International Journal of Mathematical Archive-8(7), 2017, 273-280 (c) $\$$ MA Available online through www.ijma.info ISSN 2229-5046

SOME RESULTS ON DEGREE SET OF FUZZY GRAPHS
K. RADHA ${ }^{*}$, A. ROSEMINE ${ }^{2}$
${ }^{1}$ P.G. \& Research Department of Mathematics, Periyar E.V.R. College, Tiruchirappalli - 620023, Tamil Nadu, India.
${ }^{2}$ P.G. \& Research Department of Mathematics, Periyar E.V.R. College, Tiruchirappalli - 620023, Tamil Nadu, India,

(Received On: 20-06-17; Revised \& Accepted On: 29-07-17)

Abstract

In this paper characterization of degree set in certain fuzzy graphs are given with counter examples. Keywords: degree of a vertex, degree sequence of a fuzzy graph, degree set of a fuzzy graph 2010 Mathematics Subject Classification: 05C07, 05C38.

\section*{I. INTRODUCTION}

The phenomena of uncertainty in real life situation were described in a mathematical framework by Zadeh in 1965. Fuzzy graph is the generalization of the ordinary graph. Therefore it is natural that though fuzzy graph inherits many properties similar to those of ordinary graph, it deviates at many places. A. Nagoor gani and K. Radha introduced incidence sequence of a fuzzy graph in [6]. K.Radha and A.Rosemine introduced degree sequence of fuzzy graph in [9] and introduced degree set of a fuzzy graph in [10]. In this paper we gave characterizations of degree sets for certain fuzzy graphs.

II. PRELIMINARIES

A summary of basic definitions is given, which can be found in [1] - [10].
A fuzzy graph G is a pair of functions G : (σ, μ) where σ is a fuzzy subset of a non empty set V and μ is a symmetric fuzzy relation on σ (i.e.) $\mu(\mathrm{xy}) \leq \sigma(\mathrm{x}) \wedge \sigma(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{V}$. The underlying crisp graph of $\mathrm{G}:(\sigma, \mu)$ is denote by $\mathrm{G}^{*}:(\mathrm{V}, \mathrm{E})$ where E \subseteq V X V

In a fuzzy graph $\mathrm{G}:(\sigma, \mu)$ degree of vertex $\mu \in \mathrm{V}$ is $\mathrm{d}(\mathrm{u})=\sum_{u \neq v} \mu(u v)$, The minimum degree of G is $(G)=\wedge\left\{\mathrm{d}_{\mathrm{G}}(\mathrm{u}) / \mathrm{u} \in \mathrm{V}\right\}$, the maximum degree of G is $\Delta(\mathrm{G})=\left\{\mathrm{d}_{\mathrm{G}}(\mathrm{u}) / \mathrm{u} \in \mathrm{V}\right\}$.

A sequence of real numbers $\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ with $d_{1} \geq d_{2} \geq d_{3} \geq \ldots \geq d_{n}$, where d_{i} is equal to $d\left(v_{i}\right)$, is the degree sequence of a fuzzy graph .A sequence $S=\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)$ of real numbers is said to be fuzzy graphic sequence if there exists a graph G whose vertices have degree d_{i} and G is called realization of S.A degree sequence of real numbers in which no two of its elements are equal is called perfect degree sequence. In crisp graph theory there is no perfect degree sequence. But fuzzy graphs may have perfect degree sequence. A degree sequence of real numbers in which exactly two of its elements are same is called quasi- perfect. A homomorphism of fuzzy graphs $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}$ is a map $h: V \rightarrow V^{\prime}$ such that $\sigma(x) \leq \sigma^{\prime}\left(h(x) \forall x \in V, \mu(x y) \leq \mu^{\prime}(h(x) h(y)) \forall x, y \in V\right.$. A weak isomorphism of fuzzy graphs $h:$ $\mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a map $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ which is a bijective homomorphism that satisfies $\sigma(\mathrm{x})=\sigma^{\prime}\left(\mathrm{h}(\mathrm{x}) \quad \forall \mathrm{x} \in \mathrm{V}, \mu(\mathrm{xy}) \leq \mu^{\prime}(\mathrm{h}(\mathrm{x})\right.$ $\mathrm{h}(\mathrm{y})) \forall \mathrm{x}, \mathrm{y} \in \mathrm{S}$. A co-weak isomorphism of fuzzy graphs $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a map $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ which is a bijective homomorphism that satisfies $\sigma(x) \leq \sigma^{\prime}\left(h(x) \quad \forall x \in V, \mu(x y)=\mu^{\prime}(h(x) h(y)) \forall x, y \in S\right.$.

Corresponding Author: K. Radha ${ }^{*}$,
${ }^{1}$ P.G. \& Research Department of Mathematics,
Periyar E.V.R. College, Tiruchirappalli - 620023, Tamil Nadu, India.

An isomorphism $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ is a map $\mathrm{h}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ which is a bijective that satisfies $\sigma(\mathrm{x})=\sigma^{\prime}(\mathrm{h}(\mathrm{x})) \forall \mathrm{x} \in \mathrm{V}$, $\mu(x y)=\mu^{\prime}(h(x) h(y)) \forall x, y \in S$. The union of two fuzzy graphs $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is G_{1} defined to be a fuzzy graph $\quad G=G_{1} \cup G_{2}:\left(\sigma_{1} \cup \sigma_{2}, \mu_{1} \cup \mu_{2}\right)$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2}$ with

$$
\sigma_{1} \cup \sigma_{2}(\mathrm{u})=\left\{\begin{array}{cl}
\sigma_{1}(u) & \text { if } u \in V_{1}-V_{2} \\
\sigma_{2}(u) & \text { if } u \in V_{2}-V_{1} \\
\sigma_{1}(u) \vee \sigma_{2}(u) & \text { if } u \in V_{1} \cap V_{2}
\end{array}\right.
$$

and $\quad \mu_{1} \cup \mu_{2}(\mathrm{e})=\left\{\begin{array}{cc}\mu_{1}(e) & \text { if } e \in E_{1}-E_{2} \\ \mu_{2}(e) & \text { if } e \in E_{2}-E_{1} \\ \mu_{1}(e) \vee \mu_{2}(\text { e }) & \text { if } e \in E_{1} \cap E_{2}\end{array}\right.$
The join of two fuzzy graphs $G_{1}:\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}:\left(\sigma_{2}, \mu_{2}\right)$ is G_{1} defined to be a fuzzy graph $G_{1}+G_{2}:\left(\sigma_{1}+\sigma_{2}, \mu_{1}+\mu_{2}\right)$ where $V=V_{1} \cup V_{2}$ and $E=E_{1} \cup E_{2} \cup E^{\prime}$ where E^{\prime} is the set of all edges joining the vertices of V_{1} with vertices of V_{2} such that
and $\quad\left(\mu_{1}+\mu_{2}\right)(\mathrm{u})=\left\{\begin{array}{l}\left(\mu_{1} \cup \mu_{2}\right)(u v) \quad \text { if } u v \in E_{1} \cup E_{2} \\ \sigma_{1}(u) \wedge \sigma_{2}(u) \quad \text { if } u v \in E^{\prime}\end{array}\right.$
The set of distinct positive real numbers occurring in a degree sequence of a fuzzy graph is called its degree set.
A set of positive real numbers is called a degree set if it is the degree set of some fuzzy graph. The fuzzy graph is said to realize the degree set.

3. CHARACTERIZATIONS

Theorem 3.1: Let d be any positive real number, then $\{d\}$ is a degree set of a fuzzy graph on a cycle if and only if $0<\mathrm{d} \leq 2$.

Proof: Let C_{n} be a cycle $\mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \ldots \ldots \ldots . \mathrm{V}_{\mathrm{n}} \mathrm{V}_{1}$ on n vertices where n is any positive integer.
Suppose that $\{d\}$ is the degree set of a fuzzy graph (σ, μ) on C_{n}.

$$
\text { Then } \begin{aligned}
\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right) & =\mu\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) \forall \mathrm{i}=1,2, \ldots, \mathrm{n} . \\
& \leq 1+1 \\
& \leq 2 .
\end{aligned}
$$

Since $\mu\left(v_{i} v_{i+1}\right)>0, d\left(v_{i}\right)>0, \forall i=1,2, \ldots, n$.
Hence $0<\mathrm{d} \leq 2$.
Conversely, assume that $0<d \leq 2$. Then $0<d / 2 \leq 1$. Assign $\mu\left(v_{i} v_{i+1}\right)=d / 2 \forall i=1,2, \ldots, n$ where $v_{n+1}=v_{n}$. Assign any value satisfying the condition of fuzzy graph as $\sigma\left(v_{i}\right)$ for all i. Then

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right) & =\mu\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)+\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right) \forall \mathrm{i}=1,2, \ldots, \mathrm{n} . \\
& =\frac{d}{2}+\frac{d}{2} \\
& =\mathrm{d}, \quad \forall \mathrm{i}=1,2, \ldots, \mathrm{n} .
\end{aligned}
$$

Thus $\{d\}$ is a degree set of a fuzzy graph (σ, μ) on C_{n}.
Theorem 3.2: Let d be any positive real number, then $\{d\}$ is a degree set of a fuzzy graph on a complete graph K_{n} if and only if $0<\mathrm{d} \leq \mathrm{n}-1$.

Proof: Let K_{n} be a complete graph on n vertices say, $v_{1}, v_{2}, v_{3}, V_{4}, \ldots, v_{n}$. Suppose that $\{d\}$ is a degree set of a fuzzy graph on a complete graph K_{n}.

Then $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\sum_{j=1}^{n} \mu\left(v_{i} v_{j}\right) \forall \mathrm{i}=1,2, . ., \mathrm{n}$

$$
\begin{aligned}
& \substack{j \neq i} \\
& \leq \sum_{\substack{j=1 \\
j \neq i}}^{n} 1 \quad \forall \mathrm{i}=1,2, . ., \mathrm{n} \\
& \leq \mathrm{n}-1
\end{aligned}
$$

Since $\mu\left(v_{i} v_{i+1}\right)>0 \forall i=1,2, \ldots, n$.
Hence $0<\mathrm{d} \leq \mathrm{n}-1$.

Conversely assume that $0<\mathrm{d} \leq \mathrm{n}-1$. Then $0<\mathrm{d} /(\mathrm{n}-1) \leq 1$. Assign $\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right)=\mathrm{d} /(\mathrm{n}-1) \forall \mathrm{i} \neq \mathrm{j}$
Assign any value in $\left[\frac{d}{n-1}, 1\right]$ as $\sigma\left(\mathrm{v}_{\mathrm{i}}\right)$ for all i.

$$
\text { Then } \begin{array}{rlr}
\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right) & =\sum_{\substack{j=1 \\
j \neq i}}^{n} \mu\left(v_{i} v_{j}\right) \forall \mathrm{i}=1,2, \ldots, \mathrm{n} \\
& =\sum_{\substack{j=1 \\
j \neq i}}^{n} \frac{d}{n-1} & \forall \mathrm{i}=1,2, \ldots, \mathrm{n} \\
& =(\mathrm{n}-1) \frac{d}{n-1} & \forall \mathrm{i}=1,2, \ldots, \mathrm{n} \\
& =2 . & \forall \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{array}
$$

Thus $\{d\}$ is a degree set of a fuzzy graph (σ, μ) on K_{n}.
Theorem 3.3: Let d be any positive real number, then $\{d\}$ is a degree set of a fuzzy graph on a a path P_{n} if and only if $0<\mathrm{d} \leq 1$ and $\mathrm{n}=2$.

Proof: Let P_{n} be a path on n vertices say, $v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}$. Suppose that $\{d\}$ is a degree set of a fuzzy graph (σ, μ) on a path P_{n}.

Then $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d} \forall \mathrm{i}=1,2, \ldots, \mathrm{n}, \mathrm{n} \geq 2$. Therefore $\mathrm{d}=\mathrm{d}\left(\mathrm{v}_{1}\right)=\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right) \Rightarrow 0<\mathrm{d} \leq 1$.
If possible assume that $n \geq 2$. then $d\left(v_{2}\right)=\mu\left(v_{1} v_{2}\right)+\mu\left(v_{2} v_{3}\right)$

$$
\begin{aligned}
& =d+\mu\left(v_{2} v_{3}\right) \\
& >d \quad \text { which is a contradiction. }
\end{aligned}
$$

Hence $\mathrm{n}=2$.
Conversely, assume that $0<\mathrm{d} \leq 1$ and $\mathrm{n}=2$.
A path P_{2} on two vertices is same as the complete graph K_{2} on two vertices. Therefore by theorem 3.2, $\{d\}$ is a degree set of a fuzzy graph (σ, μ) on a path P_{2}.

Theorem 3.4: Let d be any positive real number, then $\{d\}$ is a degree set of a fuzzy graph on a star $\mathrm{K}_{1, \mathrm{n}}$ if and only if $0<\mathrm{d} \leq 1$ and $\mathrm{n}=1$.

Proof: Let $K_{1, n}$ be star $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ with $\mathrm{n}+1$ vertices and v_{0} as its center. Let $\{\mathrm{d}\}$ be a degree set of a fuzzy $\operatorname{graph}(\sigma, \mu)$ on a star $\mathrm{K}_{1, \mathrm{n}}$. Then $\mathrm{d}=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{0}\right), \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$

$$
\Rightarrow 0<\mathrm{d} \leq 1 .
$$

Also

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{v}_{0}\right) & =\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right) \\
& =\sum_{i=1}^{n} d \\
& =\text { nd. }
\end{aligned}
$$

Since $\{d\}$ is a degree set of a fuzzy graph on a star $K_{1, n}, d\left(v_{0}\right)=d$.
Therefore $n d=d \Leftrightarrow n=1$. Hence the proof.
Theorem 3.5: If $\left\{d_{1}, d_{2}\right\}$ is the degree set of a fuzzy graph on a cycle then $0<d_{i} \leq 2$ for $i=1,2$.
Proof: Let $\left\{d_{1}, d_{2}\right\}$ be the degree set of a fuzzy graph on a cycle $v_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \ldots \ldots . . \mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}$
Then $d_{1}=d\left(v_{i}\right)$ for some i $\mathrm{d}_{2}=\mathrm{d}\left(\mathrm{v}_{\mathrm{j}}\right)$ for some j

Therefore $d_{1}=\mu\left(v_{i-1} v_{i}\right)+\mu\left(v_{i} v_{i+1}\right) \leq 2$ and $d_{2}=\mu\left(v_{j-1} v_{j}\right)+\mu\left(v_{j} v_{j+1}\right) \leq 2$.
Also $\mu\left(v_{i} v_{i+1}\right)>0 \quad \forall i=1,2, \ldots, n$. Hence $0<d_{i} \leq 2$ for $i=1,2$.
Theorem 3.6: If $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}, \ldots \ldots, d_{n}\right\}$ is the degree set of a fuzzy graph on a cycle then $0<\mathrm{d}_{\mathrm{i}} \leq 2$ for $\mathrm{i}=1,2, \ldots$, n.
Proof: The proof is similar to the proof of the theorem 3.5, since each d_{i} is the sum of the two edges incident on it.

K. Radha ${ }^{1 *}$, A. Rosemine ${ }^{2}$ / Some Results On Degree Set of Fuzzy Graphs / IJMA- 8(7), July-2017.

Theorem 3.7: If there exists a $t \in(0,1]$ such that $0<d_{i}-t \leq 1 ; i=1,2$ then $\left\{d_{1}, d_{2}\right\}$ is the degree set of a fuzzy graph on an even cycle.

Proof: Consider an even cycle C: $\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \ldots \ldots . . \mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{1}$
Assign $\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=\mu\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=\mu\left(\mathrm{v}_{5} \mathrm{v}_{6}\right)=\ldots \ldots=\mu\left(\mathrm{v}_{2 \mathrm{n}-1} \mathrm{v}_{2 \mathrm{n}}\right)=\mathrm{t}$ and $\mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=\mathrm{d}_{1}-\mathrm{t} ; \mu\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{1}\right)=\mathrm{d}_{2}-\mathrm{t}$. For all the remaining edges assign either $d_{1}-t$ or $d_{2}-t$ as their membership values.

$$
\text { Then, } \begin{aligned}
\mathrm{d}\left(\mathrm{v}_{1}\right) & =\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mu\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{1}\right) \\
& =\mathrm{t}+\mathrm{d}_{2}-\mathrm{t} \\
& =\mathrm{d}_{2} . \\
\mathrm{d}\left(\mathrm{v}_{2}\right) & =\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right) \\
& =\mathrm{t}+\mathrm{d}_{1}-\mathrm{t} \\
& =\mathrm{d}_{1} .
\end{aligned}
$$

Similarly all the remaining vertices are of either degree d_{1} or d_{2}.
Assign any value satisfying the condition of fuzzy graph as the membership values of the vertices. Thus $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is the degree set of a fuzzy graph on an even cycle.

Example 3.8: Let us illustrate the procedure described in the above theorem by the following example.
Let $d_{1}=1.9, d_{2}=1.5$, then $t \geq 0.9$, take $t=0.9$. Consider a fuzzy graph G on cycle with six vertices $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ and assign $\mu\left(\mathrm{v}_{1} \mathrm{~V}_{2}\right)=\mu\left(\mathrm{v}_{3} \mathrm{~V}_{4}\right)=\mu\left(\mathrm{v}_{5} \mathrm{~V}_{6}\right)=0.9, \mu\left(\mathrm{v}_{2} \mathrm{~V}_{3}\right)=\mathrm{d}_{1}-\mathrm{t}=1.9-0.9=1$ and $\mu\left(\mathrm{v}_{4} \mathrm{v}_{5}\right)=\mu\left(\mathrm{v}_{6} \mathrm{~V}_{1}\right)=\mathrm{d}_{2}-\mathrm{t}=1.5-0.9=0.6$, then $\mathrm{d}\left(\mathrm{v}_{1}\right)=\mathrm{d}\left(\mathrm{v}_{4}\right)=\mathrm{d}\left(\mathrm{v}_{5}\right)=\mathrm{d}\left(\mathrm{v}_{6}\right)=1.5, \mathrm{~d}\left(\mathrm{v}_{2}\right)=\mathrm{d}\left(\mathrm{v}_{3}\right)=1.9$ (fig.1). Hence the following fuzzy graph is of degree set \{1.9, 1.5\}

G: (σ, μ)
Figure-1
Theorem 3.9: If there exists a $t \in(0,1]$ such that $0<d_{i}-t \leq 1 ; i=1,2$ and $2 t$ is either equal to d_{1} or d_{2} then $\left\{d_{1}, d_{2}\right\}$ is the degree set of a fuzzy graph on an odd cycle.

Proof: Consider a odd cycle C: $\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \ldots \ldots \ldots \mathrm{v}_{2 \mathrm{n}+1} \mathrm{v}_{1}$
Assign $\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=\mu\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=\mu\left(\mathrm{v}_{5} \mathrm{v}_{6}\right)=\ldots . .=\mu\left(\mathrm{v}_{2 \mathrm{n}+1} \mathrm{v}_{1}\right)=\mathrm{t}$ and $\mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=\mathrm{d}_{2}-\mathrm{t} ; \mu\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{2 \mathrm{n}+1}\right)=\mathrm{d}_{1}-\mathrm{t}$. For all the remaining edges assign either $d_{1}-t$ or $d_{2}-t$ as their membership values. Then,

$$
\begin{aligned}
& \mathrm{d}\left(\mathrm{v}_{1}\right)=\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mu\left(\mathrm{v}_{2 \mathrm{n}+1} \mathrm{v}_{1}\right) \\
&=\mathrm{t}+\mathrm{t} \\
&=2 \mathrm{t} . \\
& \\
& \mathrm{d}\left(\mathrm{v}_{2}\right)=\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)+\mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right) \\
&=\mathrm{t}+\mathrm{d}_{2}-\mathrm{t} \\
&=\mathrm{d}_{2} . \\
& \\
& \mathrm{d}\left(\mathrm{v}_{2 \mathrm{n}+1}\right)=\mu\left(\mathrm{v}_{2 \mathrm{n}} \mathrm{v}_{2 \mathrm{n}+1}\right)+\mu\left(\mathrm{v}_{2 \mathrm{n}+1} \mathrm{v}_{1}\right) \\
&=\mathrm{d}_{1}-\mathrm{t}+\mathrm{t} \\
&=\mathrm{d}_{1} .
\end{aligned}
$$

Similarly all the remaining vertices are of either degree d_{1} or d_{2}.
Assign any value satisfying the condition of fuzzy graph as the membership values of the vertices. Thus $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is the degree set of a fuzzy graph on an odd cycle.

Example 3.10: Let us illustrate the procedure described in the above theorem by the following example.
Let $\mathrm{d}_{1}=2, \mathrm{~d}_{2}=1.5$, then $\mathrm{t} \geq 1$, take $\mathrm{t}=1$.
Consider a fuzzy graph G on cycle with five vertices $\mathrm{V}_{1} \mathrm{v}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5}$ and
Assign $\mu\left(\mathrm{v}_{1} \mathrm{v}_{2}\right)=\mu\left(\mathrm{v}_{3} \mathrm{v}_{4}\right)=\mu\left(\mathrm{v}_{5} \mathrm{v}_{1}\right)=1, \mu\left(\mathrm{v}_{2} \mathrm{v}_{3}\right)=\mathrm{d}_{1}-\mathrm{t}=2-1=1$ and $\mu\left(\mathrm{v}_{4} \mathrm{v}_{5}\right)=\mathrm{d}_{2}-\mathrm{t}=1.5-1=0.5$, then $\mathrm{d}\left(\mathrm{v}_{1}\right)=2(\mathrm{t})=\mathrm{d}_{1}=2 . \mathrm{d}\left(\mathrm{v}_{4}\right)=\mathrm{d}\left(\mathrm{v}_{5}\right)=1.5, \mathrm{~d}\left(\mathrm{v}_{2}\right)=\mathrm{d}\left(\mathrm{v}_{3}\right)=2$.

Hence the following fuzzy graph is of degree set $\{2,1.5\}$

Figure-2
Theorem 3.11: If d_{1} and d_{2} are two positive real numbers, then $\left\{d_{1}, d_{2}\right\}$ is a degree set of a fuzzy graph on a star $K_{1, n}$ if and only if $0<\mathrm{d}_{2} \leq 1$ and $\mathrm{d}_{1}=\mathrm{nd}_{2}$.

Proof: Let $\mathrm{K}_{1, \mathrm{n}}$ be star $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ with $\mathrm{n}+1 \mathrm{v}$ ertices and v_{0} as its center.
Let $\left\{d_{1}, d_{2}\right\}$ is a degree set of a fuzzy graph (σ, μ) on a path $K_{1, n}$.
Then $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{0}\right), \forall \mathrm{i}=1,2, \ldots, \mathrm{n}, \mathrm{d}\left(\mathrm{v}_{0}\right)=\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right)$ and $\mathrm{d}_{1}<\mathrm{d}_{2}$
We must have $\mathrm{d}_{2}=\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right)$ and $\mathrm{d}_{1}=\mathrm{d}\left(\mathrm{v}_{0}\right)$,
Therefore $0<\mathrm{d}_{2} \leq 1$ and $\mathrm{d}\left(\mathrm{v}_{0}\right)=\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} d_{2} \\
& =\text { nd }_{2} .
\end{aligned}
$$

Conversely assume that $0<\mathrm{d}_{1} \leq 1$ and $\mathrm{d}_{1}=\mathrm{nd}_{2}$. Assign $\mu\left(v_{i} v_{0}\right)=\mathrm{d}_{2} \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$. Assign any value satisfying the condition of fuzzy graph as the membership values of the vertices. Then $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mu\left(v_{i} v_{0}\right)=\mathrm{d}_{2}$ and

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{v}_{0}\right) & =\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right) \\
& =\sum_{i=1}^{n} d_{2} \\
& =\mathrm{nd}_{2}=\mathrm{d}_{1} .
\end{aligned}
$$

Hence $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is a degree set of a fuzzy graph (σ, μ) on a star $\mathrm{K}_{1, \mathrm{n}}$.
Example 3.12: Let us illustrate the procedure described in the above theorem by the following example.
Consider the set $\{1.5,0.5\}$. Let $\mathrm{d}_{1}=1.5, \mathrm{~d}_{2}=0.5$.
Consider a fuzzy graph G on a star $K_{1,3}$ with vertices $\mathrm{V}_{0} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3}$
Assign $\mu\left(v_{0} v_{i}\right)=0.5$ for $i=1,2,3,4$.
Then $\mathrm{d}\left(\mathrm{v}_{0}\right)=1.5=\mathrm{d}_{1} . \mathrm{d}\left(\mathrm{v}_{1}\right)=\mathrm{d}\left(\mathrm{v}_{2}\right)=\mathrm{d}\left(\mathrm{v}_{3}\right)=\mathrm{d}\left(\mathrm{v}_{4}\right)=0.5$.

Hence $\{1.5,0.5\}$ is the degree set of the fuzzy graph $G:(\sigma, \mu)$ on the cycle in figure 3

Figure-3
Theorem 3.13: If d_{1} and d_{2} are two real numbers such that $0<\mathrm{d}_{2} \leq 3$ and $n \mathrm{~d}_{2}=3 \mathrm{~d}_{1}$ then $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is the degree set of a fuzzy graph on a wheel W_{n}.

Proof: Let W_{n} be wheel on $\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}$ with $\mathrm{n}+1$ vertices and v_{0} as its center.
Since $0<d_{2} \leq 3,0<\frac{d_{2}}{3} \leq 1$. Assign $\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=\frac{d_{2}}{3} \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$ where $\mathrm{v}_{\mathrm{n}+1}=\mathrm{v}_{1}$ and $\mu\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}}\right)=\frac{d_{2}}{3} \forall \mathrm{i}=1,2, \ldots, \mathrm{n}$. Assign any value satisfying the condition of fuzzy graph as the membership values of the vertices.

Then for $\mathrm{i}=1,2, \ldots \ldots, \mathrm{n} d\left(\mathrm{v}_{\mathrm{i}}\right)=\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mu\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{0}\right)+\mu\left(\mathrm{v}_{\mathrm{i}-1} \mathrm{v}_{\mathrm{i}}\right)$

$$
\begin{aligned}
& =\frac{d_{2}}{3}+\frac{d_{2}}{3}+\frac{d_{2}}{3} \\
& =d_{2}
\end{aligned}
$$

and $\quad \mathrm{d}\left(\mathrm{v}_{0}\right)=\sum_{i=1}^{n} \mu\left(v_{i} v_{0}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \frac{d_{2}}{3} \\
& =\mathrm{n} \frac{d_{2}}{3} . \\
& =\mathrm{d}_{1} .
\end{aligned}
$$

Hence $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is a degree set of a fuzzy graph (σ, μ) on a star W_{n}.
Remark 3.14: For any non negative real number $d,\{d\}$ cannot be a degree set of a fuzzy graph on a bistar.
Theorem 3.15: Let d_{1} and d_{2} be any two nonnegative real number such that $d_{1}<d_{2}$. Then $\left\{d_{1}, d_{2}\right\}$ is a degree set of a fuzzy graph on a bistar with $2 m+2$ vertices $m \geq 1$ if and only if $0<d_{2} \leq 1$ and $0<d_{1}-\mathrm{m}_{2} \leq 1$.

Proof: Let G be a bistar on n vertices $v_{0}, v_{1}, v_{2}, v_{3}, \ldots, v_{m}, u_{0}, u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ which is obtained by joining the apex vertices v_{0} and u_{0} of the two stars with the vertex sets $\left(\mathrm{v}_{0}, \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{m}}\right)$ and $\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \ldots, \mathrm{u}_{\mathrm{m}}\right)$.

Suppose that $\left\{d_{1}, d_{2}\right\}$ is a degree set of a fuzzy graph $G:(\sigma, \mu)$ on a bistar graph.
For $\mathrm{i}=1,2,3 \ldots \mathrm{~m}, \mathrm{~d}\left(\mathrm{u}_{\mathrm{i}}\right)$ and $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)$ are the membership value of the edge $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{0}, \mathrm{v}_{\mathrm{i}} \mathrm{v}_{0}$ respectively.
Also, $\mathrm{d}\left(\mathrm{v}_{0}\right)=\sum_{i=1}^{m} \mu\left(v_{i} v_{0}\right)+\mu\left(u_{0} v_{0}\right)$

$$
\mathrm{d}\left(\mathrm{u}_{0}\right)=\sum_{i=1}^{m} \mu\left(v_{i} u_{0}\right)+\mu\left(u_{0} v_{0}\right)
$$

Since $\mathrm{d}_{1}<\mathrm{d}_{2}, \mathrm{~d}\left(\mathrm{v}_{0}\right)=\mathrm{d}\left(\mathrm{u}_{0}\right)=\mathrm{d}_{1}$ and $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{d}_{2}$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$
Therefore $0<\mathrm{d}_{2} \leq 1$ and $\mathrm{d}_{2}=\sum_{i=1}^{m} d_{1}+\mu\left(u_{0} v_{0}\right)=\mathrm{md}_{1}+\mu\left(u_{0} v_{0}\right)$
Hence $0<\mathrm{d}_{1}-\mathrm{md}_{2} \leq 1$.
Conversely $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ satisfy the given hypothesis. Assign $\mu\left(\mathrm{v}_{0} \mathrm{v}_{\mathrm{i}}\right)=\mu\left(\mathrm{u}_{0} \mathrm{u}_{\mathrm{i}}\right)=\mathrm{d}_{2}$.
$\mu\left(v_{0} u_{0}\right)=d_{1}-m d_{2}$. Assign any value satisfying the condition of fuzzy graph as the membership values of the vertices.

Then $d\left(v_{i}\right)=\mu\left(v_{i} v_{0}\right)=d_{2}, d\left(u_{i}\right)=\mu\left(u_{i} u_{0}\right)=d_{2}$ for $\mathrm{i}=1,2,3, \ldots, m$ and

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{v}_{0}\right) & =\sum_{i=1}^{m} \mu\left(v_{i} v_{0}\right)+\mu\left(u_{0} v_{0}\right) \\
& =\sum_{i=1}^{m} m d_{2}+d_{1}-m d_{2} \\
& =\mathrm{d}_{2} .
\end{aligned}
$$

Hence $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is an edge degree set of a fuzzy graph (σ, μ) on a bistar with $2 \mathrm{~m}+2$ vertices.
The above theorem 3.15 can also be stated as follows:
Theorem 3.16: $\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$ is a degree set of a fuzzy graph on a bistar if and only if $0<\mathrm{d}_{2} \leq 1$ and $\left(\frac{n-2}{2}\right) \mathrm{d}_{2}<\mathrm{d}_{1} \leq\left(\frac{n-2}{2}\right)$ $d_{2}+1$ where n is an even integer greater than or equal to 4 .

Proof: Let $\mathrm{m}=\left(\frac{n-2}{2}\right)$ then $\left(\frac{n-2}{2}\right) \mathrm{d}_{2}<\mathrm{d}_{1} \leq\left(\frac{n-2}{2}\right) \mathrm{d}_{2}+1=\mathrm{md}_{2}<\mathrm{d}_{1} \leq \mathrm{m}_{2}+1$ $=0<\mathrm{d}_{1}-\mathrm{md}_{2} \leq 1$.

Hence the proof is similar to the proof of the theorem 3.13.
Example 3.17: Let us illustrate the procedure described in the above theorem by the following example.
Let $\mathrm{d}_{1}=1, \mathrm{~d}_{2}=0.5$. Then the value $\mathrm{d}_{1}-\mathrm{md}_{2}=1-0.5=0.5$, since $0<0.5 \leq 1$.
Therefore $\mathrm{m}=1$,
Consider a fuzzy graph G on a bistar with vertices $v_{1} v_{0} u_{0} u_{1}$, assign $\mu\left(v_{1} v_{0}\right)=\mu\left(u_{1} u_{0}\right)=0.5$ then $d\left(v_{1}\right)=d\left(u_{1}\right)=0.5=d_{1}$.
Also assign $\mu\left(\mathrm{v}_{0} \mathrm{u}_{0}\right)=0.5 \Rightarrow \mathrm{~d}\left(\mathrm{v}_{0}\right)=\mathrm{d}\left(\mathrm{u}_{0}\right)=1=\mathrm{d}_{1}$.
Hence $\{1,0.5\}$ is the degree set of the fuzzy graph in fig.4.

Figure-4

IV. CONCLUSION

In fuzzy graph theory degree of an edge is a parameter of a graph. In this paper we made a study about the edge degree set of a fuzzy graph.

REFERENCES

1. Arumugam S. and Ramachandran S., "Invitation to graph theory" SciTech Publications (INDIA) Pvt. Ltd., Chennai 2002.
2. Chatrand G. and Lesniak L., "Graphs and digraphs" Third Edition, Chapmen and Hall, 1996.
3. Gary Chartrand and Ping zhang, "Introduction to graph theory", Tata McGraw-Hill Publishing Limited, 2006.
4. Harary F., "Graph Theory", Narosa Publishing House, New Delhi, 1988.
5. John N.Mordeson, Premchand S. Nair., "Fuzzy graphs and hyper graphs" Physica-Verlag, Springer Verlag company, 2000.
6. Nagoor Gani. A, K. Radha, Some sequences in fuzzy graphs, Vol.31, No.3, 2008, 321-335.
7. Naskar. S, K.Basuli, S.S.Sarma, and K.N.Dey, On degree sequence ACMUbiquity, April 2008, Vol.9, Issue16, 22-28.
8. Parthasarathy K.R., "Basic graph theory" Tata McGraw-Hill Publishing Limited, 1994.
9. Radha. K and A.Rosemine, "Degree sequence of a fuzzy graph", Jamal Academic Research Journal, ISSN 0973-0303, 2014, 635-638.

$$
\text { K. Radha }{ }^{1} \text {, A. Rosemine }{ }^{2} \text { / Some Results On Degree Set of Fuzzy Graphs / IJMA- 8(7), July-2017. }
$$

10. Radha. K and A.Rosemine, "Degree set of a fuzzy graph", International Journal of Mathematical Archive (IJMA), ISSN: 2229-5046, Vol. 6, Issue 5, 2015, 102 - 106.
11. Rosenfeld, A., Fuzzy graphs, Fuzzy Sets and their Applications to Cognitive and Decision Processes (Proc. U.S.-Japan Sem., Univ. Calif., Berkeley, Calif., 1974), Academic Press, New York, 1975, pp. 77-95.

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

