International Journal of Mathematical Archive-8(7), 2017, 216-224 MAAvailable online through www.ijma.info ISSN 2229 – 5046

RELAXED SKOLEM MEAN LABLING FOR FIVE STAR

A. MANSHATH¹, V. BALAJI^{*2}, P. SEKAR³

¹Department of Mathematics, Sri ram Engineering College, Thiruvallur - 602024, India.

²Department of Mathematics, Sacred Heart College, Tirupattur - 635601, India.

³Department of Mathematics, C. Kandasamy Naidu College, Chennai - 600102 India.

(Received On: 08-06-17; Revised & Accepted On: 05-07-17)

ABSTRACT

In this paper, we prove $1 \le m < n$, the five star $K_{l, l} \cup K_{l, l} \cup K_{l, l} \cup K_{l, m} \cup K_{l, n}$ is a Relaxed skolem mean graph if $|m-n| \le 9$ for n = 1, 2, 3, ... and $m \le n \le m + 9$

Keywords: Relaxed Skolem mean graph and star.

2010 Mathematical Subject Classification Number: 05C78.

1. INTRODUCTION

All graphs in this chapter are finite, simple and undirected. Terms not defined here are used in the sense of Harry [10]. In [5], if $\ell \le m < n$, the three star $K_{1, \ell} \cup K_{1, m} \cup K_{1, n}$ is a relaxed skolem mean graph if $|m-n| \le 6+\ell$ for $\ell = 1, 2, 3, \ldots$; $m = 1, 2, 3, \ldots, \ell + m \le n \le \ell + m + 6$. Also, if $\ell \le m < n$, the four star $k_{1,\ell} \cup k_{1,\ell} \cup k_{1,m} \cup k_{1,n}$ is a relaxed skolem mean graph if $|m-n| \le 6+2\ell$ for $\ell = 2, 3, 4, \ldots$; $m = 2, 3, 4, \ldots$ and $2\ell + m \le n \le 2\ell + m + 6$. In [4], the necessary condition for a graph to be relaxed skolem mean is that $p \ge q$.

2. RELAXED SKOLEM MEAN LABELING

Definition 2.1: The five stars is the disjoint union of $K_{1,a}$, $K_{1,b}$, $K_{1,c}$, $K_{1,d}$, $K_{1,e}$ then it is denoted by $K_{1,a} \cup K_{1,b} \cup K_{1,c} \cup K_{1,c} \cup K_{1,c} \cup K_{1,c}$

Definition 2.2: A graph G = (V, E) with p vertices and q edges is said to be a relaxed skolem mean graph if there exists a function f from the vertex set of G to $\{1, 2, 3, ..., p+1\}$ such that the induced map f* from the edge set of G to $\{2, 3, 4, ..., p+1\}$ defined by

$$f^{*}(e=uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd, then} \end{cases}$$

the resulting edges get distinct labels from the set $\{2, 3, 4, ..., p+1\}$.

Note 2.3: In a Relaxed skolem mean graph, $p \ge q$.

Theorem 2.4: If $1 \le m < n$ five star $K_{1,a} \cup K_{1,b} \cup K_{1,c} \cup K_{1,d} \cup K_{1,e}$ is a relaxed skolem mean graph if $|m-n| \le 9$ for n = 1, 2, 3, 4... and $m \le n \le m+9$.

Proof: Let G = K $_{1, a} \cup K _{1, b} \cup K _{1, c} \cup K _{1, d} \cup K _{1, e}$ Without loss of generality assume that $1 \le m < n$.

Hence $|m-n| \le 9$ implies $n-m \le 9$ and it means $1 \le m \le n \le m+9$.

There are ten cases viz : n = m + 9, n = m + 8, n = m + 7, n = m + 6, n = m + 5, n = m + 4, n = m + 3, n = m + 2, n = m + 1 and n = m.

Let us prove in each of the cases the graph G is a Relaxed skolem mean graph.

Case – (a): When n = m + 9

We have to prove that G is a relaxed skolem mean graph n = m + 9

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

 $f(u) = 1 \quad f(v) = 6; \ f(y) = 2; \ f(w) = 4; \ f(x) = m + n + 8;$ $f(u_1) = 8$ $f(v_1) = 10$ $f(y_1) = 12$ $f(w_k) = 2k + 12 \quad for \quad 1 \le k \le m$ $f(x_h) = 2h + 1 \quad for \quad 1 \le h \le n - 2$ $f(x_{n-1}) = m + n + 7$ $f(x_n) = m + n + 9$

The corresponding link labels are as follows:

The link label of uu_1 is 5; vv_1 is 8; yy_1 is 7; ww_k is k+9 $1 \le k \le m$; xx_h is $\frac{m+n+2h+9}{2}$ $1 \le h \le n-2$; xx_{n-1} is m+n+8; xx_n is

$$m + n + 9$$
.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case – (b): When n = m+8

We've to prove that G is a relaxed skolem mean graph n = m+8.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$
$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

© 2017, IJMA. All Rights Reserved

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup \{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u) = 1 \quad f(v) = 2; \ f(y) = 3; \ f(w) = 5; \ f(x) = m + n + 8;$$

$$f(u_1) = 9$$

$$f(v_1) = 11$$

$$f(y_1) = 13$$

$$f(w_k) = 2k + 13 \quad for \quad 1 \le k \le m$$

$$f(x_h) = 2h + 2 \quad for \quad 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link labels of uu_1 is 5; vv_1 is 7; yy_1 is 8; ww_k is k+9 $1 \le k \le m$;

$$xx_h$$
 is $\frac{m+n+2h+10}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(c): When n = m + 7

We've to prove that G is a relaxed skolem mean graph n = m + 7.

 $V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$ $\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$

$$E(\mathbf{G}) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup \{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

 $f(u) = 1 \quad f(v) = 2; \ f(y) = 4; \ f(w) = 6; \ f(x) = m + n + 8;$ $f(u_1) = 8$ $f(v_1) = 10$ $f(y_1) = 12$ $f(w_k) = 2k + 12 \quad for \ 1 \le k \le m$ $f(x_h) = 2h + 3 \quad for \ 1 \le h \le n - 2$ $f(x_{n-1}) = m + n + 7$ $f(x_n) = m + n + 9$ The corresponding link labels are as follows:

The link labels of
$$uu_1$$
 is 5; vv_1 is 6; yy_1 is 8; ww_k is $k+9$ $1 \le k \le m$;
 xx_h is $\frac{m+n+2h+11}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(d): When n = m + 6

We've to prove that G is a relaxed skolem mean graph n = m + 6.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u) = 1 \quad f(v) = 2; \ f(y) = 3; \ f(w) = 5; \ f(x) = m + n + 8;$$

$$f(u_1) = 7$$

$$f(v_1) = 9$$

$$f(y_1) = 11$$

$$f(w_k) = 2k + 11 \quad for \ 1 \le k \le m$$

$$f(x_h) = 2h + 4 \quad for \ 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link label of uu_1 is 4; vv_1 is 6; yy_1 is 7; ww_k is k+8 $1 \le k \le m$;

$$xx_h$$
 is $\frac{m+n+2h+12}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(e): When n = m + 5

We've to prove that G is a relaxed skolem mean graph
$$n = m + 5$$
.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le l \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

© 2017, IJMA. All Rights Reserved

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u)=1 \quad f(v)=2; \ f(y)=3; \ f(w)=5; \ f(x)=m+n+8;$$

$$f(u_1) = 6$$

$$f(v_1) = 8$$

$$f(y_1) = 10$$

$$f(w_k) = 2k+10 \quad for \ 1 \le k \le m$$

$$f(x_h) = 2h+5 \quad for \ 1 \le h \le n-2$$

$$f(x_{n-1}) = m+n+7$$

$$f(x_n) = m+n+9$$

The corresponding link labels are as follows:

The link labels of uu_1 is 4; vv_1 is 5; yy_1 is 7; ww_k is k+8 $1 \le k \le m$;

$$xx_h$$
 is $\frac{m+n+2h+13}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(f): When n = m + 4

We've to prove that G is a relaxed skolem mean graph
$$n = m + 4$$
.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \to \{1, 2, 3, 4, ..., m + n + 8\}$ is defined as follows f(u) = 1 $f_i(v) = 2;$ f(y) = 4; f(w) = 6; f(x) = m + n + 8; $f(u_1) = 5$ $f(v_1) = 7$ $f(y_1) = 9$ $f(w_k) = 2k + 9$ for $1 \le k \le m$ $f(x_k) = 2h + 6$ for $1 \le h \le n - 2$ $f(x_{n-1}) = m + n + 7$ $f(x_n) = m + n + 9$

The corresponding link labels are as follows:

The link labels of uu_1 is 3; vv_1 is 5; yy_1 is 7; ww_k is k+8 $1 \le k \le m$;

$$xx_h$$
 is $\frac{m+n+2h+14}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case – (g): When n = m+3

We've to prove that G is a relaxed skolem mean graph n = m+3.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u) = 1; f(v) = 3; f(y) = 5; f(w) = 7; f(x) = m + n + 8;$$

$$f(u_1) = 4$$

$$f(v_1) = 6$$

$$f(v_1) = 8$$

$$f(w_k) = 2k + 8 \quad for \ 1 \le k \le m$$

$$f(x_h) = 2h + 7 \quad for \ 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link labels of uu_1 is 3; vv_1 is 5; yy_1 is 7; ww_k is k+8 $1 \le k \le m$; m+n+2h+15

$$xx_h$$
 is $\frac{m+n+2}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case – (h): When n = m + 2

We've to prove that G is a relaxed skolem mean graph
$$n = m + 2$$
.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$\mathbf{E}(\mathbf{G}) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup \{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u) = 1 \quad f(v) = 2; \ f(y) = 4; \ f(w) = 8; \ f(x) = m + n + 8;$$

$$f(u_1) = 3$$

$$f(v_1) = 5$$

$$f(y_1) = 7$$

$$f(w_k) = 2k + 7 \quad for \ 1 \le k \le m$$

$$f(x_h) = 2h + 8 \quad for \ 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link label of uu_1 is 2; vv_1 is 4; yy_1 is 6; ww_k is k+8 $1 \le k \le m$;

$$xx_h$$
 is $\frac{m+n+2h+16}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_n is $m+n+9$.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(i): When
$$n = m + 1$$

We've to prove that G is a relaxed skolem mean graph n = m + 1.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i : 1 \le i \le \ell\}, \{v\} \cup \{v_j : 1 \le j \le \ell\}, \{w\} \cup \{w_k : 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h : 1 \le h \le m\}, \{y\} \cup \{y_s : 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i : 1 \le i \le \ell\} \cup \{vv_j : 1 \le j \le \ell\} \cup \{ww_k : 1 \le k \le \ell\} \cup \{xx_h : 1 \le h \le m\} \cup$$

$$\{yy_s : 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows f(u) = 1 f(v) = 5: f(v) = 7: f(w) = 9: f(x) = m+n+8:

$$f(u) = 1 \quad f(v) = 5; \ f(y) = 7; \ f(w) = 9; \ f(x) = m + n + 8;$$

$$f(u_1) = 2$$

$$f(v_1) = 4$$

$$f(y_1) = 6$$

$$f(w_k) = 2k + 6 \quad for \quad 1 \le k \le m$$

$$f(x_h) = 2h + 9 \quad for \quad 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link label of uu_1 is 2; vv_1 is 5; yy_1 is 7; ww_k is $k+8 \ 1 \le k \le m$; xx_h is $\frac{m+n+2h+17}{2} \ 1 \le h \le n-2$; xx_{n-1} is m+n+8; xx_n is

$$m + n + 9$$
.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

Case-(j): When n = m
We've to prove that G is a relaxed skolem mean graph n = m.

$$V(G) = \{u, v, w, x, y\} \cup \{u_i: 1 \le i \le \ell\}, \{v\} \cup \{v_j: 1 \le j \le \ell\}, \{w\} \cup \{w_k: 1 \le k \le \ell\}$$

$$\{x\} \cup \{x_h: 1 \le h \le m\}, \{y\} \cup \{y_s: 1 \le s \le n\} \text{ and}$$

$$E(G) = \{uu_i: 1 \le i \le \ell\} \cup \{vv_j: 1 \le j \le \ell\} \cup \{ww_k: 1 \le k \le \ell\} \cup \{xx_h: 1 \le h \le m\} \cup$$

$$\{yy_s: 1 \le s \le n\}.$$

Then G has m+n+8 nodes and m+n+3 links.

The required node labeling $f: V(G) \rightarrow \{1, 2, 3, 4, \dots, m+n+8\}$ is defined as follows

$$f(u) = 1 \quad f(v) = 5; \ f(y) = 7; \ f(w) = 9; \ f(x) = m + n + 8;$$

$$f(u_1) = 2$$

$$f(v_1) = 4$$

$$f(y_1) = 6$$

$$f(w_k) = 2k + 6 \quad for \quad 1 \le k \le m$$

$$f(x_h) = 2h + 9 \quad for \quad 1 \le h \le n - 2$$

$$f(x_{n-1}) = m + n + 7$$

$$f(x_n) = m + n + 9$$

The corresponding link labels are as follows:

The link label of uu_1 is 2; vv_1 is 5; yy_1 is 7; ww_k is k+8 $1 \le k \le m$;

$$xx_{h}$$
 is $\frac{m+n+2h+17}{2}$ $1 \le h \le n-2$; xx_{n-1} is $m+n+8$; xx_{n} is

m + n + 9.

Hence the induced link labels are distinct.

Hence the graph G is Relaxed skolem mean graph.

3. APPLICATION OF GRAPH LABELING

The skolem mean labeling is applied on a graph (network), such as bus topology, mesh topology and star topology in order to solve the problems in establishing fastness, efficient communication and various issues in that area, in which the following will be taken into account.

- 1. A protocol, with secured communication can be achieved, provided the graph (network) is sufficiently connected.
- 2. To find an efficient way for safer transmissions in areas such as Cellular telephony, Wi-Fi, Security systems and many more.
- 3. Channel labeling can be used to determine the time at which sensor communicate.

CONCLUSION

Researchers may get some information related to graph labeling and its applications in communication field and work on some ideas related to their field of research.

ACKNOWLEDGEMENT

One of the authors (Dr. V. Balaji) acknowledges University Grants Commission, SERO, Hyderabad, India for financial assistance (No. F MRP 5766 / 15 (SERO / UGC)).

4. REFERENCES

- [1] V. Balaji, D. S. T. Ramesh and A. Subramanian, Skolem Mean Labeling, Bulletin of Pure and Applied Sciences, vol. 26E No. 2, 2007, 245 248.
- [2] V. Balaji, D. S. T. Ramesh and A. Subramanian, Some Results on Skolem Mean Graphs, Bulletin of Pure and Applied Sciences, vol. 27E No. 1, 2008, 67 – 74.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 6 (2010), # DS6.
- [4] F. Harary, Graph Theory, Addison Wesley, Reading, 1969.
- [5] V. Maheswari, D. S. T. Ramesh and V. Balaji, Relaxed Mean Labeling, International Journal of Mathematics Research Volume 4, Number 3 (2012), Page No. 217 – 224.
- [6] V. Maheswari, D. S. T. Ramesh and V. Balaji, On Relaxed Mean Labeling, Proceeding of National Seminar on Recent Trends in Mathematics (ISBN NO: 978-93-80686-35-6), Aringnar Anna College, Krishnagiri, March 1 (2015), 119 – 130.
- [7] V. Maheswari, D. S. T. Ramesh and V. Balaji, Some Results on Relaxed Mean Labeling, International Journal of Mathematical Combinatorics (Accepted).
- [8] V. Maheswari, D. S. T. Ramesh, Silviya Francis and V. Balaji, Non Existence of Relaxed Mean Labeling for Subdivision of Star Graphs, Presented a paper in National Conference on Recent Developments in Coloring, Domination and Distinguishing Codes in Graphs.
- [9] A. Manshath, V. Balaji, P. Sekar and M. Elakkiya, Further Result on Skolem Mean Labeling for Five stars, Bulletin of Kerala Mathematics Association (Communicated).

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]