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ABSTRACT 
Aage and Salunke [1], proved the result on fixed point theorem in dislocated and dislocated quasi metric space. Dass 
and Gupta [2], given an extentionsion of Banach contraction principle through rational expression. In this paper we 
establish a common fixed point theorem for continuous contractive mapping in dislocated quasi metric space which is 
the generalized result of Isufati [4], Mujeeb Ur Rahman and Muhammad Sarwar [11], and Badshah, et al. [12]. 
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1.1. INTRODUCTION AND PRELIMINARIES 
 
In 1922, Banach proved fixed point theorem for contraction mapping in complete metric space. It is well known as a 
Banach fixed point theorem. In 1975 Dass and Gupta [2], generalized Banach contraction principle in metric space. In 
1977 Rohades [7], introduced a comparison of various definitions of contractive mappings. In 2005 Zeyada et al. [10], 
given a generalization of fixed point theorem due to Hiltzler and Seda [3], in dislocated quasi metric space. In 2008 
Aage and Saluke [1] proved result on fixed point theorem in dislocated & dislocated quasi metric space. After this in 
2010 Isufati [4], established a fixed point theorem in qislocated quasi metric space, also in 2010 Kohli et al. [5], in 
2011 Shrivastava and Gupta [8], Pagey and Nighojkar [6] and in 2014 Shrivastava et al. [9], Mujeeb Ur Rahman and 
Muhammad sarwar [11], worked on a common fixed point theorem in dislocated quasi metric space. In this paper we 
establish a common fixed point theorem for continuous contractive mapping in dislocated quasi metric space which is 
the generalized result of Isufati [4], Mujeeb Ur Rahman and Muhammad sarwar [11] and Badshah, et al. [12]. 
 
Definition 1.1 [3&10]: Let X be a non-empty set and let d: X × X → [0, ∞) be a function satisfying the following 
conditions : 
(d1) 𝑑(𝑥 , 𝑥) = 0 
(d2) 𝑑(𝑥 ,𝑦) = 𝑑(𝑦 , 𝑥)  = 0 implies 𝑥 = 𝑦. 
(d3) 𝑑(𝑥 ,𝑦) = 𝑑(𝑦 , 𝑥)   for all 𝑥,𝑦 ∈ X 
(d4) 𝑑(𝑥 ,𝑦)  ≤  𝑑(𝑥 , 𝑧) + 𝑑(𝑧 ,𝑦)   for all 𝑥 ,𝑦, 𝑧 ∈ X  
If 𝑑 satisfies conditions only (d2) and (d4), then 𝑑 is called a dislocated quasi metric on X. 
 
If 𝑑 satisfies conditions (d1), (d2) and (d4), then 𝑑 is called a quasi metric on X. If 𝑑 satisfies conditions (d2), (d3) and 
(d4), then 𝑑 is called a dislocated metric on X. If 𝑑 satisfies all the conditions (d1), (d2) (d3) and (d4), then 𝑑 is called a 
metric on X. 
 
Definition 1.2 [10]: A sequence {xn} in a dq metric space (dislocated quasi metric space) (X, d) is called a Cauchy 
sequence if for given 𝜖 > 0, there corresponds n0 ∈ N such that for all m, n ≥ n0, implies d(xn , xm) < 𝜖. 
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Definition 1.3 [10]: A sequence in dq metric space converges to a point x if there exists  𝑥 ∈  X such that 𝑑�𝑥𝑛,𝑥� → 0 
as n → ∞  or 𝑙𝑖𝑚𝑛 →∞ 𝑑�𝑥𝑛,𝑥� = 0. 
 
Definition 1.4 [3]: A dislocated quasi metric space (X, d) is a complete metric space if every Cauchy sequence in (X, d) 
is convergent sequence with respect to d.  
 
Definition 1.5 [10]: Let (X, d) and (Y, ρ) be any two dislocated quasi metric spaces and Let T : X → Y be a function 
then  T  is a continuous function at x0 ∈ X, if for each sequence {xn} which is convergent to x0 in X, the sequence 
{T(xn)} is convergent to {T(x0)} in Y. 
 
Definition 1.6 [10]: Let (X, d) be a d-metric space. A map T: X → X is called contraction mapping if there exists a 
number λ with 0 ≤ λ < 1 such that d(Tx, Ty) ≤  λ d(x, y) for all x, y ∈ X.  
 
Lemma 1.1 [10]: Limits in a dq metric space are unique. 
 
Theorem 1.1 [1]: Let (X, d) be a complete dq metric space and suppose there exist non negative constants α, β, γ > 0 
with α + β + γ  < 1. Let T: X → X be a continuous mapping satisfying condition,  

d(Tx, Ty) ≤ α 𝑑(𝑥,𝑦)  + β 𝑑(𝑥,𝑇𝑥) + γ 𝑑(𝑦,𝑇𝑦) for all  x, y ∈ X. 
Then T has a unique fixed point. 
 
Theorem 1.2 [4]: Let (X, d) be a dq metric space and let T: X→ X be a continuous mapping satisfying the following 
condition, 

d(Tx, Ty) = α 𝑑(𝑦,𝑇𝑦)[1+𝑑(𝑥,𝑇𝑥)]
1+𝑑(𝑥,𝑦)

 + β 𝑑(𝑥,𝑦)  ∀ x, y ∈ X, 
and α > 0, β > 0, α + β < 1. Then T has a unique fixed point.  
 
Theorem 1.3 [9]: Let (X, d) be a dq metric space and T: X→ X be a continuous mapping 
Satisfying the following condition,  

d(Tx, Ty) = α 𝑑(𝑦,𝑇𝑦)[1+𝑑(𝑥,𝑇𝑥)]
�𝑑(𝑥,𝑇𝑦)�[1+𝑑(𝑥,𝑇𝑦)]

 + β 𝑑(𝑥,𝑦) + γ 𝑑(𝑥,𝑇𝑦) ∀ x, y ∈ X, 

and α > 0, β > 0, γ > 0, α + β + γ  < 1; Then T has a unique fixed point. 
 
Theorem 1.5[11]: Let (X, d) be a complete dq metric space and and let T : X → X  be a continuous self-mapping 
satisfying the condition,  

d(Tx, Ty) ≤ α 𝑑(𝑥,𝑦)  + β  𝑑(𝑥,𝑇𝑦)𝑑(𝑦,𝑇𝑦)
𝑑(𝑥,𝑦)+𝑑(𝑦,𝑇𝑦)

 + γ  𝑑(𝑥,𝑇𝑥)𝑑(𝑦,𝑇𝑦)
1+𝑑(𝑥,𝑦)

 + μ 𝑑(𝑥,𝑇𝑥)𝑑(𝑥,𝑇𝑦)
1+𝑑(𝑥,𝑦)

  for all  x, y ∈ X, 

and   α, β, γ, μ ≥ 0 𝑤𝑖𝑡ℎ α + β + γ + 2𝜇 < 1. 
Then T has a unique fixed point. 
 
Theorem 1.6 [12]: Let (X, d) be a complete dq metric space and T: X→ X  be a continuous mapping satisfying the 
following condition, 

d(Tx, Ty) ≤ α 𝑑(𝑦,𝑇𝑦)𝑑(𝑥,𝑇𝑥)
[1+𝑑(𝑥,𝑇𝑥)][1+𝑑(𝑦,𝑇𝑦)]

 + β 𝑑(𝑥,𝑦)𝑑(𝑥,𝑇𝑥)
1+𝑑(𝑥,𝑇𝑥)

 + γ 𝑑(𝑥,𝑦)𝑑(𝑦,𝑇𝑦)
1+𝑑(𝑥,𝑦)

   ∀ x, y ∈ X 

and α, β, γ > 0, α + β + γ  < 1; Then T has a unique fixed point. 
 
2. MAIN RESULT 
 
Theorem 2.1: Let (X, d) be a complete dq metric space and S, T: X→ X be two continuous mapping satisfying the 
following condition, 

d(Sx, Ty) ≤ α 𝑑(𝑦,𝑇𝑦)𝑑(𝑥,𝑆𝑥)
[1+𝑑(𝑥,𝑆𝑥)][1+𝑑(𝑦,𝑇𝑦)]

 + β 𝑑(𝑥,𝑦)𝑑(𝑥,𝑆𝑥)
1+𝑑(𝑥,𝑆𝑥)

 + γ 𝑑(𝑥,𝑦)𝑑(𝑦,𝑇𝑦)
1+𝑑(𝑥,𝑦)

      ∀ x, y ∈ X                              (1) 

and α, β, γ > 0, α + β + γ < 1. Then S and T have a unique common fixed point in X. 
 
Proof: Let {xn} be a sequence in dq metric space (X, d) and let x0 be arbitrary in X. We define a sequence {xn} by the 
rule x0,  

 x1 = Sx0,  x3 = Sx2 … x2n+1 = Sx2n and x2 = Tx1,  x4 = Tx3 … x2n+2 = Tx2n+1 ∀ n ∈ N                               (2) 
Now we claim that {xn} is a Cauchy sequence. For this consider, 
d( x2n+1, x2n+2 ) = d( Sx2n, Tx2n+1 ) 

≤ α 𝑑(𝑥2𝑛+1,   𝑇𝑥2𝑛+1)𝑑(𝑥2𝑛,   𝑆𝑥2𝑛)
[1+𝑑(𝑥2𝑛,   𝑆𝑥2𝑛)][1+𝑑(𝑥2𝑛+1,   𝑇𝑥2𝑛+1)]

 + β 𝑑(𝑥2𝑛,   𝑥2𝑛+1)𝑑(𝑥2𝑛,   𝑆𝑥2𝑛)
1+𝑑(𝑥2𝑛,   𝑆𝑥2𝑛)

+ γ 𝑑(𝑥2𝑛,   𝑥2𝑛+1)𝑑(𝑥2𝑛+1,   𝑇𝑥2𝑛+1)
1+𝑑(𝑥2𝑛,  𝑥2𝑛+1)

 

≤ α 𝑑(𝑥2𝑛+1,   𝑥2𝑛)𝑑(𝑥2𝑛,   𝑥2𝑛+1)
[1+𝑑(𝑥2𝑛,   𝑥2𝑛+1)][1+𝑑(𝑥2𝑛+1,   𝑥2𝑛+2)]

 + β 𝑑(𝑥2𝑛,   𝑥2𝑛+1)𝑑(𝑥2𝑛,   𝑥2𝑛+1)
1+𝑑(𝑥2𝑛,   𝑥2𝑛+1)

 + γ 𝑑(𝑥2𝑛,   𝑥2𝑛+1)𝑑(𝑥2𝑛+1,   𝑥2𝑛+2)
1+𝑑(𝑥2𝑛,  𝑥2𝑛+1)

 

<  α 𝑑(𝑥2𝑛+1,   𝑥2𝑛)
[1+𝑑(𝑥2𝑛+1,   𝑥2𝑛+2)]

 + β 𝑑(𝑥2𝑛 ,   𝑥2𝑛+1) + γ 𝑑(𝑥2𝑛+1,   𝑥2𝑛+2) 
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Since  𝑑(𝑥2𝑛 ,   𝑥2𝑛+1) < 1 + 𝑑(𝑥2𝑛 ,   𝑥2𝑛+1)  ⇒  𝑑(𝑥2𝑛,   𝑥2𝑛+1)

1+𝑑(𝑥2𝑛,   𝑥2𝑛+1)
  < 1 

                                  < α 𝑑(𝑥2𝑛+1,   𝑥2𝑛) + β 𝑑(𝑥2𝑛,   𝑥2𝑛+1) + γ 𝑑(𝑥2𝑛+1,   𝑥2𝑛+2) 
 
This gives, 

d( x2n+1, x2n+2 ) <  (α + β)𝑑(𝑥2𝑛 ,   𝑥2𝑛+1) + γ 𝑑(𝑥2𝑛+1,   𝑥2𝑛+2) 
                     ⇒    d( x2n+1, x2n+2 ) <  (α + β )

1−γ
 𝑑(𝑥2𝑛 ,   𝑥2𝑛+1) 

       
Therefore we have, 

𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) < δ(𝑥2𝑛 , 𝑥2𝑛+1), where δ =   (α + β )
1−γ

 ∈ (0, 1) 
   

Similarly we have,  
(𝑥2𝑛, 𝑥2𝑛+1) < 𝛿 𝑑(𝑥2𝑛−1,𝑥2𝑛), 
𝑑(𝑥2𝑛−1, 𝑥2𝑛) < 𝛿 𝑑(𝑥2𝑛−2, 𝑥2𝑛−1), 

                        ⇒ 𝑑(𝑥2, 𝑥1)  <  𝛿  𝑑(𝑥1, 𝑥0). 
 
Therefore we have, 

𝑑(𝑥𝑛, 𝑥𝑛+1) < 𝛿 𝑑(𝑥𝑛−1, 𝑥𝑛) , 
 
Similarly we have, 

𝑑(𝑥𝑛−1, 𝑥𝑛)  <  𝛿 𝑑(𝑥𝑛−2, 𝑥𝑛−1), 
𝑑(𝑥𝑛−2, 𝑥𝑛−1) < 𝛿 𝑑(𝑥𝑛−3, 𝑥𝑛−2), 

                       ⇒  𝑑(𝑥2, 𝑥1)  <  𝛿 𝑑(𝑥1, 𝑥0). 
 
Finally, we have, 

𝑑(𝑥𝑛, 𝑥𝑛+1) < 𝛿𝑛 𝑑(𝑥1, 𝑥0). 
                   ⇒    | 𝑑(𝑥𝑛, 𝑥𝑛+1) | < 𝛿𝑛 | 𝑑(𝑥1, 𝑥0) | 
 
Since   0 < 𝛿 < 1 and letting n → ∞  ⇒  𝛿𝑛→ 0, implies that | 𝑑(𝑥𝑛 , 𝑥𝑛+1) |→ 0 as n → ∞ 
 
Hence the sequence {xn} is Cauchy sequence in the complete dislocated quasi metric space (X, d).  
 
Thus the sequence {xn} is a convergent sequence in dislocated quasi metric space (X, d) to the point z ∈ X. i.e.  xn →  z  
as n → ∞. Also sub sequences {x2n} and {x2n+1} converges to z. Since T is continuous mapping therefore, 

lim𝑛→∞ 𝑥2𝑛+1 = z  ⇒  lim𝑛→∞ 𝑇𝑥2𝑛+1 = Tz  ⇒  lim𝑛→∞ 𝑥2𝑛+2 = Tz 
 
Hence, Tz = z i.e. z is the fixed point of T. 
 
Similarly, using the continuity of S we can show that Sz = z. 
 
Finally we have Tz = z = Sz. i.e. z is the common fixed point of S and T. 
 
This completes the proof of theorem 2.1 
 
For uniqueness: 
 
To prove S and T have unique fixed point we suppose z and w are any two common fixed point of S and T with z ≠ w 
                            i.e. Tz = z and  Tw = w and Sz = z and  Sw = w              
Consider  

d(z, w) = d(Sz, Tw) 
                                        ≤ α 𝑑(w,𝑇𝑤)𝑑(𝑧,𝑆𝑧)

[1+𝑑(𝑧,𝑆𝑧)][1+𝑑(𝑤,𝑇𝑤)]
 + β 𝑑(𝑧,𝑤)𝑑(𝑧,𝑆𝑧)

1+𝑑(𝑧,𝑆𝑧)
 + γ 𝑑(𝑧,𝑤)𝑑(𝑤,𝑇𝑤)

1+𝑑(𝑧,𝑤)
      

 
d(z, w) ≤ 0  [ ∵ z and w are any two common fixed point of T, i.e. Tz = z 

 and Tw = w also Sz = z and Sw = w and d(z, z) = 0 & d(w, w) = 0 ]   but d(z, w) ≥ 0 
 
This implies that 

d(z, w ) = 0 
 

i.e.   z = w, this proves the uniqueness of common fixed point of S and T in X 
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Corollary 2.2: Let (X, d) be a complete dq metric space and S, T: X→ X be a continuous mapping. Satisfying the 
following condition,  

d(Sx,Ty) ≤  β 𝑑(𝑥,𝑦)𝑑(𝑥,𝑆𝑥)
1+𝑑(𝑥,𝑆𝑥)

 + γ 𝑑(𝑥,𝑦)𝑑(𝑦,𝑇𝑦)
1+𝑑(𝑥,𝑦)

      ∀ x, y ∈ X 

and  β > 0, γ > 0, β + γ  < 1; Then S and T have a unique  common fixed point in X. 
 
Proof: The proof of the corollary 2.2 follows immediately by putting α = 0 in Theorem 2.1 
 
Corollary 2.3: Let (X, d) be a complete dq metric space and S, T : X→ X be a continuous  mapping Satisfying the 
following condition,  

d(Sx, Ty) ≤ α 𝑑(𝑦,𝑇𝑦)𝑑(𝑥,𝑆𝑥)
[1+𝑑(𝑥,𝑆𝑥)][1+𝑑(𝑦,𝑇𝑦)]

 +  γ 𝑑(𝑥,𝑦)𝑑(𝑦,𝑇𝑦)
1+𝑑(𝑥,𝑦)

       ∀ x, y ∈ X 

and α > 0, γ > 0, α + γ  < 1; Then S,T have a unique common fixed point in X. 
 
Proof: The proof of the corollary 2.3 follows immediately by putting β = 0 in Theorem 2.1 
 
Corollary 2.4: Let (X, d) be a complete dq metric space and S, T: X→ X be a continuous mapping Satisfying the 
following condition  

d(Sx, Ty) ≤ α 𝑑(𝑦,𝑇𝑦)𝑑(𝑥,𝑆𝑥)
[1+𝑑(𝑥,𝑆𝑥)][1+𝑑(𝑦,𝑇𝑦)]

 + β 𝑑(𝑥,𝑦)𝑑(𝑥,𝑆𝑥)
1+𝑑(𝑥,𝑆𝑥)

     ∀ x, y ∈ X 

and α > 0, β > 0, α+β < 1; Then S, T have a unique common fixed point in X. 
 
Proof: The proof of the corollary 2.4 follows immediately by putting γ = 0 in Theorem 2.1  
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