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ABSTRACT 
In this study, a mathematical model has been developed to investigate the effect of body acceleration and slip in the 
pulsatile flow of Herschel Bulkley fluid through an inclined stenosed artery. A Perturbation method is used to solve the 
system of non linear differential equations with suitable boundary conditions. The analytical expressions for axial 
velocity, flow rate, wall shear stress and effective viscosity has been derived with the help of MATLAB. The combined 
effect of body acceleration, slip and inclination has been seen and it has been observed that the axial velocity and flow 
rate increases with the increase in body acceleration, inclination angle, pressure gradient and slip velocity while 
decreases with the increase in yield stress and stenosis height. As time increases, wall shear stress gradually decreases 
and attains symmetry. Effective viscosity decreases with body acceleration and slip. The present study also brings out 
the effects of asymmetric of the stenosis on the flow characteristics. 
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1. INTRODUCTION: 
 
In human physiology, the theoretical analysis on blood flow through the obstructed artery is very useful as it plays a 
vital role to diagnose and understand many cardiovascular diseases such as coronary thrombosis, angina, strokes etc. 
The reason behind the malfunction of cardio-vascular system is an impediment developed inside the lumen of an artery. 
This hindrance in the artery is due to the presence of atherosclerosis. Among the various arterial diseases, 
Atherosclerosis (stenosis) is the common disease which is caused by the invasion and deposition of lipoproteins, fats, 
cholesterol at the sites of atherosclerotic lesion in the artery.  
 
In our daily life, several times we experiences the body acceleration while sudden movement of body parts during 
sports activity, fast driving, travelling in vehicle etc. Due to this body acceleration, different health hazards arises such 
as headache, increase in pulse rate etc. Tu and Deville [1] observed that the blood in diseased conditions, for instance, 
patients with severe cerebrovascular diseases exhibits power law behaviour. Pulsatile flow of blood through a rigid 
circular tube subjected to periodic body acceleration considering blood as Newtonian fluid is presented by Sud and 
Sekhon [27]. The pulsatile flow of Casson’s fluid with body acceleration subject to a slip velocity condition in stenosed 
artery is studied by Siddiqui et al. [26]. Young and Liepsch [6, 10] compared the details of flow behaviors with 
hemodynamic approach and observed that during a flow cycle, flow rate varies over a wide range due to pulsatile 
nature of blood. Biswas and Kapur [3, 15] studied the non- Newtonian fluid models and stated that Casson and 
Herschel bulkley fluid canbe widely used in fundamental understanding of blood flow phenomena. Generally, blood 
flow in narrow arteries is assumed as Pulsatile and it has been observed that physiological conditions are probably 
related to pulsatile model. Blood is pulsatile as heart pumps the blood is periodic in nature. D.S Shankar and K. 
Hemlata [9] have described the effects of pulsatility, stenosis and non-Newtonian behavior of blood, assuming blood to 
be Herschel Bulkley fluid. D.S Shankar and Lee [8] studied these dynamic behaviors of blood with axially symmetric 
stenosis and asymmetric stenosis. Chaturani and Ponnalagar Samy [21] have mentioned that blood behaves like 
Herschel–Bulkley fluid rather than Power law and Bingham fluids for tube diameter 0.095 mm. The velocity profile in 
the arterioles having diameter less than 0.1 mm are generally explained fairly by Casson and Herschel– Bulkley fluid 
models is analyzed by Iida [19]. An effect of slip in blood flow through stenosed tube is analyzed by Chaturani and 
Biswas [20]. Effects of stenosis shape parameter and slip on various flow parameters, considering blood as Bingham 
Plastic fluid with axially non-symmetric stenosed artery is developed by Shah [25]. Young, Liu and Chakravarty et al. 
[5, 12, 23] analyzed the pulsatility of blood by treating blood as a Newtonian fluid. Mishra et al. and Ookwara et al.  
[14, 24] observed that blood being suspension of corpuscles in plasma behaves like a non- Newtonian fluid when it 
flows through larger arteries at high shear rate while it can be assumed as Newtonian when it passes through narrow 
arteries (0.02-0.1mm) at low shear rate (< 10/s) particularly in diseased state[7]. 
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It can be seen easily that in physiological systems all arteries are not horizontal; few of them are inclined, therefore a 
gravitational force has been accounted there due to inclination. Maruti Prasad and Radha Krishnamcharya [16] have 
proposed a model of steady blood flow through an inclined artery with a stenotic wall. Biswas and Paul [3] proposed a 
mathematical model on the steady flow of blood through an inclined tapered constricted artery assuming blood as 
Newtonian fluid, with an axial slip velocity at the vessel wall. The peristaltic transport of Herschel Bulkley fluid 
through an inclined tube is discussed by Vajravelu et al. [17]. Chaturani and Upadhya [22] investigated the gravityflow 
of fluid with couple stress along an inclined plane. Sanyal et al. [4] discussed the characteristics of blood flow by 
assuming blood to be couple stress fluid in a rigid inclined circular tube with periodic body acceleration under the 
influence of a uniform magnetic field. Pulsatile flow of blood in a catheterized inclined artery with a slip velocity at the 
stenosed arterial wall under the influence of magnetic field is discussed by the Sharma et al. [18]. With the above 
motivations, present investigation has been established to analyze the effect of body acceleration, slip velocity, stenosis 
shape parameter and inclined angle on arterial flow characteristics by considering the blood as Herschel bulkley fluid. 
The effect of pulsatility and asymmetric shape of the stenosis on the flow parameters has been also studied which could 
be helpful to further understand the behavior of different fluid flow characteristics in the development and progression 
of arterial diseases.  
 
2. MATHEMATICAL FORMULATION 
 
Consider an axially symmetric, laminar, pulsatile and fully developed blood flow in an inclined arterial segment having 
axially non- symmetric stenosis but in radially symmetric manner and stenosis is depend upon the axial distance ‘z’. 
The blood is modeled as a Herschel bulkley fluid in the presence of externally imposed periodic body acceleration and 
slip. It is assumed that the pulsatile flow in the artery is due to a prescribed periodic pressure gradient. We have used 
cylindrical polar co-ordinates ( , , )r zφ , where r  and z denote the radial and axial co-ordinates. The mathematical 
expression for the radius of the artery Fig.1 can be written as [7] 

( ) ( ) ( )1

0

( )
1 ,

1, otherwise
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s s

mz d z d
R z

L d d L
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Where ( )R z  and 0R   is the radius of the artery with and without stenosis respectively, d  is the location of the stenosis, 

sL  is the length of the stenosis and 2m ≥ is the stenosis shape parameter and when m = 2 stenosis becomes radially 
symmetric. Where the parameter ξ  is given by  
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Where δ  denotes the maximum height of the stenosis at 1 ( 1)/ m
sz d L m −= +  such that 0/ 1.Rδ <<  

 
The periodic body acceleration ( )B t  in the axial direction is given by 

( ) ( )0 cos bt tB a ω φ= +                                                                                                                                                   (2)                                                                      
 
Where 0a  is the amplitude and ϕ is the phase angle of body acceleration with respect to the pressure 

gradient. ;2b b bf fω π= is its frequency in Hz. The frequency of the body acceleration bf  is assumed to be small so that 
wave effect can be neglected. 
 
Since the pressure gradient is the function of z  and t , therefore can be represented as 

( ) ( )0 1, cos , 0p
p

t A Az t
z

tω
−∂

= + ≥
∂

                                                                                                                         (3)      

Where 0A is the steady state pressure gradient, 1A  is the amplitude of the fluctuating component and both 10 ,A A  are 

function of .z It can be seen that the radial velocity is very small in magnitude so that it may be neglected for problem 

with mild stenosis. The frequency of oscillation of the pulsatile flow is denoted by pω  and defined as 2p pfω π= , 

where pf  is the pulse rate frequency. 
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 The basic momentum equations governing the fluid flow are given by Schlichting and Gersten [12]. 

( ) ( ) ( ) ( ) ( ) s1 inv t p tz r r B g
r

ρ τ ρ ψ
∂

∂ ∂ = − ∂ ∂ − + +
∂

                                 (4)     

0p r∂ ∂ =                                        (5) 
Where v  represents the axial velocity along z direction, t  is the time, ρ is the density, p  is the pressure, τ  is the 

shear stress, ψ  is the inclination angle and ( )B t  is the body acceleration, mathematically this body acceleration is 
described in equation (2).              
        

 
The constitutive equation in one dimensional form for Herschel Bulkley fluid is expressed as                                                               

( )1/1/ ; if

0 ; if

nn
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v r
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τ τ
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

                        (6)  

Where yτ denotes yield stress and yµ denotes the coefficient of viscosity for Herschel Bulkley fluid with the dimension 
(ML-1T-2)n T and n is the flow behavior index of blood. In the core region where the shear stress is less than the yield 

stress (i.e. yτ τ< ), the velocity gradient vanishes and this shows the plug flow. However the fluid behavior is indicated 

in the region yτ τ> . 
 
2.1 BOUNDARY CONDITIONS 
 
The boundary conditions are 

t ( )as rv v R z= =                                                                                                                                                              (7) 
 
τ is finite at 0r =                                                                                                                                                             (8) 
 
Where sv  is the axial slip velocity at the stenotic wall.  
 
Let us introduce the following non-dimensional variables 
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Where α is the pulsatile Reynold’s number or generalized Womersley frequency parameter. 
 
Using non-dimensional variables, equation (4) becomes  

( ) ( ) ( )2 v
α = 4 1+ e cos t + 4Bcos ωt +
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Equation. (6) becomes 

1 n
1 vτ = τ +y 2 r
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The boundary conditions (7) and (8) reduces to 

( )atsv v r R z= =                                                                                                                                                           (12)                                                        
τ is finite at r = 0                                                                                                                                                            (13)    
 
The geometry of an arterial stenosis in non-dimensional form is given by   

( ) ( )1( ) 1 ,

1, otherwise
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s sz d z dR z L d z d Lξ − − −= − − ≤ ≤ +

=

    


                                                                                                   (14) 

 
The non-dimensional volumetric flow rate is defined by
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Effective viscosity  eµ  defined as 
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,
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µ π
∂

= −
∂
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Can be expressed in the non dimensional form as  

( ) ( )4 1  ,R e cos t Q z teµ = +                                                                                                                                         (16) 
 
3. ANALYSIS OF THE PROBLEM 
  
In this paper perturbation method is used and on using this method, the assumed form of the solution reflects the 
physical principle which states that the inertial effects are not significant for smaller values of frequency parameter 
which determines the pressure gradient. Since non-dimentionalize equation (10), (11) has α2 term which is dependent 
on time, therefore expanding equation (10), (11) about α2. The axial velocity v, shear stress τ, plug core radius Rp, plug 
core velocity vp and plug core shear sress τp are expressed as follows in terms of α2 (where α2 << 0). 
 
 
 



S. U. Siddiqui, Chhama Awasthi* /  
Mathematical Modelling of Pulsatile Herschel Bulkley Fluid Flow through an Inclined Stenosed Artery…. / IJMA- 8(7), July-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      209  
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Substituting equation (17) and (18) in equation (10) and equating the constant term and 2α  term, we get  
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Integrating equating (22) between 0 and 0 pR  and using boundary condition (13), we get 

0 0p pτ = R a(t)                                                                                                                                                                                 (24) 

Where ( )ta  = [(1 )cos cos( )e Bt wt φ+ + + ]
sinψ
4F

+  

 
Integrating equating (22) between 

0 pR  and r and with the use of equation (24), we get       

      ( )0 tτ = ra                                                                                                                                                                         (25) 
 
Substituting equation (17) and (18) in equation (11), we get 
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Integrating equation (26) between r and R , with the help of equation (25) and (12), we obtain 
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From equation (28), plug core velocity 0 pv  can be obtained as 
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Neglecting the terms with α2 and higher powers of α in equation (19), with the help of equation (24), 0 pR can be 
obtained as  
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Similarly solving equation (23) with the help of equation (28), (29) and boundary condition (12), (13) we get the 
solutions for 1 1, pτ τ  as 
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From equation (27) with the help of equation (25), (31), axial velocity

1v , Plug core velocity 1pv  can be obtained as 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 6 7 8
2 2 2 1 2 1 1 1 2 1 2 1 2 2 2 2n n n n n n n n n n n nR r R r R r R r R r R rv =2b b +b + 2b 2b + b+ + +− − − − − + + −+ + +− −                          (33) 
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With the help of equation (28), (29) and (33), (34) in (17) and (20), the axial velocity v , plug core velocity pv  can be 
obtained as 
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With the help of equation (25) and (31) in (18), the shear stress τ can be obtained as
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( ) { }
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The volumetric flow rate Q can be calculated, with the help of equation (15) and expression of velocity and obtained as 

2
sQ = 2R v 2
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Where  
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The second approximation plug core radius R1p can be obtained by neglecting terms of α4 and higher powers of α in the 
following manner in equation (19). The shear stress at r = Rp is given by 

( )2
0 1

p
yτ = τ +α τ r=R                                                                                                                                                        (39) 

 
Equation (39) shows the fact that on the boundary of the plug core region the existing value of shear stress and yield 
stress are same. The plug core radius 1pR  can be obtained by using the Taylor’s series of τ0 and τ1 about 0 pR and using 
 τ0 = τy at r = R0p as 

( )
( )

1
1

0
p
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t

τ
R =

a
                                                                                                                                                                 (40) 

With the help of equation (24) and (32) in (21), the shear stress τp can be obtained as
 ( ) { }1 2
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2 n n

p p p p pτ = R a t +α a R a R + a R+ +′ ′ ′−                                                                                                               (41)                                                                                                                               

With the help of equation (19), (30), (32) and (40), the plug core radius 
pR  can be obtained as 
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The effective viscosity in the non-dimensional form is given by 
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2 2 1
8
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9
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(43) 

 
4. RESULTS AND DISCUSSION 
 
In this analysis the expression of axial velocity, flow rate, wall shear stress and effective viscosity are obtained and 
computed for the fixed values of F = 0.2, n = 0.95, m = 2, φ = 0.2, yτ = 0.1, ω = 1 [7, 10, 24]. Fig.2 - Fig.7 reveals the 
variation of axial velocity with radial distance and depicts that the axial velocity is maximum at r = 0 and decreases 
with the increase in the radius of artery r and attains minimum value near the stenotic wall at r = R(z). Hence the fluid 
velocity decreases as the radial distance increases. Fig.2 - Fig.4 depicted that the fluid velocity augmented with the 
increase in slip velocity, Body acceleration and pressure gradient. 
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Fig.5 shows that the magnitude of velocity increases in inclined artery along with the increase in slip as compared to 
the non inclined artery while Fig.6 - Fig.7 shows that it decreases with the increase in yield stress or stenosis height. 
The variation of axial velocity with the stenosis height for different values of shape parameter and slip is shown in 
Fig.8 and it demonstrated that the axial velocity of blood slightly increases with increase in shape parameter and slip. 
This proposes that velocity of blood increases as stenosis loses its symmetry. Fig.9 illustrates that the flow rate 
decreases with the increase in yield stress and stenosis height but in the presence of slip velocity flow rate moderately 
increases. In Fig.10 the effect of stenosis shape parameter has been observed for flow rate versus change in time and we 
observed that the flow rate augmented when stenosis loses its symmetry (m = 2), i. e. for larger value of shape 
parameter. It is also noticed that flow rate is maximum at t =0 and then starts decreasing from 0 to 900 along the time 
and attains minimum value at t = 900, then again it starts increasing for maximum value. Fig.11 consists of the variation 
of flow rate with the yield stress and it shows that the flow rate increases with the increase in body acceleration and slip 
velocity while increase in yield stress results a substantial decrease in flow rate. This decrease in flow rate is due to 
increase in the width of plug flow region. The variation of wall shear stress with time for different values of stenosis 
height is shown in Fig.12.It is observed from the figure that the wall shear stress gradually decreases as time increases 
and it attains the symmetry about t = 1800. Fig.13 describes the effect of body acceleration on effective viscosity versus 
slip velocity and it depicts that the effective viscosity decreases with the increase in Body acceleration along with the 
increment in slip velocity. 
 
5. CONCLUSION 
 
Present model has been developed on pulsatile blood flow through an inclined stenosed artery with periodic body 
acceleration and axial slip velocity at the constricted wall along with the effect of stenosis shape parameter. The body 
fluid flow is assumed to behave like a non-Newtonian fluid and represented a Herschel bulkely fluid model. Analytic 
expressions for flow variables and their variations with different flow parameters have been obtained and are 
represented graphically. The results based on the mathematical analysis and the subsequent numerical evaluation of the 
flow quantities indicates that the axial velocity and flow rate increases with the increase in body acceleration, 
inclination angle, pressure gradient and slip velocity while decreases with the increase in yield stress and stenosis 
height. Wall shear stress gradually decreases as time increases and it attains the symmetry about t = 1800. Effective 
viscosity decreases with the increase in body acceleration and slip. This model concludes that slip velocity play a very 
significant role in blood flow modeling in an inclined stenosed artery. It has been observed that the axial velocity and  
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flow rate decreases with the increase in yield stress and stenosis height. It may also be concluded that damages to the 
vessel wall could be reduced with the help of slip. So this study may help the physicians in estimating the severity of 
stenosis and its consequences in future or for the treatment of cardiovascular diseases like myocardial infarction, 
cerebral accident, heart attacks etc. This study may further extend by the introduction of more rheological and physical 
parameters in the case of more sever stenosis.  
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