U-covering set. Let U_{n}^{i} be the family of all U-covering sets of a chain P_{n} with cardinality i. Similarly we can define L - covering and N-covering sets of P_{n} with cordinality i. $u\left(P_{n}, i\right)=\left|U_{n}^{i}\right|, \ell\left(P_{n}, i\right)=\left|L_{n}^{i}\right|, n\left(P_{n}, i\right)=\left|N_{n}^{i}\right|$. In this paper, we construct U_{n}^{i}, and obtain a recursive formula for $U\left(P_{n}, i\right)$. Using this recursive formula we construct the polynomial $U\left(P_{n}, x\right)=\sum_{i=/ n / 2}^{n} \mu\left(P_{n}, i\right) x^{i}$ called U-covering polynomial of P_{n}.

Keywords: Poset, U-Covering set, U-Covering Polynomial.

1. INTRODUCTION

A poset P is finite if it has finite number of elements. Let P be a finite poset. The open upper cover set of A is the set $U(A)=\{x \in P \mid x$ covers an $a \in A\}$. The closed upper cover set of A is the set $U[A]=U(A) \cup A$. We denote $U(\{x\})$ as $U(x)$. A set $A \subseteq P$ is a U-covering set of P if $U[A]=P$. The U-covering number $V(P)$ is the minimum cardinality of a U-covering set of P. A poset P is a chain if every pair of elements is comparable. Let P_{n} be the n element chain $\mathrm{x}_{1}<\mathrm{x}_{2}<\ldots .<\mathrm{x}_{\mathrm{n}}$. Let $\mathrm{U}_{\mathrm{n}}^{\mathrm{i}}$ be the family of U -covering sets of P_{n} with cardinality i and let $u\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right)=\left|\mathrm{U}_{\mathrm{n}}^{\mathrm{i}}\right|$. The polynomial $\mathrm{U}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right)=\sum_{\mathrm{i}=\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)}^{\mathrm{n}} u\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}}$ is called the U-covering polynomial of P_{n}.

2. U-COVERING SETS OF CHAINS

In this section we construct the family of U-covering sets of chains by a recursive method. We use $\lceil x\rceil$, for the smallest integer greater than or equal to x. Let U_{n}^{i} be the family of U-covering sets of P_{n} with cardinality i. The following lemma follows from observation.

Lemma 2.1: $\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\lceil\frac{\mathrm{n}}{2}\right\rceil$.
By the definition of U-covering set and by lemma 2.1, we have the following lemma
Lemma 2.2: $\mathrm{U}_{\mathrm{j}}^{\mathrm{i}}=\varphi$ if and only if $\mathrm{i}>\mathrm{j}$ or $\mathrm{i}<\left\lceil\frac{\mathrm{j}}{2}\right\rceil$.
A chain connecting a and b where $\mathrm{a}<\mathrm{b}$ is a simple chain if every element other than a and b in the chain has exactly one upper cover and lower cover.

The following lemma follows from observation
Lemma 2.3: If a poset P contains a simple chain of length $2 \mathrm{k}-1$, then every U -covering set of P must contain atleast k elements of the chain.

[^0]
A. Vethamanickam ${ }^{1}$, K. M. Thirunavukkarasu* $/$ U-Covering Sets and U-covering Polynomials... / IJMA-8(8), August-2017.

To find a U-covering set of P_{n} with cardinality i , we do not need to consider U-covering sets of $\mathrm{P}_{\mathrm{n}-3}$ with cardinality i-1. We show this in lemma 2.4. So, we only need to consider U_{n-1}^{i-1} and U_{n-2}^{i-1}.

Lemma 2.4: If $D \in U_{n-3}^{i-1}$ and if there exist $x \in P_{n}$ such that $D U\{x\} \in U_{n}^{i}$ then $D \in U_{n-2}^{i-1}$.
Proof: Suppose that $D \notin U_{n-2}^{i-1}$. Since $D \in U_{n-3}^{i-1}$, D contains x_{n-4} or x_{n-3}. If $x_{n-3} \in D$, then $D \in U_{n-2}^{i-1}$, a contradiction.
Hence $\mathrm{x}_{\mathrm{n}-4} \in \mathrm{D}$. But in this case, $\mathrm{D} \mathrm{U}\{\mathrm{x}\} \notin \mathrm{U}_{\mathrm{n}}^{\mathrm{i}}$ for any $\mathrm{x} \in \mathrm{P}_{\mathrm{n}}$, a contradiction.

Lemma 2.5:

(i) If $\mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}=\mathrm{U}_{\mathrm{n}-3}^{\mathrm{i}-1}=\varphi$ then $\mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}=\varphi$.
(ii) If $U_{n-1}^{i-1} \neq \varphi$ and $U_{n-3}^{i-1} \neq \varphi$ then $U_{n-2}^{i-1} \neq \varphi$.
(iii) If $U_{n-1}^{i-1}=U_{n-2}^{i-1}=\varphi$ then $U_{n}^{i}=\varphi$.

Proof:

(i) Since $\mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}=\mathrm{U}_{\mathrm{n}-3}^{\mathrm{i}-1}=\varphi$ by lemma 2.2 , $\mathrm{i}-1>\mathrm{n}-1$ or $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-3)}{2}\right\rceil$.
$\therefore \mathrm{i}-1>\mathrm{n}-2$ or $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-2)}{2}\right\rceil$ and hence $\cup_{\mathrm{n}-2}^{\mathrm{i}-1}=\varphi$
(ii) Suppose that $\mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}=\varphi$, then by lemma $2.2 \mathrm{i}-1>\mathrm{n}-2$ then $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-2)}{2}\right\rceil$.

If $\mathrm{i}-1>\mathrm{n}-2$ or $\mathrm{i}-1>\mathrm{n}-3$ and hence $\mathrm{U}_{\mathrm{n}-3}^{\mathrm{i}-1}=\varphi$, a contradiction.
Hence $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-2)}{2}\right\rceil<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil$ and hence $\cup_{\mathrm{n}-1}^{\mathrm{i}-1}=\varphi$, a contradiction.
(iii) Suppose that $\cup_{n}^{i} \neq \varphi$. Let $\mathrm{D} \in \mathrm{U}_{n}^{i}$. Then x_{n} or $\mathrm{x}_{\mathrm{n}-1}$ is in D . If $\mathrm{x}_{\mathrm{n}} \in \mathrm{D}$, then by lemma 2.3, atleast one of x_{n-1} or x_{n-2} is in D. If $x_{n-1} \in D$ or $x_{n-2} \in D$ then $D-\left\{x_{n}\right\} \in U_{n-1}^{i-1}$, a contradiction. If $x_{n-1} \in D$, then by lemma 2.3 atleast one of $\mathrm{x}_{\mathrm{n}-2}$ or $\mathrm{x}_{\mathrm{n}-3} \in \mathrm{D}$. If $\mathrm{x}_{\mathrm{n}-2} \in \mathrm{D}$ or $\mathrm{x}_{\mathrm{n}-3} \in \mathrm{D}$ then $\mathrm{D}-\left\{\mathrm{x}_{\mathrm{n}-1}\right\} \in \mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}$, a contradiction.

Lemma 2.6: If $U_{n}^{i} \neq \varphi$, then
(i) $U_{n-1}^{\mathrm{i}-1}=\varphi$ and $\cup_{n-2}^{\mathrm{i}-1} \neq \varphi$ if and only if $n=2 k$ and $\mathrm{i}=\mathrm{k}$ for some $\mathrm{k} \in \mathbb{N}$.
(ii) $\cup_{n-1}^{\mathrm{i}-1} \neq \varphi$ and $\cup_{n-2}^{\mathrm{i}-1}=\varphi$ if and only if $\mathrm{i}=\mathrm{n}$.
(iii) $\cup_{n-1}^{\mathrm{i}-1} \neq \varphi$, and $\cup_{n-2}^{\mathrm{i}-1} \neq \varphi$ if and only if $\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil+1 \leq \mathrm{i} \leq \mathrm{n}-1$.

Proof:

(i) (\Rightarrow) since $U_{n-1}^{\mathrm{i}-1} \neq \varphi$, by lemma 2.2, $\mathrm{i}-1>\mathrm{n}-1$ or $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil$. If $\mathrm{i}-1>\mathrm{n}-1$, then $\mathrm{i}>\mathrm{n}$ and hence by lemma 2.2 $\mathrm{U}_{\mathrm{n}}^{\mathrm{i}}=\varphi$, a contradiction. Therefore, $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil$ and since $\mathrm{U}_{\mathrm{n}}^{\mathrm{i}} \neq \varphi\left\lceil\frac{\mathrm{n}}{2}\right\rceil \leq \mathrm{i}<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil+1$. This gives us $\mathrm{n}=2 \mathrm{k}$ and $\mathrm{i}=\mathrm{k}$ for some $\mathrm{k} \in \mathbb{N}$.
(\Leftarrow) If $\mathrm{n}=2 \mathrm{k}$ and $\mathrm{i}=\mathrm{k}$ for some $\mathrm{k} \in \mathbb{N}$, then $\mathrm{i}<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil+1$ and hence $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil$. Therefore by lemma 2.2, $U_{n-1}^{i-1}=\varphi$
(ii) (\Longrightarrow) since $\mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}=\varphi$, by lemma 2.2, $\mathrm{i}-1>\mathrm{n}-2$ or $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-2)}{2}\right\rceil$. If $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-2)}{2}\right\rceil$ then $\mathrm{i}-1<\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil$ and hence $U_{n-1}^{\mathrm{i}-1}=\varphi$, a contradiction. Therefore, $\mathrm{i}-1>\mathrm{n}-2$ and so $\mathrm{i}>\mathrm{n}-1$. Also, since $\mathrm{U}_{\mathrm{n}}^{\mathrm{i}} \neq \varphi, \mathrm{i} \leq \mathrm{n}$ and hence $\mathrm{i}=\mathrm{n}$.
(\Leftarrow) If $\mathrm{i}=\mathrm{n}$, then by lemma $2.2, \cup_{n-1}^{\mathrm{i}-1} \neq \varphi$, and $\cup_{n-2}^{\mathrm{i}-1}=\varphi$
(iii) (\Longrightarrow) since $U_{n-1}^{\mathrm{i}-1} \neq \varphi$ and $\cup_{\mathrm{n}-2}^{\mathrm{i}-1} \neq \varphi,\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil \leq \mathrm{i}-1 \leq \mathrm{n}-2$ and hence $\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil+1 \leq \mathrm{i} \leq \mathrm{n}-1$.
(\Leftarrow) If $\left\lceil\frac{(\mathrm{n}-1)}{2}\right\rceil+1 \leq \mathrm{i} \leq \mathrm{n}-1$, then the result follows from lemma 2.2
Theorem 2.7: For every $\mathrm{n} \geq 3$ and $\mathrm{i} \geq\left\lceil\frac{\mathrm{n}}{2}\right\rceil$
(i) If $U_{n-1}^{i-1}=\varphi$ and $U_{n-2}^{i-1} \neq \varphi$, then $U_{n}^{i}=\left\{\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{n-1}\right\}\right\}$
(ii) If $U_{n-1}^{i-1} \neq \varphi$ and $U_{n-2}^{i-1}=\varphi$, then $U_{n}^{i}=\left\{\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}\right\}$
(iii) If $\cup_{n-1}^{i-1} \neq \varphi$ and $\cup_{n-2}^{i-1} \neq \varphi$, then
$\mathrm{U}_{\mathrm{n}}^{\mathrm{i}}=\left\{\left\{\mathrm{x}_{\mathrm{n}}\right\} \cup X \mid X \in \mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}\right\} \cup\left\{\left\{\mathrm{x}_{\mathrm{n}-1}\right\} \cup X \mid X \in \cup_{\mathrm{n}-2}^{\mathrm{i}-1} \backslash \cup_{\mathrm{n}-1}^{\mathrm{i}-1}\right\} \cup\left\{\left\{\mathrm{x}_{\mathrm{n}-1}\right\} \cup X \mid X \in \cup_{n-2}^{\mathrm{i}-1} \cap \cup_{n-1}^{\mathrm{i}-1}\right\}$

Proof:

(i) $U_{n-1}^{i-1}=\varphi$ and $\bigcup_{n-2}^{i-1} \neq \varphi$. So, by lemma 2.6 (i), $n=2 k$ and $i=k$ for some $k \in N$.

Therefore, $U_{n}^{i}=U_{n}^{\frac{1}{2}}=\left\{\left\{x_{1}, x_{3}, x_{5}, \ldots, x_{n-3}, x_{n-1}\right\}\right\}$
(ii) $\cup_{n-1}^{i-1} \neq \varphi$ and $U_{n-2}^{i-1}=\varphi$. So, by lemma 2.6 (ii), $i=n$.

Therefore, $U_{n}^{i}=U_{n}^{n}=\left\{\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}, x_{n}\right\}\right\}$
(iii) $\cup_{n-1}^{i-1} \neq \varphi$ and $U_{n-2}^{i-1} \neq \varphi$. Let $X_{1} \in U_{n-1}^{i-1}$. Then $X_{n-2} \in X_{1}$ or $X_{n-1} \in X_{1}$. In both cases, $X_{1} \cup\left\{X_{n}\right\} \in U_{n}^{i}$. Let $X_{2} \in \cup_{n-2}^{i-1} \backslash \bigcup_{n-1}^{i-1}$. Then $X_{2} \in \cup_{n-2}^{i-1}$ but $X_{2} \notin \bigcup_{n-1}^{i-1} . X_{2} \in \cup_{n-1}^{i-1}$ implies that X_{n-2} or X_{n-3} is in X_{2}. Since $\mathrm{X}_{2} \notin \mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}, \mathrm{x}_{\mathrm{n}-2} \notin \mathrm{X}_{2}$ and hence $\mathrm{X}_{\mathrm{n}-3} \in \mathrm{X}_{2}$. Therefore, $\left\{\mathrm{X}_{\mathrm{n}-1}\right\} \cup \mathrm{X}_{2} \in \mathrm{U}_{\mathrm{n}}^{\mathrm{i}}$. Let $\mathrm{X}_{3} \in \mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1} \cap \mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}$.

A. Vethamanickam ${ }^{1}$, K. M. Thirunavukkarasu*² / U-Covering Sets and U-covering Polynomials... / IIMA- 8(8), August-2017.

Then $\mathrm{X}_{3} \in \mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}$ and $\mathrm{X}_{3} \in \mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1} . \mathrm{X}_{3} \in \mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1}$ implies that $\mathrm{X}_{\mathrm{n}-3} \in \mathrm{X}_{3}$ or $\mathrm{X}_{\mathrm{n}-2} \in \mathrm{X}_{3}$.
Since $X_{3} \in \cup_{n-1}^{i-1}, X_{n-2} \in X_{3}$. Therefore, $\left\{x_{n-1}\right\} \cup X_{3} \in U_{n}^{i}$. Hence, we have
$\left\{\left\{x_{n}\right\} \cup X \mid X \in \cup_{n-1}^{i-1}\right\} \cup\left\{\left\{x_{n-1}\right\} \cup X \mid X \in \cup_{n-2}^{i-1} \backslash \cup_{n-1}^{i-1}\right\} \cup\left\{\left\{x_{n-1}\right\} \cup X \mid X \in \cup_{n-2}^{i-1} \cap \cup_{n-1}^{i-1}\right\} \subseteq U_{n}^{i}$
Conversely, let $\mathrm{Y} \in \mathrm{U}_{\mathrm{n}}^{\mathrm{i}}$. Then $\mathrm{x}_{\mathrm{n}} \in \mathrm{Y}$ or $\mathrm{x}_{\mathrm{n}-1} \in \mathrm{Y}$. If $\mathrm{x}_{\mathrm{n}} \in \mathrm{Y}$, then by lemma 2.3, atleast one of $\mathrm{x}_{\mathrm{n}-1}$ or $\mathrm{x}_{\mathrm{n}-2} \in \mathrm{Y}$.
Therefore, $\mathrm{Y}=\mathrm{X} \cup\left\{\mathrm{x}_{\mathrm{n}}\right\}$ for some $\mathrm{X} \in \cup_{\mathrm{n}-1}^{\mathrm{i}-1}$. If $\mathrm{x}_{\mathrm{n}-1} \in \mathrm{Y}$ and $\mathrm{x}_{\mathrm{n}} \notin \mathrm{Y}$, then By lemma 2.3, atleast one of $\mathrm{x}_{\mathrm{n}-2}$ or $\mathrm{x}_{\mathrm{n}-3} \in \mathrm{Y}$.
If $\mathrm{x}_{\mathrm{n}-2} \notin \mathrm{Y}$ and $\mathrm{X}_{\mathrm{n}-3} \in \mathrm{Y}$ then $\mathrm{Y}=\mathrm{X} \cup\left\{\mathrm{x}_{\mathrm{n}-1}\right\}$ for some $\mathrm{X} \in \mathrm{U}_{\mathrm{n}-2}^{\mathrm{i}-1} \mid \mathrm{U}_{\mathrm{n}-1}^{\mathrm{i}-1}$. If $\mathrm{X}_{\mathrm{n}-2} \in \mathrm{Y}$, then $\mathrm{Y}=\mathrm{X} \cup\left\{\mathrm{x}_{\mathrm{n}-1}\right\}$ where $X \in \cup_{n-2}^{i-1} \cap \cup_{n-2}^{i-1}$.

Therefore $U_{n}^{i} \subseteq\left\{\left\{x_{n}\right\} \cup X \mid X \in U_{n-1}^{i-1}\right\} \cup\left\{\left\{x_{n-1}\right\} \cup X \mid X \in U_{n-2}^{i-1} \backslash \cup_{n-1}^{i-1}\right\} \cup\left\{\left\{x_{n-1}\right\} \cup X \mid X \in U_{n-2}^{i-1} \cap U_{n-1}^{i-1}\right\}$
From (1) and (2), we get (iii).
Table-1: $u\left(\mathrm{P}_{\mathrm{n}}, \mathrm{j}\right)$ the number of U -Covering sets of P_{n} with cardinality j .

j	1	2	3	4	5	6	7	8	9	10
n										
1	1									
2	1	1								
3	0	2	1							
4	0	1	3	1						
5	0	0	3	4	1					
6	0	0	1	6	5	1				
7	0	0	0	4	10	6	1			
8	0	0	0	1	10	15	7	1		
9	0	0	0	0	5	20	21	8	1	
10	0	0	0	0	1	15	35	28	9	1

3. U-COVERING POLYNOMIAL OF A CHAIN

Let $\mathrm{U}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{x}\right)=\sum_{\mathrm{i}=\left\lceil\frac{\mathrm{n}}{2}\right\urcorner}^{\mathrm{n}} \boldsymbol{u}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{i}\right) \mathrm{x}^{\mathrm{i}}$ be the U -covering polynomial of a chain P_{n}. In this section we study this polynomial.

Theorem 3.1:

(i) If U_{n}^{i} is the family of U-covering sets with cardinality I of P_{n}, then $\left|U_{n}^{i}\right|=\left|U_{n-1}^{i-1}\right|+\left|U_{n-2}^{i-1}\right|$
(ii) For every $n \geq 3, U\left(P_{n}, x\right)=x\left[U\left(P_{n-1}, x\right)+U\left(P_{n-2}, x\right)\right]$ with initial values $U\left(P_{1}, x\right)=x$ and $U\left(P_{2}, x\right)=x^{2}+x$.

Proof:

(i) It follows from Theorem 2.7
(ii) It follows from part (i) and the definition of the U-Covering Polynomial.

REFERENCES

1. Bayer, M. and Billera, J., Counting chains and Faces in Polytopes and Posets, Contemporary Mathematics 34 (1984) 207-252.
2. Crawley, P. and Dilworth, R.P., Algebraic theory of Lattices, Prentice-Hall, Inc. Englewod, Cliffs, New Jersey. 1973.
3. Davey, B.A and Priestley, H.A., Introduction to Lattices and Order, Second Edition, Cambridge University Press, 2002.
4. Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquim Publications XXV 1961.
5. Grätzer, G., General Lattice Theory, Birkhauser Verlag, Basel, 1978.
6. Greene, C. On the Mobius algebra of a partially ordered set, Advances in math. 10 (1973) 177-187.
7. Gunter M.Ziegler, Lectuers on Polytopes, Springer - Verlag, New York, Inc., 1995.
8. Paffenholz, Andreas, Construction for posets, Lattices, and Polytopes, Doctoral Dissertation, School of Mathematical and Natural Sciences, Technical University of Berlin, 2005.
9. Stanley, R.P., Enumerative Combinatorics, Volume 1, Wordsworth and Brooks / Cole, 1986.
10. Vethamanickam, A., Topics in Universal Algebra, Ph.D. Thesis, Madurai Kamaraj University, 1994.
A. Vethamanickam ${ }^{1}$, K. M. Thirunavukkarasu*² U-Covering Sets and U-covering Polynomials... / IJMA- 8(8), August-2017.
11. Vethamanickam, A. and Subbarayan R., Simple extensions of Eulerian Lattices, Acta Math. Univ. Comenianae LXXIX I (2010) 47-54.
12. R.Subbarayan and A.Vethamanickam, On the Lattice of Convex Sublattices, Elixir Dis. Math. 50 (2012) 10471-10474.
13. A.Vethamanickam and R.Subbarayan, Some Properties of Eulerian Lattices Commentationes Mathematicae Universitatits Carolinae 55 (2014) 499-507.
14. Saeid Alikhani and Yee-Hock Peng, Dominating Sets and Domination Polynominals of Paths, International Journal of Mathematics and Mathematical Sciences (2009) 1-10.
[^1]
[^0]: Corresponding Author: K. M. Thirunavukkarasu*2, 2Head, Department of Mathematics, Sivanthi Aditanar College, Pillayarpuram, Nagercoil, India.

[^1]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

