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ABSTRACT 
The centrality measure of nodes plays a vital role in network analysis. Laplacian Centrality of a node is the relative 
change in the Laplacian Energy of the network due to removal of the node. The object of the paper is twofold. First, we 
discuss the Laplacian Centrality and its graph theoretic perspective. Second, we present a comparative study of 
Laplacian Centrality with some standard node centrality measures applying on classic synthetic and real network data 
sets. 
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1. INTRODUCTION 
 
Node centrality measures are proposed and used to analyze Social Networks. But soon these measures are well adopted 
and find their utility in almost all the network structures. The centrality of nodes, or the identification of nodes which 
are more “central” than others, has been a key issue in network analysis. The findings of some important nodes with 
high centralities to characterize the properties on the networks have significant uses in analyzing structure and 
dynamics of the network. These include the synchronization transition, epidemic spreading, and transmission of 
information. Various centrality measures like degree centrality, closeness centrality, betweenness centrality [5], 
eigenvector centrality [1] have been proposed for unweighted networks. Several attempts were made to generalize 
degree, betweenness and closeness centrality measures to weighted networks. Degree centrality was extended to 
weighted networks by Barrat et al. [3] and defined as the sum of the weights attached to the edges connected to a node. 
Some extensions of the closeness and betweenness centrality measures were proposed by Newman [12] and Brandes 
[4]. 
 
Degree Centrality of a node is the number of edges incident upon the node. Closeness Centrality of a node i was 
defined as the inverse sum of shortest distances to all other nodes from the node i, which is based on the mean shortest 
path between i and all other nodes reachable from it. Betweenness Centrality assesses the degree to which a node lies 
on the shortest paths between pairs of other nodes. Eigenvector Centrality of a node captures its number of connections 
recursively i.e., it will not only measure the number of edges incident upon a node but measures the number of 
connections that the connected nodes to the node possess. Laplacian Centrality [14] was proposed as a measure of node 
centrality capturing the effect of removal of the node on Laplacian Energy. 
 
An efficient network would have small characteristic path length, high clustering coefficient, which are the properties 
of small-world network (Watts and Strogatz, 1998) [13]. A small-world network is a graph in which most nodes are not 
neighbors of one another, but most nodes can be reached from every other by a small number of hops, attributing to its 
small characteristics path length. Another common property of many large real networks is that, the degree distribution 
follows a scale-free power-law distribution (Barabási and Albert, 1999) [2]. These networks are popularly known as 
scale-free (SC) networks. In this paper, we present a comparative study of Laplacian Centrality (LC) with some other 
standard node centrality measures applying on classic synthetic and real network data sets. 
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The rest of this paper is organized as follows. In the next section, we discuss Laplacian Centrality and its structural 
description. In section 3, we compare LC with some standard node centrality measures in synthetic network 
environment like Barabási-Albert Network (BA-network), Watts-Strogatz Network (WS-network) and in real network 
datasets like Dolphins Network, American Football Network and Airport Network of India. In section 4 we present a 
consensus study to evaluate the performance of various measures in case of the three real networks. Conclusions are 
made in section 5. 
 
2. L APLACIAN CENTRALITY AND ITS GRAPH THEORETIC PERSPECTIVE 
 
Laplacian energy is another version of the graph invariant, known as graph energy [7]. Laplacian energy can be used to 
measure the importance (centrality) of a node by measuring the relative change of Laplacian energy in the network 
caused by the removal of the node from the network [14]. Let us start the discussion with the definition of Laplacian 
energy of a network and LC of a node. 
 
Laplacian Energy [10]: Let G = (V, E, W) be a weighted network with n nodes, and  𝜇1, 𝜇2,…,  𝜇𝑛  be the eigenvalues 
of the laplacian of G. Then the Laplacian Energy can be defined as follows: 

𝐸(𝐺) = � 𝜇𝑖2
𝑛

𝑖=1
 

 
Laplacian Centrality [14]: Let G = (V, E, W) is a network with 𝑛 nodes { 𝑣1,  𝑣2, … , 𝑣𝑛}.  Let us also consider that 𝐺𝑖 
be the network obtained by deleting 𝑣𝑖 from G. The LC, 𝐿𝐶( 𝑣𝑖 ,𝐺) of a node  𝑣𝑖  is defined as follows 

𝐿𝐶( 𝑣𝑖 ,𝐺) =
𝐸(𝐺) − 𝐸(𝐺𝑖)

𝐸(𝐺)
=

(∆𝐸)𝑖
𝐸

 

Since (∆𝐸)𝑖 = 𝐸(𝐺) − 𝐸(𝐺𝑖) is always a non-negative quantity, because of the interlacing property [8] of the 
eigenvalues of Laplacian matrix. Clearly, 0 ≤ 𝐿𝐶( 𝑣𝑖 ,𝐺) ≤ 1,∀ 𝑖. 
 
The graph theoretic description of LC can be understood using 2-walks. Let G = (V, E, W) be a weighted network of 𝑛 
nodes { 𝑣1,  𝑣2, … , 𝑣𝑛}.  A walk of length 𝑘 or 𝑘-walk is a sequence of (not necessary different) 𝑘 + 1 nodes such that 
for each pair of consecutive nodes there is an edge. A walk is closed if the starting and the end nodes are same. A 2-
walk is a walk of length 2. The 2-walks containing a node can be divided into three categories: first, Closed 2-walks 
containing the node v; say, 𝐶𝑊(𝑣) denotes the number of such walks, second, Non-closed 2-walks containing the node 
v as one of the end-nodes; say, 𝑁𝐶𝑊𝐸(𝑣) denotes the number of such walks, and finally, Non-closed 2-walks 
containing the node 𝑣 as the middle point; and the number of such 2-walks be 𝑁𝐶𝑊𝑀(𝑣). Using these notations we 
have the following theorem due to Xingqin Qi., et. al.  [14] that helps to characterize LC as a graph measure.  
 
Theorem: Let G = (V, E, W) is a weighted network of n nodes { 𝑣1,  𝑣2, … , 𝑣𝑛}.  Let 𝐺𝑖 be the network obtained by 
deleting the node  𝑣𝑖  from G, then the drop of Laplacian energy with respect to  𝑣𝑖  is 

(∆𝐸)𝑖 = 𝐸(𝐺) − 𝐸(𝐺𝑖) = 4𝐶𝑊(𝑣𝑖) + 2(𝑁𝐶𝑊𝐸(𝑣𝑖) + 𝑁𝐶𝑊𝑀(𝑣𝑖)). 
From this theorem we can observe that unlike Degree centrality, which considers only direct connections, LC of a node 
gathers information from the nodes which are reachable in two steps from the node. Also the weight on closed walks is 
4 as compared to 2 on non-closed walks. This can be attributed to the fact that though the global environment may not 
be completely ignored but the local environment of a node is mainly responsible for the centrality value of the node, 
and the closed walks can capture this the most. 
 
3. A COMPARATIVE STUDY 
 
3.1 Synthetic Networks 
In this section we apply the node centrality measures namely degree, betweenness, closeness, eigenvector centrality and 
LC on two synthetic networks, viz. WS-network and BA-network of different sizes, seeds and rewiring probabilities. 
We all know that WS-network and BA-network are probabilistic networks. So to minimize the effect of randomness, 
we consider the average result of ten networks generated for each of these models. And the values of the five 
centralities are also normalized for the sake of graphical comparison. We have also varied the size (number of nodes), 
seed size and rewiring probabilities to observe the effect of these parameters on these centrality measures. In general, 
we observe a positive correlation among the five centrality measures and LC is closely related to the degree centrality 
in case of WS-network. Also we can see from figure 1(a) that there is a high variation in the values of eigenvector 
centrality as compared to the other four centrality measures, this feature may be helpful for distinct ranking of the 
nodes. In case of BA-network, we observe a positive correlation among four out of the five measures, whereas 
eigenvector centrality is negatively correlated to LC as shown in figure 1(b). This may be attributed to the fact that 
unlike degree centrality, which is a local measure and eigenvector centrality, which is a global measure; LC is an 
intermediate measure between local and global characterization of a node’s importance. Again if we increase the size of 
BA-network, keeping the seed size fixed or the size of WS-network with a fixed rewiring probability we observe that 
only degree centrality is positively correlated with LC. Similar results are obtained when we fix the size and vary the 
other parameters. 



A. Bharali*1, D. Baruah2 / Comparison of Laplacian Centrality with Some Node Centrality Measures / IJMA- 8(7), July-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      227  

 
(a): WS-network with n=300, p=0.01. 

 

 
(b): BA-network with n=300, 𝑚 = 𝑚0 = 10. 

 
Figure-1: Five node centrality measures on two synthetic networks 

 
3.2 Real networks 
We have applied the aforesaid centrality measures on three real networks. One of them is the ANI and the other two are 
the bench-mark data sets in Network analysis, namely, Dolphins Network [11] and American Football Network [6]. 
These three real networks are selected from three different categories namely, Infrastructural, Animal Social and 
Human Social respectively. The results obtained are as shown in the figure 2. From the figure 2(b) and figure 2(c), we 
can conclude that closeness centrality is not synchronized with the other measures for Football Network and ANI. 
Whereas, eigenvector centrality is the measure that does not conform with the other measures in case of Dolphins 
Network. The top 10 scores of ANI for different centrality measures are listed in table 1. There we can observe that the 
ranks of airport according to LC are mostly in consensus with the other measures except few, e.g., Rank 4 is different 
for LC and betweenness. The following consensus study will clarify the observation.  

 
Rank Degree Closeness Betweenness Eigenvector Laplacian 

1 Delhi Delhi Delhi Delhi Delhi 

2 Mumbai Mumbai Mumbai Mumbai Mumbai 

3 Kolkata Bangalore Bangalore Bangalore Bangalore 

4 Bangalore Kolkata Kolkata Kolkata Kolkata 
5 Madras Madras Madras Hyderabad Madras 
6 Hyderabad Hyderabad Varanasi Madras Hyderabad 
7 Guwahati Guwahati Hyderabad Pune Ahmedabad 
8 Ahmedabad Ahmedabad Guwahati Ahmedabad Pune 
9 Pune Pune Kochi Goa Guwahati 
10 Goa Goa Port Blair Jaipur Goa 

 
Table-1: Top 10 airports of ANI according to different centrality measures 

 
 
 



A. Bharali*1, D. Baruah2 / Comparison of Laplacian Centrality with Some Node Centrality Measures / IJMA- 8(7), July-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      228  

 

 
(a): Dolphins Network (n=62, m=159) 

 

 
(b): Football Network (n=115, m=613) 

 

 
(c): Airport Network of India (n=79, m=248) 

Figure-2: Five node centrality measures on three real networks 
 
4. CONSENSUS ANALYSIS 
 
Consensus analysis of outputs is a widely used method in bio-informatics [9]. We adopt a similar consensus method to 
evaluate the performance of various measures in the three real networks. A measure is considered to be more robust or 
more efficient, if its outputs are closer to consensus result. The nodes are ranked based on their centrality values for 
different centrality measures. Then the consensus ranks are calculated for each node as the mean of the five ranks 
obtained for the same node using the five centrality measures. For example, if a node gets ranks (2 3 3 4 1) from the 
five centrality measures, then the consensus rank of the node will be 2.6. To further analyze, we use the following 
simple “consensus deviation” to evaluate the output based on the five centrality measures from the consensus output. 

𝜎(𝛼) =
1
𝑛
� (𝑟𝑎𝑛𝑘𝛼(𝑖)  −  𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑖))2

𝑛

𝑖=1
, 

where n is the number of nodes, 𝑟𝑎𝑛𝑘𝛼(𝑖) is the rank of the 𝑖𝑡ℎ node based on centrality measurement 𝛼 and 
𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠(𝑖) is the consensus rank of the 𝑖𝑡ℎ node. Clearly, smaller distance means better output. A method with 
smaller distance is considered as the one, which is best suited for the network. The different distance values for the 
three networks are presented in the Table 2. There, we can see that the consensus deviation of LC is the lowest for all 
the real networks under consideration. 
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 ANI Dolphins  Network American Football Network 

Degree 0.6778 1.1758 2.4804 
Closeness 0.7743 1.0077 2.2750 

Betweenness 1.7205 0.8345 2.4412 
Eigenvector 0.7007 0.8345 1.9790 
Laplacian 0.6771 0.7636 1.5918 

 
Table-2: Consensus deviation values of different centrality measures 

 
5. CONCLUSIONS 
 
In this paper, we have discussed the graph theoretic aspect of Laplacian centrality and a comparative study is also 
presented with other standard centrality measures. In the study we observe that Laplacian centrality is a potential node 
centrality measure, which is based on the 2-walks of the network. It can capture both local and global environment 
about a node in a network. The graph theoretic aspect of the measure suggests that weight on the closed 2-walks is 
more than that on non-closed 2-walks, so we can say that it has given priority to the local environment than global, 
which is an important feature of centrality. But the Laplacian centrality does not ignore the global effect, which makes 
it more informative and realistic measure as compared to measures like degree centrality. In comparison with global 
measure like eigenvector centrality, it has a less computational cost and if the direction of ties can be ignored, or the 
pathway of connection is not important then Laplacian centrality can be the best centrality measure in a network. From 
the consensus study of the measure with other four centrality measures, we can conclude that Laplacian centrality is 
more robust or more efficient as its outputs are closer to the consensus output. 
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