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ABSTRACT  
In this paper we introduce the concepts of α−ideal and β−filter of a weakly pseudo-complemented ADL in 
general and of a pseudo- complemented ADL in particular and discuss certain properties of these. Mainly, 
we prove that the sets of α−ideals and β−filters of a pseudo-complemented ADL form algebraic lattices. 
Also, we characterize Stone ADLs and Almost Boolean algebras in terms of α−ideals and β−filters. 
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1. INTRODUCTION  
 
The concept of an Almost Distributive Lattice (ADL) was introduced by U. M. Swamy and G. C. Rao [3] as a common 
abstraction of several lattice theoretic and ring theoretic generalizations of Boolean algebra and Boolean ring. Further, 
U. M. Swamy, G. C. Rao and G. N. Rao [4] have introduced the notion of pseudo-complementation on an ADL and 
proved that the class of pseudo-complemented ADLs is equationally definable and they exhibited a one-to-one 
correspondence between maximal elements and pseudo-complementations on an ADL. Later, R. V. Babu, Ch. S. 
Sundar Raj and B. Venkateswarlu [7] have introduced the notion of weak pseudo-complementation on an ADL and 
proved several properties of this. In particular, they have proved that an ADL is pseudo-complemented if and only if it 
is weakly pseudo-complemented, even though a weak pseudo-complementation need not be a pseudo-
complementation. In [1], Blyth defined the concepts of ∗−ideals and ∗−filters in pseudo-complemented semi lattices. 
Here, we extend these concepts to ADLs and we define these in the form of α−ideals and β−filters of weakly pseudo-
complemented ADLs in general and of pseudo-complemented ADLs in particular. Mainly, we prove that the α−ideals 
( β−filters) are independent of the weak pseudo (pseudo)-complementation. The main object of this paper is to study 
the classes of α−ideals and β−filters of a pseudo-complemented ADL and prove that these classes form algebraic 
lattices. Also, in this paper we characterize minimal prime ideals in a weakly pseudo-complemented ADL. Mainly, we 
characterize Stone ADLs and Almost Boolean algebras in terms of their α−ideals and β−filters. 
 
We recall the notion of an Almost Distributive Lattice (abbreviated: ADL) and certain necessary results which will be 
used in the main text of this paper. 
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2. PRELIMINARIES 
 
Definition 2.1 ([3]): An algebra 𝐴 = (𝐴, ∧, ∨, 0) of type (2, 2, 0) is called an Almost Distributive Lattice (ADL), if it 
satisfies the following conditions for all 𝑎, 𝑏 and 𝑐 in 𝐴. 

(1) 0 ∧ a = 0 
(2) 𝑎 ∨ 0 = 𝑎 
(3) a ∧ (b ∨ c) = (a  ∧ b) ∨ (a ∧ c) 
(4) (a ∨ b) ∧ c = (a ∨ c) ∨ (b ∧ c) 
(5) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 
(6) (a ∨ b) ∧ b= b 

 
An ADL is (𝐴, ∧, ∨, 0) is said to be associative if the operation ∨ is associative. Throughout this paper by A we mean 
an associative ADL (𝐴, ∧, ∨, 0)  unless otherwise mentioned.  
 
For any 𝑎, 𝑏 ∈  𝐴, we say that 𝑎 is less than or equal to 𝑏 and we write 𝑎 ≤  𝑏, if a b a∧ =  (equivalently 

)a b b∨ = . It can be easily proved that ≤ is a partial order on A.  
 
Lemma 1.2 ([3]): The following hold for any a, b and c in an ADL  𝐴. 

(1) 𝑎 ∧  0 =  0  and  𝑎 =  0 ∨  𝑎 
(2) 𝑎 ∧  𝑎 =  𝑎 =  𝑎 ∨  𝑎 
(3) 𝑎 ∧  𝑏 ≤  𝑏 and  𝑎 ≤  𝑎 ∨  𝑏 
(4) 𝑎 ∧  𝑏 =  𝑎 ⇔  𝑎 ∨  𝑏 =  𝑏 and 𝑎 ∧  𝑏 =  𝑏 ⇔  𝑎 ∨  𝑏 =  𝑎 
(5) (𝑎 ∧  𝑏)  ∧  𝑐 =  𝑎 ∧  (𝑏 ∧  𝑐)  (i.e., ∧  is associative) 
(6) 𝑎 ∨  (𝑏 ∨  𝑎)  =  𝑎 ∨  𝑏 
(7) (𝑎 ∧  𝑏)  ∧  𝑐 =  (𝑏 ∧  𝑎)  ∧  𝑐 
(8) (𝑎 ∨  𝑏)  ∧  𝑐 =  (𝑏 ∨  𝑎)  ∧  𝑐 
(9) 𝑎 ∧  𝑏 =  𝑏 ∧  𝑎 ⇔  𝑎 ∨  𝑏 =  𝑏 ∨  𝑎. 

 
An element 𝑚 ∈ 𝐴 is said to be maximal if 𝑚 ≤  𝑥 implies 𝑚 = 𝑥. It can be easily observed that  𝑚  is maximal if 
and only if  𝑚 ∧ 𝑥 = 𝑥  for all  𝑥 ∈ 𝐴. 
 
Definition 1.3 ([3]): A non-empty set 𝐼 of an ADL 𝐴 is said to be an ideal (filter) of 𝐴 if 𝑎 ∨ 𝑏 (𝑎 ∧ 𝑏) ∈ 𝐼 for all 𝑎 and 
 𝑏 ∈  𝐼 and 𝑎 ∧ 𝑥 (𝑥 ∨ 𝑎)  ∈  𝐼 for all 𝑎 ∈  𝐼 and 𝑥 ∈  𝐴. 
It follows as a consequence that for any ideal (filter) 𝐼 of 𝐴, 𝑥 ∧ 𝑎 (𝑎 ∨ 𝑥)  ∈  𝐼 for all 𝑎 ∈ 𝐼 and 𝑥 ∈ 𝐴. 
For any 𝑋 ⊆  𝐴, the smallest ideal (filter) of A containing 𝑋 is called the ideal (filter) generated by 𝑋 and is denoted by 
⟨𝑋] ([𝑋⟩). If 𝑋 =  {𝑥}, we simply write ⟨𝑥] ([𝑥⟩) for ⟨{𝑥}] ([{𝑥}⟩).  we have the following for any 𝑋 ⊆ 𝐴 and 𝑥 ∈ 𝐴 

]X =  ���𝑥𝑖

𝑛

𝑖=1

� ∧ 𝑎 / 𝑛 ≥ 0,  𝑥𝑖 ∈ 𝑋 and 𝑎 ∈ 𝐴� 

 

[X =  �𝑎⋁��𝑥𝑖

𝑛

𝑖=1

�  / 𝑛 ≥ 0,  𝑥𝑖 ∈ 𝑋 and 𝑎 ∈ 𝐴� 

 
and ⟨𝑥]  =  {𝑥 ∧  𝑎 | 𝑎 ∈ 𝐴} 𝑎𝑛𝑑 [𝑥⟩  = {𝑎 ∨ 𝑥 | 𝑎 ∈ 𝐴}. 
 
⟨𝑥] ([𝑥⟩) is called the principal ideal (filter) generated by 𝑥. 
 
For any subset S of A, let  𝑆∗  = {𝑎 ∈ 𝐴 ∶  𝑎 ∧  𝑠 = 0 for all 𝑠 ∈ 𝑆}. Then 𝑆∗  is always an ideal of  𝐴 for all 𝑆 ⊆ 𝐴. It 
can be proved that 𝑆∗  =  ⟨𝑆]∗ in particular for any 𝑎 ∈ 𝐴,   

⟨𝑎]∗  =  {𝑎}∗  =  {𝑥 ∈  𝐴 | 𝑎 ∧  𝑥 =  0}. 
 
Definition 1.4 ([7]):  Let 𝐴 be an ADL. A mapping 𝑎 ↦  𝑎∗ of  𝐴 into itself is called a weak pseudo-complementation 
on 𝐴 if 𝑎 ∧  𝑏 = 0 ⇔  𝑎∗ ∧  𝑏 = 𝑏 for any 𝑎 and 𝑏 ∈ 𝐴.  An ADL  𝐴  is said to be weakly pseudo-complemented if 
there is a weak pseudo-complementation 𝑎 ↦  𝑎∗  on A. 
 
Theorem 1.5 ([7]): The following are equivalent to each other for any mapping 𝑎 ↦  𝑎∗ of an ADL  𝐴 into itself. 

(1) 𝑎 ↦  𝑎∗ is a weak pseudo-complementation on 𝐴 
(2) {𝑎}∗ = ⟨𝑎∗] for any 𝑎 ∈  𝐴 
(3) For any 𝑎 ∈ 𝐴, 𝑎 ∧  𝑎∗  = 0 and 𝑎 ∧ 𝑏 = 0 ⇒  𝑎∗  ∧  𝑏 =  𝑏 for any  𝑏 ∈ 𝐴. 
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Let us recall from [8], that two elements 𝑎 and 𝑏 in an ADL 𝐴 are said to be associates to each other if 𝑎 ∧  𝑏 = 𝑏 and  
𝑏 ∧  𝑎 = 𝑎 (equivalently ⟨𝑎]  = ⟨𝑏]);  in this case we write  𝑎 ∼  𝑏. Also, in this case for any ideal (filter) 𝐼 of 𝐴,  
𝑎 ∈ 𝐼 ⇔  𝑏 ∈ 𝐼. 
 
Theorem 1.6 ([7]): Let 𝑎 ↦  𝑎∗ and 𝑎 ↦  𝑎+  be two weak pseudo-complementations on an ADL 𝐴. Then the 
following hold for any 𝑎 and 𝑏 ∈  𝐴. 

(1) 𝑎 ∗ ∼  𝑎 + 
(2) 𝑎 ∗+ ∼  𝑎 ++ 
(3) 𝑎 ∗ ∼  𝑏 ∗  𝑎 + ∼  𝑎 + 
(4) 𝑎 ∗  = 0 ⇔  𝑎 +  = 0 
(5) 𝑎 ∗  ∧  0 +  ∼  𝑎 + 
(6) 𝑎 ∗  ∨  𝑎 ∗∗  ∼  0 ∗  ⇔  𝑎 +  ∨  𝑎 ++  ∼  0 + 

 
Theorem 1.7 ([7]): Let 𝑎 ↦  𝑎∗ be a weak pseudo-complementation on an ADL 𝐴. Then the following hold for any  𝑎  
and 𝑏 ∈  𝐴. 

(1) 0∗ is a maximal element 𝑖𝑛 𝐴 
(2) 𝑚 is maximal 𝑖𝑛 𝐴 ⇒  𝑚∗  =  𝑜 
(3) 0∗∗  =  0 
(4) 𝑎∗ ∧  𝑎 =  0 
(5) 𝑎∗∗  ∧  𝑎 =  𝑎 
(6) 𝑎 ∧  𝑏 =  0 ⇔  𝑎∗∗  ∧  𝑏 =  0 ⇔  𝑎 ∧  𝑏∗∗  =  0 ⇔  𝑎∗∗  ∧  𝑏∗∗  =  0 
(7) 𝑎∗  ∼  𝑎∗∗∗ 
(8) 𝑎∗  =  0 ⇔  𝑎∗∗ is maximal 
(9) 𝑎 =  0 ⇔  𝑎∗∗  =  0 
(10) (𝑎 ∨  𝑏)∗  ∼  𝑎∗ ∧  𝑏∗ 

 
Theorem 1.8 ([7]): Let 𝐴 be an ADL and 𝑎 ↦  𝑎∗ be a weak pseudo-complementation on 𝐴. Then the following hold 
for any 𝑎 and 𝑏 ∈  𝐴. 

(1) 𝑎 ∼  𝑏 ⇒  𝑎∗  ∼  𝑏∗ 
(2) (𝑎 ∧  𝑏)∗  ∼  (𝑏 ∧  𝑎)∗ 
(3) (𝑎 ∨  𝑏)∗  ∼  (𝑏 ∨  𝑎)∗ 
(4) (𝑎 ∧  𝑏)∗∗  ∼  𝑎∗∗ ∧  𝑏∗∗. 

 
Definition 1.9 ([4]): Let (𝐴, ∧, ∨, 0) be an ADL. Then a unary operation 𝑎 ↦  𝑎∗  on  𝐴 is called a pseudo-
complementation on 𝐴 if, for any 𝑎, 𝑏 ∈  𝐴, the following independent axioms are satisfied 

(1) 𝑎 ∧  𝑏 =  0 ⇒  𝑎∗  ∧  𝑏 =  𝑏 
(2) 𝑎 ∧  𝑎∗  =  0  
(3) (𝑎 ∨  𝑏)∗  =  𝑎∗  ∧  𝑏∗ 

 
3.  α −IDEALS AND β −FILTERS 
 
In this section, we define an α−ideal and a  β−filter of a weakly pseudo-complemented ADL in general and of a 
pseudo-complemented ADL in particular and provide certain examples of these. 
 
For any non-empty subset 𝑋 of an ADL 𝐴, let us denote 𝛼(𝑋) by  

 𝛼(𝑋) = {𝑦 ∈ 𝐴: 𝑥 ∧ 𝑦 = 0 for some 𝑥 ∈ 𝑋}. 

Clearly    𝛼(𝑋)  =  *{ } .
x X

x
∈
  

 
Lemma 2.1:  Let 𝐴 be an ADL and 𝑋 a non-empty subset of 𝐴 such that 𝑥 ∧  𝑦 ∈  𝑋 for all 𝑥,𝑦 ∈  𝑋. Then 𝛼(𝑋) is an 
ideal of  𝐴. 
 
Corollary 2.2: Let 𝐴 be an ADL and 𝐹 be a filter of 𝐴. Then 𝛼(𝐹) is an ideal of  𝐴. 
 
Lemma 2.3: Let  𝐴 be an ADL and  a weak pseudo-complementation on  𝐴. Then for any filter 𝐹 of 𝐴,  
𝛼(𝐹) = {𝑥 ∈ 𝐴 ∶  𝑥∗ ∈ 𝐹} and 𝛼(𝐹) is independent of the weak pseudo-complementation  on  𝐴. 
 
Proof: Let 𝑥 ∈ 𝛼(𝐹). Then 𝑥 ∧ 𝑦 = 0 for some 𝑦 ∈ 𝐹, therefore 𝑥∗ ∧ 𝑦 = 𝑦, and hence  𝑥∗  ∨ 𝑦 = 𝑥∗, 𝑦 ∈ 𝐹. 
Therefore, 𝑥∗ ∈ 𝐹. On the other hand if  𝑥∗ ∈ 𝐹, then 𝑥 ∧  𝑥∗ = 0 and 𝑥∗ ∈ 𝐹, it implies that 𝑥 ∈ 𝛼(𝐹). Let  +  be a 
weak pseudo-complementation on  𝐴.  
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Then,  𝑥∗ ∈ 𝐹 ⇒  𝑥+  ∼  𝑥∗ ∧  0+  ∈ 𝐹 ⇒  𝑥+ ∈ 𝐹  
and  𝑥+ ∈ 𝐹 ⇒  𝑥∗  ∼  𝑥+  ∧  0∗ ∈ 𝐹 ⇒  𝑥∗ ∈  F  
 
Since 0∗ and  0+ are maximal and hence are in 𝐹. Therefore 𝛼(𝐹)  is independent of the weak pseudo complementation 
∗  on  𝐴. 
 
For any non-empty subset X of an ADL 𝐴,  let us define 𝛽(𝑋) by   

𝛽(𝑋)  =  {𝑥 ∈  𝐴 ∶  {𝑥}∗  ⊆  𝑋}. 
 
Remark 2.4:  𝛽(𝐼)  need not be a filter even though 𝐼  is an ideal of 𝐴.  For, consider the following example. 
 
Example 2.5: Let L be a lattice represented by the Hasse diagram given below, 
 

 
 
Then  𝐼 = {0, 𝑎, 𝑏, 𝑐} is an ideal of  𝐿. Clearly, {0}∗ = 𝐿, {𝑎}∗ = {0, 𝑏}, {𝑏}∗ = {0, 𝑎}, {𝑐}∗ = {0} and {1} ∗ = {0}. 
Therefore  𝛽(𝐼)  =  {𝑎, 𝑏, 𝑐, 1} which is not a filter of 𝐿, since 𝑎 ∧  𝑏 = 0 ∉  𝛽(𝐼). 
 
Lemma 2.6: Let 𝐴  be an ADL and  a weak pseudo-complementation on 𝐴. Then for any ideal 𝐼 of  𝐴,                    
𝛽(𝐼)  =  {𝑥 ∈ 𝐴 ∶  𝑥∗ ∈  𝐼} and  𝛽(𝐼)  is independent of the weak pseudo-complementation   on  𝐴. 
 
Lemma 2.7: For any ideal 𝐼  of a weakly pseudo-complemented ADL 𝐴, 𝛼(𝛽(𝐼)) ⊆  𝐼. 
 
Proof: Let   be a weak pseudo-complementation on  𝐴 and 𝑥 ∈ 𝛼(𝛽(𝐼)). Then 𝑥 ∧  𝑦 = 0 = 𝑦 ∧  𝑥,  for some 
𝑦 ∈ 𝛽(𝐼). This implies,  𝑥 =  𝑦∗ ∧  𝑥  and  𝑦∗ ∈  𝐼, therefore 𝑥 ∈  𝐼. 
 
Lemma 2.8: For any filter  𝐹  of a weakly pseudo-complemented ADL 𝐴, 𝐹 ⊆ 𝛽(𝛼(𝐹)). 
 
Proof: Let   be a weak pseudo-complementation on 𝐴 and 𝑥 ∈ 𝐹. Then,  𝑥∗∗ =  𝑥∗∗ ∨  𝑥 ∈ 𝐹 (since 𝑥∗ ∧  𝑥 =  0 and 
hence 𝑥∗∗ ∧  𝑥 = 𝑥) and hence  𝑥∗ ∈ 𝛼(𝐹), it follows that 𝑥 ∈ 𝛽(𝛼(𝐹)). 
 
Remark 2.9: The following examples shows that the equality may not hold in 2.7 and 2.8. 
 
Example 2.9(1):  Let  𝐿  be the lattice represented by the Hasse diagram given below 

 
Define the map ∗  on  𝐿  by 0∗ = 1 and 𝑎∗ = 𝑏∗ = 𝑐∗ = 1∗ = 0. Then   is a pseudo-complementation on  𝐿 and 
𝐼 =  {0, 𝑐, 𝑎}  is an ideal of  𝐿.   Now  𝛽(𝐼) = {𝑥 ∈  𝐿 ∶  𝑥∗ ∈  𝐼} = {𝑐, 𝑎, 𝑏, 1} and 
 𝛼(𝛽(𝐼))  =  {𝑥 ∈  𝐿 ∶  𝑥∗ ∈ 𝛽(𝐼)}  = {0}.  This shows  𝛼(𝛽(𝐼)) ≠   𝐼. 
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Example 2.9(2): Let  𝐴 = {𝑎, 𝑏, 𝑐, 0}.  Define ∨  and  ∧  on  𝐴  as follows 
 

 
Then (𝐴, ∧, ∨, 0) is an ADL. Define the map ∗  on  𝐴  by 𝑥∗ = 0  for all 𝑥 ≠ 0 and 0∗ =  𝑎. Then    is a pseudo -
complementation on  𝐴. Let  𝐹 = {𝑎, 𝑏}, then  𝐹  is a filter of 𝐴 and 𝛼(𝐹) = {0} and  𝛽(𝛼(𝐹))  =  {𝑎, 𝑏, 𝑐}.           
This shows, 𝐹 ≠ 𝛽(𝛼(𝐹)). 
 
Theorem 2.10: Let  be a weak pseudo-complementation on an ADL  𝐴  and  𝐼  an ideal of  𝐴. Then the following are 
equivalent to each other. 
(1) 𝑥 ∈  𝐼 ⇒  𝑥∗∗  ∈  𝐼 
(2) 𝐼 ⊆  𝛼(𝛽(𝐼)) 
(3) 𝐼 =  𝛼(𝛽(𝐼)) 
(4) 𝐼 =  𝛼(𝐹) for some filter  𝐹 of  𝐴. 
 
Proof: 
(𝟏) ⇒  (𝟐): Assume (1). Let 𝑥 ∈  𝐼. Then 𝑥∗∗ ∈ 𝐼 and hence 𝑥∗ ∈ 𝛽(𝐼). Since 𝑥 ∧  𝑥∗ =  0 and 𝑥∗ ∈ 𝛽(𝐼), we get 
𝑥 ∈ 𝛼(𝛽(𝐼)). Therefore 𝐼 ⊆ 𝛼(𝛽(𝐼)). 
 
(𝟐) ⇒  (𝟑) is clear by the lemma 2.7. 
 
(𝟑) ⇒  (𝟒): Assume that 𝐼 =  𝛼(𝛽(𝐼)). It sufficies to prove that 𝛽(𝐼) is a filter of  𝐴. Let x, y ∈ β(I).  
Then  𝑥,𝑦∗ ∈  𝐼 and hence 𝑥∗ ∨ 𝑦∗ ∈ 𝐼. Therefore 𝑥∗ ∨ 𝑦∗ ∈ 𝛼(𝛽(𝐼)), implies  (𝑥∗ ∨ 𝑦∗)  ∧  𝑎 = 0 for some 𝑎 ∈  𝛽(𝐼) 
and hence (𝑥∗ ∨ 𝑦∗)∗∗ ∧  𝑎 =  0, 𝑎 ∈  𝛽(𝐼). This shows that (𝑥∗ ∨ 𝑦∗)∗∗  ∈ 𝛼(𝛽(𝐼)). 
Now, (𝑥 ∧  𝑦)∗  ∼ (𝑥 ∧  𝑦)∗∗∗ ∼ (𝑥∗∗  ∧  𝑦∗∗)∗ ∼ (𝑥∗ ∨ 𝑦∗)∗∗ ∈ 𝐼. Therefore (𝑥 ∧  𝑦)∗  ∈  𝐼 and hence  𝑥 ∧  𝑦 ∈ 𝛽(𝐼). 
Further, let 𝑥 ∈  𝛽(𝐼) and 𝑎 ∈ 𝐴. Then 𝑥∗ ∈  𝐼 and (𝑎 ∨  𝑥)∗ ∼ (𝑥 ∨  𝑎)∗ ∼  𝑥∗  ∧  𝑎∗ 𝐼. This implies (𝑎 ∨  𝑥)∗ ∈  𝐼 
and hence 𝑎 ∨  𝑥 ∈  𝛽(𝐼). Therefore 𝛽(𝐼) is a filter of 𝐴. 
 
(𝟓) ⇒  (𝟏): Assume that 𝐼 =  𝛼(𝐹) for some filter 𝐹 of 𝐴. Then, 

 𝑥 ∈  𝐼 ⇒  𝑥 ∈  𝛼(𝐹)  ⇒  𝑥∗  ∈  𝐹 
⇒  𝑥∗∗∗  ∼  𝑥∗  ∈ 𝐹 
⇒  𝑥∗∗∗  ∈  𝐹 
⇒  𝑥∗∗  ∈  𝛼(𝐹) 
⇒  𝑥∗∗  ∈  𝐼. 

 
Theorem 2.11: Let   be a weak pseudo-complementation on an ADL  𝐴  and  𝐹 a filter of  𝐴. Then the following are 
equivalent to each other. 

(1)  𝑥∗∗  ∈  𝐹 ⇒  𝑥 ∈  𝐹 
(2)  𝛽(𝛼(𝐹)) ⊆ 𝐹 
(3)  𝐹 = 𝛽(𝛼(𝐹)) 
(4)  𝐹 = 𝛽(𝐼) for some ideal  𝐼  of  𝐴 

 
Now, we introduce α−ideals and β−filters in weakly pseudo-complemented ADLs. 
 
Definition 2.12:  Let  𝐴 be an ADL and  a weak pseudo-complementation on  𝐴. Then 

(1) an ideal I of A is said to be an 𝛼 −ideal of 𝐴 if any one (and hence all) of the conditions in theorem 2.10 holds 
(2) a filter 𝐹 of 𝐴 is said to be a 𝛽 −filter of 𝐴 if any one (and hence all) of the conditions in theorem 2.11 holds. 

 
Example 2.12: Let  𝐴 =  {0, 𝑎} and  𝐵 =  {0, 𝑏1, 𝑏2}  be two discrete ADLs. 
Write  𝐿 = 𝐴 × 𝐵 = {(0, 0), (𝑎, 0), (0, 𝑏1), (0, 𝑏2), (𝑎, 𝑏1), (𝑎, 𝑏2)}. Then (𝐿, ∧, ∨, 0) is an ADL under point-wise 
operations.  Consider the ideals 𝐼1  =  {(0, 0), (𝑎, 0)} and 𝐼2  =  {(0, 0), (0, 𝑏1), (0, 𝑏2)}. 
Then 𝐼1 and 𝐼2 are 𝛼 −ideals since 𝐼1 =  𝛼(𝐹1),  𝐼2  =  𝛼(𝐹2)  
where 𝐹1 = {(0, 𝑏1), (0, 𝑏2), (𝑎, 𝑏1), (𝑎, 𝑏2)} and 𝐹2 = {(𝑎, 0), (𝑎, 𝑏1), (𝑎, 𝑏2)} are filters. Also, 𝐹1 and  𝐹2 are 
𝛽 −filters, since 𝐹1  =  𝛽(𝐼1) and 𝐹2 =  𝛽(𝐼2). 
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3. PROPERTIES OF α −IDEALS AND β –FILTERS 
 
Let us recall from [5, 4] that, an element 𝑎  of an ADL  𝐴  is said to be dense if {𝑎}∗ = {0}. It can be verified that 𝑎  is 
dense if and only if 𝑎∗ =  0 where   is a weak pseudo (pseudo)-complementation on  𝐴. Also, the set  𝐷(𝐴) of dense 
elements of  𝐴 is a filter of 𝐴. 
 
Proposition 3.1: Let 𝐴 be a weakly pseudo-complemented ADL. Then 𝐴, {0} are 𝛼 −ideals and 𝐴,𝐷(𝐴) are 𝛽 −filters. 
 
Proof:  It is by the fact that  𝐴 = 𝛼(𝐴), {0} = 𝛼(𝐷(𝐴)) and  𝐴 = 𝛽(𝐴), 𝐷(𝐴) = 𝛽({0}). It can be easily observed 
that, for any subset 𝑆 of  𝐴, 𝑆∗ is an 𝛼 −ideal of  𝐴. 
 
Lemma 3.2: Let 𝐴 be a weakly pseudo-complemented ADL and  𝐹  be a filter of  𝐴. Then 𝐹 is a 𝛽 −filter of 𝐴 if and 
only if 𝐷(𝐴) ⊆ 𝐹. 
 
Proof: Let  be a weak pseudo-complementation on 𝐴. Suppose that 𝐹  is a 𝛽 −filter of 𝐴 and 𝑥 ∈ 𝐷(𝐴). Then 𝑥∗ = 0 
and hence 𝑥∗∗ = 0∗ which is maximal. Therefore 𝑥∗∗ ∈  𝐹 and hence 𝑥 ∈ 𝐹. Thus D(A) ⊆ F. Conversely, let 𝑥∗∗ ∈  𝐹 
then 𝑥 ∨ 𝑥∗ ∈  𝐹, since 𝑥 ∨ 𝑥∗ is dense. Therefore  𝑥∗∗ ∧ (𝑥 ∨ 𝑥∗) ∈ 𝐹, implies  (𝑥∗∗ ∧ 𝑥) ∨  (𝑥∗∗ ∧ 𝑥∗)  ∈  𝐹 which 
implies 𝑥 ∨ 0 ∈ 𝐹 and hence 𝑥 ∈ 𝐹. Therefore 𝐹 is a 𝛽 −filter of 𝐴. 
 
Corollary 3.3:  𝐷(𝐴) is the smallest 𝛽 −filter of 𝐴.  
 
Now, we shall discuss certain properties of 𝛼 −ideals and  𝛽 −filters in pseudo-complemented ADLs. 
 
In general the lattice (A)  of ideals of an ADL 𝐴 is a complete lattice since it is closed under arbitrary intersections. 
However, the lattice ℱ(𝐴) of filters of 𝐴 is not necessary complete; infact ℱ(𝐴) is complete if and only if 𝐴 has a 
maximal element. If   is a pseudo-complementation on 𝐴, then 0∗ is necessarily a maximal element in 𝐴 and hence 
0∗ ∈ 𝐹 for all 𝐹 ∈ ℱ(𝐴). Therefore, every class {𝐹𝑖}𝑖∈𝛥  of filters of a pseudo complemented ADL  𝐴  has infimum   

i∈∆
 𝐹𝑖  and supremum 

i∈∆
∨ 𝐹𝑖 =  ��

i∈∆


� 𝐹𝑖�   in  ℱ(𝐴). 

 
Theorem 3.4: Let 𝐴 be a pseudo-complemented ADL. Then the set ( )Aα  of 𝛼 −ideals of 𝐴 is a complete 
distributive lattice ordered by set inclusion, in which the lattice operations are as follows: 
If {I } (A)i i α∈∆ ⊆   then 

  𝑔𝑙𝑏{𝐼𝑖 ∶ 𝑖 ∈ 𝛥} =  ⋂ 𝐼𝑖  and 𝑖∈∆ 𝑙𝑢𝑏{𝐼𝑖 ∶ 𝑖 ∈ 𝛥} = 𝛼 �
i

Fi∈∆
∨ � 

where to each  𝑖 ∈ 𝛥, 𝐼𝑖  =  𝛼(𝐹𝑖), for some filter 𝐹𝑖   of  𝐴. 
 
Proof: Straight forward. 
 
Theorem 3.5: Let 𝐴 be a pseudo-complemented ADL. Then the lattice ( )Aα  of 𝛼 −ideals of 𝐴 is an algebraic 
lattice. 
 
Proof:  Let    be a pseudo-complementation on A and ( )I Aα∈  . Then  

𝐼 = 𝛼(𝐹) = �{𝑎}∗

𝑎∈𝐹

 = 𝑠𝑢𝑝{⟨𝑎∗] ∶  𝑎 ∈ 𝐹} 

for some filter 𝐹 of  𝐴. Further, it can be verified that, for any 𝑎 ∈ 𝐴, ⟨𝑎∗] is a compact element in ( )Aα  and it 

follows that ( )Aα  is an algebraic lattice. 
   
Theorem 3.6: Let 𝐴 be a weakly pseudo (pseudo)-complemented ADL and  𝐼  be an 𝛼 −ideal of 𝐴. Then 𝛽(𝐼) is a 
filter of 𝐴 (and hence 𝛽 −filter). 
 
Proof: Straight forward. 
Form the theorem 3.6, 𝛽 and 𝛼 induce isotone mappings �̂� ∶  ( )Aα  → ℱ𝛽(𝐴)  and  𝛼� ∶ ℱ𝛽(𝐴) → ( )Aα   where 
ℱ𝛽(𝐴)  denote the set of 𝛽 −filters of a pseudo-complemented ADL A. Also, from 2.10 and 2.11, 𝛼�  and �̂�  are 
isomorphisms which are inverses to each other. Therefore we have the following. 
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Theorem 3.7: ( )Aα   ≅  ℱ𝛽(𝐴). 
 
The following are immediate consequences. 
 
Theorem 3.8: The set ℱ𝛽(𝐴) of β−filters of a pseudo-complemented ADL  𝐴, ordered by set inclusion, is a complete 
distributive lattice in which the  lattice operations are as follows: If  {𝐹𝑖}𝑖∈∆  ⊆  ℱ𝛽(𝐴)), then 

𝑖𝑛𝑓{𝐹𝑖 ∶  𝑖 ∈ 𝛥} =  �𝐹𝑖  and 
𝑖∈∆

  

𝑠𝑢𝑝{𝐹𝑖 ∶ 𝑖 ∈ 𝛥} = �𝑥 ∈ 𝐴 ∶  𝑥∗∗ ∈
i

Fi∈∆
∨ � =  𝛽 �𝛼 �

i
Fi∈∆

∨ �� 

 
Theorem 3.9: Let 𝐴  be a pseudo-complemented ADL. Then the lattice ℱ𝛽(𝐴)  is an algebraic lattice. 
Recall from [5], that an ADL 𝐴 with a pseudo-complementation   is said to be a Stone ADL, if  𝑥∗ ∨  𝑥∗∗ =  0∗  for all 
𝑥 ∈ 𝐴 or equivalently  (𝑥 ∧ 𝑦)∗ = 𝑥∗ ∨  𝑦∗ for all 𝑥,𝑦 ∈ 𝐴. 
 
Here we characterize Stone ADLs interms of 𝛼 −ideals and 𝛽 −filters. 
 
Theorem 3.10: Let 𝐴 be an ADL and  a pseudo-complementation on 𝐴. Then 𝐴 is a Stone ADL if and only if ( )Aα   
is a sublattice of ( )A . 
 
Proof: Suppose that 𝐴  is a Stone ADL. Let 𝐼, 𝐽 ∈ ( )Aα  and  𝑥 ∈ 𝐼 ∨ 𝐽. Then 𝑥 =  𝑎 ∨ 𝑏 for some 𝑎 ∈ 𝐼 and  𝑏 ∈ 𝐽 
and hence  𝑎∗∗ ∈  𝐼 and 𝑏∗∗ ∈  𝐽. 
Now, 𝑥∗∗ =  (𝑎 ∨ 𝑏)∗∗ =  (𝑎∗  ∧  𝑏∗)∗ =  𝑎∗∗  ∨  𝑏∗∗ ∈ 𝐼 ∨ 𝐽. Therefore 𝐼 ∨  𝐽   is an  𝛼 −ideal and hence  
𝐼 ∨  𝐽 ∈ ( )Aα  and clearly 𝐼 ∩  𝐽 ∈ ( )Aα .  Thus ( )Aα  is a sublattice of  ( )A . 

Conversely, we suppose that ( )Aα  is a sublattice of ( ).A  Let 𝑥 ∈ 𝐴. Then, ⟨𝑥∗] and ⟨𝑥∗∗]  are  𝛼 −ideals of  𝐴, by 
assumption  < 𝑥∗]  ∨ (𝑥∗∗]  = <  𝑥∗ ∨  𝑥∗∗] is an 𝛼 −ideal of A. This implies 
0∗ =  (𝑥∗∗  ∧ 𝑥∗)∗  =  (𝑥∗∗  ∧ 𝑥∗∗∗)∗  =  (𝑥∗  ∨ 𝑥∗∗)∗∗  ∈ < 𝑥∗  ∨ 𝑥∗∗] and since  0∗  is maximal, we get that                    
< 𝑥∗  ∨ 𝑥∗∗]  =  𝐴 = < 0∗].  This implies 𝑥∗  ∨ 𝑥∗∗  =  0∗   since  𝑥∗ and 𝑥∗∗  ≤  0∗. Thus 𝐴  is a Stone ADL. 
 
Theorem 3.11: Let 𝐴 be a Stone ADL. Then 𝛽(𝐼) is a filter of 𝐴, for all ideals 𝐼 of 𝐴. 
 
4. PRIME IDEALS AND FILTERS 
 
Recall from [2], a proper ideal (filter) 𝑃 of an ADL 𝐴  is said to be prime, if for any 𝑎, 𝑏 ∈ 𝐴, 𝑎 ∧ 𝑏(𝑎 ∨ 𝑏) ∈ 𝑃 ⇒ 
either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃.  A prime ideal  𝑃 of an ADL  𝐴 is called minimal if there is no prime ideal 𝑄  of  𝐴  such that 
𝑄 ⊂ 𝑃. 
 
Remark 4.1:  In general, a prime ideal may not be an 𝛼 −ideal and 𝛼−ideal need not be prime. For example, in 2.9(1) 
the prime ideals {0, 𝑐, 𝑎} and {0, 𝑐, 𝑏} are not 𝛼−ideals, since 𝑐∗∗ =  0∗  =  1 and in 2.5 {0} is an 𝛼−ideal but not 
prime  since 𝑎 ∧ 𝑏 = 0. Also, a prime filter may not be a 𝛽−filter. For, in 2.9(1), {𝑏, 1} is a prime filter but not a 
𝛽−filter since 𝑎∗∗  =  0∗ =  1. 
 
Theorem 4.2 ([2]): Let  𝑃 be a prime ideal of an ADL  𝐴. Then  𝑃 is minimal prime ideal if and only if *{a} ⊈ 𝑃 for all 
𝑎 ∈ 𝑃. 
 
In the following, minimal prime ideals of a weakly pseudo-complemented ADL are characterized in terms of their 
𝛼−ideals. 
 
Theorem 4.3: Let A be an ADL and ∗ a weak pseudo-complementation on A and P a prime ideal of A. Then the 
following conditions are equivalent. 

(1) 𝑃 is minimal 
(2) 𝑥 ∈ 𝑃 implies that 𝑥∗  ∉ 𝑃 
(3) 𝑥 ∈ 𝑃 implies that 𝑥∗∗  ∈ 𝑃 
(4) 𝑃 ∩  𝐷(𝐴)  =  𝜙. 
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Proof: 
(𝟏) ⇒ (𝟐): Let  𝑃  be minimal and 𝑥 ∈ 𝑃. Then by theorems 4.2 and 1.5(2), ⟨𝑥∗] = {𝑥}∗ ⊈ 𝑃. This implies  𝑥∗ ∉ 𝑃. 
 
(𝟐) ⇒ (𝟑):  Assume (2). Let 𝑥 ∈ 𝑃. Then 𝑥∗ ∉ 𝑃. Since 𝑥∗ ∧  𝑥∗∗ = 0 ∈ 𝑃 and 𝑃 is prime, we get 𝑥∗∗ ∈ 𝑃. 
 
(𝟑) ⇒ (𝟒):  Assume (3). If 𝑥 ∈ 𝑃 ∩ 𝐷(𝐴) for some 𝑥 ∈ 𝐴, then 𝑥 ∈ 𝑃 and 𝑥∗ = 0 and hence  𝑥∗∗ = 0∗ ∉ 𝑃,  since 0∗  
is maximal, a contradiction to (3).   
 
(𝟒) ⇒ (𝟏):  If 𝑃 is not minimal, then 𝑄 ⊂ 𝑃 for some prime ideal 𝑄 of  𝐴. Let 𝑥 ∈ 𝑃 − 𝑄. Then 𝑥 ∧ 𝑥∗ = 0 ∈ 𝑄 and 
𝑥 ∉ 𝑄; therefore 𝑥∗ ∈ 𝑄 ⊂ 𝑃, which implies that 𝑥 ∨ 𝑥∗ ∈ 𝑃. Also, 𝑥 ∨ 𝑥∗ is dense, thus we obtain 𝑥 ∨ 𝑥∗ ∈ 𝑃 ∩ 𝐷(𝐴), 
a contradiction to (4). Hence 𝑃 is minimal. 
 
Theorem 4.4: Let 𝐴  be an ADL and ∗  a weak pseudo-complementation on A and let 𝑃 be a prime ideal of 𝐴. Then the 
following conditions are equivalent. 

(1) 𝐴 –𝑃  is maximal filter 
(2) 𝐴 − 𝑃 is prime filter and 𝑎 ∨ 𝑎∗ ∈ 𝐴 − 𝑃 for each 𝑎 ∈ 𝐴 
(3) 𝑃  is a minimal prime ideal 
(4) 𝑃 is an 𝛼−ideal 
(5) 𝑃 ∩ 𝐷(𝐴) = 𝜙. 
 

Proof: 
(𝟏) ⇒ (𝟐):  Clearly 𝐴 − 𝑃 is a prime filter since every maximal filter is prime filter. Let 𝑎 ∈  𝐴 such that 𝑎 ∉ 𝐴 − 𝑃 
then 𝐴 − 𝑃  ≠ [(𝐴 − 𝑃) ∪ {𝑎}) = (𝐴 − 𝑃) ∨ [a , so by the maximality, we get (𝐴 − 𝑃) ∨ [a = 𝐴. In particular, 
0 = 𝑥 ∧  𝑎 for some 𝑥 ∈ 𝐴 − 𝑃 and hence 𝑎∗ ∧ 𝑥 = 𝑥. But 𝑥 ∈ 𝐴 − 𝑃 implies 𝑎∗ ∈  𝐴 − 𝑃 and hence 
 𝑎 ∨  𝑎∗ ∈  𝐴 −  𝑃. 
 
(𝟐) ⇒ (𝟑):  Since 𝐴 − 𝑃 is a prime filter, 𝑃  is a prime ideal. Let 𝑄  be a prime ideal and 𝑄 ⊂ 𝑃 with 𝑎 ∈ 𝑃 − 𝑄. Then 
𝑎 ∧  𝑎∗ = 0 ∈ 𝑄 and hence 𝑎∗ ∈ 𝑄 ⊂ 𝑃, this implies 𝑎 ∨ 𝑎∗ ∈ 𝑃, which is a contradiction to hypothesis. Thus 𝑃 is 
minimal prime ideal. 
 
(𝟑) ⇒ (𝟒) and (4)  ⇒  (5) follow from the above theorem. 
 
(𝟓) ⇒ (𝟏): Since P is a prime ideal, 𝐴 − 𝑃 is a prime filter. Let 𝐹 be a filter of 𝐴 and 𝐴 − 𝑃 ⊂ 𝐹 with 𝑎 ∈ 𝐹 − (𝐴 − 𝑃). 
Since 𝑎 ∨ 𝑎∗ is dense, 𝑎 ∨ 𝑎∗ ∈ 𝐷(𝐴) and hence 𝑎 ∨ 𝑎 ∗ ∉ 𝑃. But 𝑎 ∈ 𝑃 and therefore 𝑎∗ ∈ 𝐴 − 𝑃 ⊂ 𝐹. Also 𝑎 ∈ 𝐹 and 
thus 𝑎 ∧  𝑎∗ = 0 ∈ 𝐹 which implies that 𝐹 = 𝐴. 
 
For any a  and b A∈  with a b≤ , the interval [a, b] {x A : a x b}= ∈ ≤ ≤  is bounded distributive lattice with respect to 
the operations induced by those in the ADL  𝐴. 
 
Recall from [3, 6] that, an ADL with a maximal element is said to be an Almost Boolean algebra if for any 𝑎, 𝑏 ∈ 𝐴 
with 𝑎 < 𝑏, the interval [𝑎, 𝑏] is a complemented lattice. 
 
Theorem 4.5 ([6]): Let 𝐴 be an ADL with a maximal element. Then, the following are equivalent. 

(1) 𝐴  is an Almost Boolean algebra 
(2) For any 𝑎 ∈ 𝐴, there exist 𝑏 ∈ 𝐴 such that 𝑎 ∧ 𝑏 = 0 and 𝑎 ∨ 𝑏 is maximal 
(3) [0,𝑚] is a Boolean algebra for all maximal elements 𝑚 
(4) There exists a maximal element 𝑚 such that [0,𝑚] is a Boolean algebra. 

 
In general, an Almost Boolean algebra is pseudo-complemented but converse is not true. However, in the following we 
characterize an Almost Boolean algebra in terms of 𝛼−ideals and 𝛽−filters. 
 
Theorem 4.6: Let 𝐴 be a pseudo-complemented ADL. Then, 𝐴 is an Almost Boolean algebra if and only if every ideal 
of 𝐴 is an 𝛼−ideal. 
 
Proof:  Let    be a pseudo-complementation on 𝐴. We assume that 𝐴 is an Almost Boolean algebra and let 𝐼  be an 
ideal of  𝐴.  Let 𝑥 ∈ 𝐼.  Then 𝑥 ∨ 0∗  is maximal since 0∗ is maximal. By assumption, the interval [0, 𝑥 ∨ 0∗] is a 
Boolean algebra and 𝑥 ≤  𝑥 ∨ 0∗. Therefore, there exists 𝑦 ∈ [0,𝑥 ∨ 0∗] such that 𝑥 ∧ 𝑦 = 0 and 𝑥 ∨ 𝑦 = 𝑥 ∨ 0∗,  hence 
𝑥 ∨ 𝑦  is maximal and 𝑦 ∧ 𝑥∗∗ =  0.  
Now, 𝑥∗∗ = (𝑥 ∨ 𝑦) ∧ 𝑥∗∗ = (𝑥 ∧ 𝑥∗∗)  ∨ (𝑦 ∧  𝑥∗∗)  = 𝑥 ∧ 𝑥∗∗ ∈ 𝐼 (since 𝑥 ∈  𝐼 and 𝐼 is an ideal). Thus, 𝐼  is an 
α−ideal.  
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Conversely suppose that every ideal of 𝐴  is an 𝛼−ideal. Then, for any 𝑥 ∈ 𝐴, ⟨𝑥]  is an  𝛼−ideal and hence  𝑥∗∗ ∈ ⟨𝑥]. 
This implies 𝑥∗∗ = 𝑥 ∧  𝑥∗∗.   
 
Now,   𝑥 ∧ 0∗ = 𝑥∗∗ ∧  𝑥 ∧ 0∗ = 𝑥 ∧  𝑥∗∗ ∧  0∗ =  𝑥∗∗  ∧ 0∗ =  𝑥∗∗.  (since 𝑥∗ ∧  𝑥 = 0 and hence 𝑥∗∗ ∧  𝑥 = 𝑥 and 
𝑥∗∗  ≤  0∗).  Let  𝑥 ∈ [0,  0∗].  Then 𝑥 = 𝑥 ∧  0∗ =  𝑥∗∗.   This shows that [0,  0∗]  = 𝐴∗, which is a Boolean algebra 
(refer [4]). By theorem 4.5, 𝐴  is an Almost Boolean algebra. 
 
The following is similar to above theorem. 
 
Theorem 4.7:  𝐴  is an Almost Boolean algebra if and only if every filter of  𝐴  is a  𝛽−filter. 
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