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ABSTRACT 
Present study offered for the laminar free convection boundary layer flow of Eyring-powell non-Newtonian fluid past a 
horizontal circular cylinder in the occurrence of magnetic effect, and Soret, Dufour effects. The cylinder surface is 
maintained at non-uniform surface temperature. The boundary layer conservation equations, transformed into non-
dimensional form via appropriate non-similarity variables, and the emerging boundary value problem is solved 
computationally with the second order accurate implicit Keller-Box finite difference scheme. Evaluation on velocity, 
temperature and concentration are illustrated graphically. Skin friction and Nusselt number are presented tabular 
form. 
 
Key Words: Eyring-Powell model, porous medium, MHD; heat transfer, Skin friction, Nusselt number, Soret and 
Dufour effects. 
 
 
NOMENCLATURE 
C f  skin friction coefficient  

f  non-dimensional steam function 
Gr  Grashof number 
g  acceleration due to gravity 
Sr  Soret effect 
Du  Dufour effect 
k  thermal conductivity of fluid 
Nu  local Nusselt number 
Pr  prandtl number  
Sc  schmidt number 
T  temperature of the fluid 
u, v non-dimensional velocity components along the x- and y- directions, respectively 
V velocity vector x stream wise coordinate y transverse coordinate 
 

Corresponding Author: M. Sudhakar Reddy*2 

2*Department of Mathematics,  Madanapalle Institute of Technology and Science,  
Madanapalle, Andhra Pradesh, India. 

 
 
 

http://www.ijma.info/�


L. Nagaraja1,2, M. Sudhakar Reddy2*, M. Suryanarayana Reddy3 / 
 Magneto Hydrodynamic Effects On Non-Newtonian Eyring-Powell Fluid From a Circular Cylinder with…. / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                       154  

 
GREEK SYMBOLS 
 
α  thermal diffusivity 
β  fluid parameter 
δ  local non-Newtonian parameter  
η  dimensionless radial coordinate 
µ  dynamic viscosity 
ν  kinematic viscosity 
θ  dimensionless temperature 
ρ  density of non-Newtonian fluid 
ξ  dimensionless tangential coordinate 
ψ  dimensionless stream function 
ε  fluid parameter 
 
SUBSCRIPTS 
 
W  condition at the wall 
∞  free stream condition 
 
1. INTRODUCTION 
 
Many modern engineering tenders involve the study of non-Newtonian fluids. These include petroleum drilling muds 
[1], biological gels [2], polymer processing [3] and food processing [4]. Most commonly, the viscosity of non-
Newtonian fluids is dependent on shear rate. Some non-Newtonian fluids with shear-independent viscosity, however, 
still exhibit normal stress difference or other non-Newtonian behavior. Several salt solutions and molten polymers are 
non-Newtonian fluids, as are many other liquids encountered in science and technology such as dental creams, 
physiological fluids, detergents and paints. In a non-Newtonian fluid, the relation between the shear stress and the shear 
rate is generally non-linear and can even be time-dependent. Recently Malik et al. [5] studied mixed convection floe of 
MHD Eyring-Powell fluid over a stretching sheet a numerical study. They found that rate of heat and mass transfer 
decreases for all parameters. Abdul Gafar et al. [6] studied computational study of non-Newtonian Eyring-Powell fluid 
from a horizontal circular cylinder with biot number effect. Discussed filled presence of porous media under the effect 
of radiation and MHD [7-8], Abdul Hakeem et al. [9] studied Heat transfer of Darcy MHD flow of Nano-fluid over a 
stretching/shrinking surface. They found that Nano fluid velocity, temperature, skin friction coefficient and reduced 
Nusselt number are discussed. Animasaun Raju et al. [10] studied Unequal diffusivities case of homogeneous–
heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal 
radiation. They found induced magnetic field effect on viscoelastic fluid flow past a stretching sheet in the presence of 
nonlinear thermal radiation and homogeneous–heterogeneous reactions. Recently, Subba Rao et.al. [11] Studied the 
Boundary Layer Flows of non-Newtonian fluid from an inclined vertical plate in the presence of hydrodynamic and 
thermal slip conditions using the Keller Box finite difference method. 
 
A number of theoritical and computational studies have been communicated on transport phenomena from cylindrical 
bodies, which frequently arise in polymer processing system. These Newtonian studies were focused more on heat 
transfer aspects and include Eswara , Nath,[24] and Rotte, Beek,[25] and the pioneering analysis of Sakiadis et. al. [26]. 
Further more recent studies examining multi-physical and chemical transport from cylindrical bodies included Zueco  
et al. [27]-[28]. An early investigation of rheological boundary layer heat transfer from horizontal cylinder was 
presented by Chen and Leonard [40], who consider the power-law model and demonstrated that the transverse 
curvature has a strong effect on skin friction at moderate and large distance from the leading edge of the boundary 
layer. Lin and Chen also studied axisymmetric laminar boundary layer convection flow of a power-law non-Newtonian 
over both circular cylinder and spherical body using the Merk-Chao series solution method. 
 
In many chemical engineering and nuclear process systems, curvature of the vessels employed is a critical aspect of 
optimizing thermal performance. Examples of curved bodies featuring in process systems include torus geometries, 
wavy surfaces, cylinders, cones, ellipses, oblate spheroids and in particular, spherical geometries, the latter being very 
popular for storage of chemicals and also batch reactor processing. Heat transfer from spheres has therefore mobilized 
much attention among chemical engineering researchers who have conducted both experimental and computational 
investigations for both Newtonian and non-Newtonian fluids. Beg et al., [41] examined the free convection magneto 
hydrodynamic flow from a sphere in porous media using network simulation, showing that temperatures are boosted 
with magnetic field and heat transfer is enhanced from the lower stagnation point towards the upper stagnation point. 
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The objective of the present work, a mathematical model is developed for steady, natural convection boundary layer 
flow in a Eyring-Powell non-Newtonian fluid past a circular cylinder maintained at non-uniform surface temperature. A 
finite difference numerical solution is obtained for the transformed nonlinear two-point boundary value problem subject 
to physically appropriate boundary conditions at the cylinder surface and in the free stream. The impact of the emerging 
thermo-physical parameters i.e. Eyring-Powell fluid parameter ( )ε , the local non-Newtonian parameter ( )δ , Prandtl 
number (Pr) , dimensionless tangential coordinate ( )ξ  magnetic parameter ( )M  Schmidt number ( )Sc  and  
temperature evaluation on velocity, temperature, skin friction and Nusselt number are illustrated graphically and in 
Tables.  Validation of solutions with earlier published work is included. Detailed evaluation of the physics is included. 
 
2. MATHEMATICAL MODEL 
 
Steady, laminar, two-dimensional boundary layer flows and heat transfer of a viscous incompressible Eyring-Powell 
fluid over a circular cylinder is considered, as illustrated in Fig. 1. The x-coordinate (tangential) is measured along the 
circumference of the horizontal cylinder from the lowest point and the y-coordinate (radial) is directed perpendicular to 
the surface, with a denoting the radius of the horizontal cylinder. x aΦ =  Is the angle of the y-axis with respect to 
the vertical 0 π≤ Φ ≤ . The gravitational acceleration g, acts downwards. We also assume that the Boussineq 
approximation holds i.e. that density variation is only experienced in the buoyancy term in the momentum equation. 
Both horizontal cylinder and Eyring-Powell fluid are maintained initially at the same temperature. Instantaneously they 
are raised to a temperature WT T∞> , the ambient temperature of the fluid which remains unchanged. In line with the 
approach of Yih [24] and introducing the boundary layer estimates, the governing equations can be written as: 
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Anywhere u and v are the velocity components in the x - and y -directions respectively, ν -the kinematic viscosity of 
the conducting fluid, β  -is the non-Newtonian Eyring parameter, α -the thermal diffusivity, T  -the temperature, K  -
the permeability coefficient of the porous medium, T∞ -the free stream temperature. The boundary conditions are 
arranged at the circulation and the edge of the boundary layer regime, respectively as follows: 
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Where the stream functionψ is defined by u yψ= ∂ ∂ and u xψ= −∂ ∂ , and therefore, the continuity equation is 
automatically satisfied. In order to write the governing equations and the boundary conditions in dimensionless form, 
the following non-dimensional quantities are introduced:  

1 1
4 4, ,

316
, , *3

x y Gr Gr f
a a
T T C C T TqrT T C C yKw w

ξ η ψ νξ

σ
θ φ

 
= = = 

 
 ∗− − − ∂ ∞ ∞ ∞= = = − − ∂ ∞ ∞ 

                                                                                         (6) 

 
In view of non-dimensional quantities (6), Equations (1)-(4) reduce to the following coupled, nonlinear, dimensionless 
partial differential equations for momentum and energy for the region,  
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The transformed dimensionless boundary conditions are 
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In the above equations, the primes denote the differentiation with respect to η, the dimensionless radial coordinate, and 
ξ is the dimensionless tangential coordinate, 2 1 2Da K a Gr=  is the Darcy parameter and 3 3( )Gr g T T awβ ν= − ∞ is 

the Grashof (free convection) parameter. Pr ν α= is the Prandtl number, Sc Dm ν= is Schmidt number, =1 cε νβρ

is Eyring-Powell fluid parameter, 2 2 43 2 2Gr c aδ ν= , 1 222
0M B a Grσ ρν= is magnetic parameter, 
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coefficients. The engineering design quantities of physical interest include the skin-friction coefficient and Nusselt 
number, are given as, 
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3. NUMERICAL SOLUTIONS 
 
The Keller-Box implicit difference method is implemented to solve the nonlinear boundary value problem defined by 
equations (6) -(7) with boundary conditions (8). This technique, despite recent developments in other numerical 
methods, remains a powerful and very accurate approach for parabolic boundary layer flows. It is unconditionally 
stable and achieves exceptional accuracy (12). Recently this method has been deployed in resolving many challenging, 
multi-physical fluid dynamics problems. These include hydro magnetic Sakiadis flow of non-Newtonian fluids (13), 
Nano-fluid transport from a stretching sheet (14), radiate rheological magnetic heat transfer (15), water hammer 
modeling (16), porous media convection (17) and magnetized viscoelastic stagnation flow (18). The Keller-Box 
discretization is fully coupled at each step which reflects the physics of parabolic systems-which are also fully coupled. 
Discrete calculus associated with the Keller-Box scheme has also been shown to the fundamentally different from all 
other mimetic (physics capturing) numerical methods, as elaborated by Keller (12). The key stages involved are as 
follows: 

 a. Reduction of the Nth order partial differential equation system to N first order equation 
b. Finite difference discretization of reduced equation 
c. Quasilinearization of nonlinear Keller algebraic equations 
d.    Block-tridiagonal elimination of linearized Keller algebraic equations 
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Stage (a): Decomposition of Nth order partial differential equation system to N first order equations: 
 
Equations (6)-(7) subject to the boundary conditions (8) are first cast as a multiple system of first order differential 
equations. New dependent variables are introduced:  

( , ) , ( , ) , ( , ) , ( , )u x y f v x y f s x y t x yθ θ′ ′′ ′= = = =                                                                                              (13)
  

These denote the variables for velocity, temperature respectively. Now equations (6)-(7) are solved as a set of fifth 
order simultaneous differential equations: 
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Where the primes denote differentiation w.r.t variable η. In terms of the dependent variables, the boundary conditions 
assume the form: 
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Figure-2: Keller box computational domain 

 

Stage (b): Finite Difference Discretization 
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The boundary conditions are: 

0 0 00, 1, 0, 0n n n n n
j jf u s v s= = = = =                                                                                                                (35) 

 
Stage (c): Quasilinearization of Non-linear Keller Algebraic Equations 
 

Assuming 1 1 1 1 1, , , ,n n n n n
j j j j jf u v s t− − − − − to be known for 0 ,j J≤ ≤ then equations (12)-(16) constitute a system of 7J+7 

equations for the solutions of 7J+7 unknowns , , , , , , 0,1, 2,..., .n n n n n
j j j j jf u v s t j J= This non-linear system of algebraic 

equations is linearized by means of Newtonian’s method as explained in [19-20, 29-39] 
 
Stage (d): Block-tridiagonal Elimination solution of linear Keller Algebraic Equations 
 
The linearized system is solved by the block-elimination method, since it possesses a block-tridiagonal structure. The 
bock-tridiagonal structure generated consists of block matrices. The complete linearized system is formulated as a 
block matrix system, where each element in the coefficient matrix is a matrix itself, and this system is solved using the 
efficient Keller-box method. The numerical results are strongly influenced by the number of mesh points in both  
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directions. After some trials in the η-direction (radial coordinate) a larger number of mesh points are selected whereas 
in the ξ direction (tangential coordinate) significantly less mesh points are utilized. ηmax has been set at 25 and this 
defines an adequately large value at which the prescribed boundary conditions are satisfied. ξ maxis set at 3.0 for this 
flow domain. Mesh independence is achieved in the present computations. The numerical algorithm is executed in 
MATLAB on a PC. The method demonstrates excellent stability, convergence and consistency, as elaborated by Keller 
[20] 
 
4. RESULT & DISCUSSIONS 
 
In this section, the influence of various physical parameters like Eyring-Powell fluid parameters ( , )ε δ , magnetic 

parameter ( )M , radiation parameter ( )R , Prandlt number (Pr) ,Schmidt number ( )Sc , and buoyancy ratio ( )N  on 

velocity profiles ( )f η′ , temperature profiles ( )θ η  and concentration profiles ( )φ η  have been analyzed. 

 

Table 1&2 Document results for the influence of the Prandlt number (Pr)  and the Magnetic parameter ( )M  on skin 
friction ( (0))f ′′− heat transfer rate ( (0))θ−  and Sharehood number ( (0))φ′− . It has been observed that increasing Pr 
reduces skin friction and Sharehood number but increases heat transfer rate (Nusselt numbers). Also, increasing M is 
found to decrease both the skin friction and heat transfer rate (Nusselt number) and Sharehood number.  
 
Table 3 Shows that the comparisons of the various values ofξ . In order to verify the accuracy of our present method, 
we have compared our results with those of Merkin [25] and Yih [26] 
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Figures 3(a)-3(c) illustrates the effect of Eyring-Powell fluid parameterε , on the velocity ( )f η′ , temperature ( )θ η
and concentration ( )φ η distributions through the boundary layer regime. Velocity is significantly decreased with 
increasing at larger distance from the cylinder surface owing to the simultaneous drop in dynamic viscosity. Conversely 
temperature and concentration are consistently enhanced with increasing values ofε . The mathematical model reduces 
to the Newtonian viscous flow model as ε →  0 andδ → 0. In fig. 3b temperatures are clearly minimized for the 
Newtonian case (ε =0) and maximized for the strongest non-Newtonian case (ε =2.0). 
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Figures 4(a)-4(c) depict the velocity ( )f η′ , temperature ( )θ η and concentration ( )φ η distributions with increasing 
local non-Newtonian parameterδ . Very little tangible effect is observed in fig. 4a, although there is a very slight 
increase in velocity with increase inδ . Similarly, there is only a very slight depression in temperature, concentration 
magnitudes in Fig.4(b), (c) with a rise inδ  
 
Figures 5(a)-5(c) the dimensionless velocity ( )f η′ , temperature ( )θ η and concentration ( )φ η for various values of 

magnetic parameter M are shown. Fig. 5(a) represents the velocity profile for  

 

the different values of magnetic field parameter M . It is observed that velocity of the flow decreases significantly 
throughout the fluid domain with increasing values of magnetic parameter M . Application of a magnetic field to an 
electrically conducting fluid produces a kind of drag-like force called Lorentz force. This force causes reduction in the 
fluid velocity within the boundary layer as the magnetic field opposes the transport phenomena. In Fig. 5(b), the  
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temperature distribution increases with increasing magnetic values. The effect of Lorentz force on velocity profiles 
generated a kind of friction on the flow this friction in turn generated more heat energy which eventually increases the 
temperature distribution in the flow (see Fig. 5(b)). The concentration profile for the fluid has significant increase with 
increase in the magnetic parameter due to the temperature gradient inherent in the viscosity of the fluid as shown in Fig. 
5(c). 

 

 
 
Figures 6(a)-6(c) depict the velocity ( )f η′ , temperature ( )θ η and concentration ( )φ η distributions, rise in N clearly 
induces an increase in velocity as seen in Figure 6(a), the flow is significantly accelerated for N = 2.0, where once again 
a velocity overshoot is computed at intermediate distance from the cylinder (η ~ 3). For N = 0.5, 1.0, 1.5, 2.0, no 
velocity overshoot is apparent although velocities are increased in the regime continuously. In Figure 6(b) for positive 
N (thermal and concentration buoyancy forces assisting each other), this trend is reversed with a decrease in  
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temperature i.e. cooling of the boundary layer regime. In Figure 6(c), a similar response for the concentration 
distribution is observed as in the case of the temperature distribution, withφ values increasing fractionally with positive 
N values. Opposing buoyancy forces (N < 0) therefore enhance species diffusion in the regime whereas aiding 
buoyancy forces (N > 0) inhibit species diffusion in the boundary layer. A similar retort remained by Rawat and 
Bhargava [27] and also Partha et al. [42]. 
 
Table 1: Skin friction coefficient ( )(0)f ′′− , Nusselt number ( )(0)θ−  and Sharehood number ( )(0)φ−  for different 
values of Pr 
 
 
 
 
 
 
 
 
 
 
Table 2: Skin friction coefficient ( )(0)f ′′− , Nusselt number ( )(0)θ−  and Sharehood number ( )(0)φ−  for different 
values of M 
 
 
 
 
 
 
 
 
 
Figures 7(a)–7(c) depict the velocity ( )f η′ , temperature ( )θ η and concentration ( )φ η distributions for various values 

of Prandtl number Pr . It is observed that an increase in the Prandtl number significantly decelerates the flow i.e., 
velocity and temperature decreases. Also, increasing Prandtl number is found to upturns the concentration. 
 
Table 3: Values of the local heat transfer coefficient (Nu) for various values of ξ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figures 8(a)-8(c) depict the velocity ( )f η′ , temperature ( )θ η and concentration ( )φ η distributions for different 
values of Schmidt number Sc . It is observed that increases in Schmidt number significantly decelerates the flow i.e., 
velocity and concentration decreases. Also increases the Schmidt number is found that upturns the temperature. 
 

Figures 9(a)-9(b) the combined effect of Dufour number ( )Du and Soret number ( )Sr on the temperature and 
concentration distributions, respectively, in the regime are shown. We study the simultaneous increase (and decrease) 
of these parameters so that their product remains constant at 0.05, following Beg et al. [23]. Increasing Dufour number 
causes a rise in temperature whereas an increase in Soret number cools the fluid i.e. reduces temperature, as observed in 
Figure 9(a). Conversely in Figure 9(b), we observe that a rise in Du decreases the concentration 
values in the boundary layer, whereas a rise in Soret number increases values. 

S.No. Pr (0)f ′′  (0)θ−  (0)φ−  
1 1 0.9846 0.4245 0.1671 
2 5 0.8601 0.7976 0.1028 
3 10 0.8037 1.0425 0.0678 
4 20 0.7456 1.3940 0.0208 
5 50 0.6540 2.3823 -

0 1063 

S.No. M (0)f ′′  (0)θ−  (0)φ−  
1 1 1.0087 0.3677 0.1797 
2 5 0.6275 0.2517 0.1155 
3 10 0.4691 0.1934 0.0901 
4 15 0.3904 0.1627 0.0789 
5 20 0.3413 0.1431 0.0727 

ξ  ( ,0)θ ξ′−  
Yih 

(2000) 
Merkin Present 

l  0.0 0.4241 0.4241 0.4241 
0.4 0.4184 0.4182 0.4283 
0.8 0.4096 0.4093 0.4095 
1.2 0.3950 0.3942 0.3951 
1.6 0.3740 0.3727 0.3745 
2.0 0.3457 0.3443 0.4351 
2.4 0.3086 0.3073 0.3088 
2.8 0.2595 0.2581 0.2592 
π  0.1962 0.1963 0.1962 
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5. CONCLUSION 
 
The objective of the present paper is to investigate the steady boundary-layer MHD flow and heat transfer of Eyring 
Powell fluid past a horizontal circular cylinder in a non-Darcy porous medium. Mathematical modeling through 
equations of continuity and motion leads to a nonlinear differential equation even after employing the boundary layer 
assumptions. The present study has to the authors knowledge not appeared thus far in the scientific literature. 
Numerical solutions have been presented for the heat transfer of Eyring-Powell flow external to a horizontal cylinder. 
The Keller-box implicit second order accurate numerical scheme has been utilized to efficiently solve the transformed, 
dimensionless velocity and boundary layer equations, subject to realistic boundary conditions. Excellent correlation 
with previous studies has been demonstrated testifying to the validity of the present code. The computations have 
shown that: 1. Increasing Eyring-Powell fluid parameter (ε), reduces the velocity and skin friction and heat transfer rate, 

where it elevates temperatures in the boundary layer. 
2. Increasing local non-Newtonian parameter (δ), increases the velocity, skin friction and Nusselt number for all 

values of tangential coordinate(ξ) i.e., throughout the boundary layer regime whereas it depresses temperature. 
3. Increasing Prandtl number (Pr), decreases velocity and temperature. 
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