GENERALIZED DIFFERENCE SEQUENCE SPACES OF MODAL INTERVAL NUMBERS DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

${ }^{1}$ S. ZION CHELLA RUTH*, ²K. VEMBARASI
${ }^{1}$ Assistant professor, ${ }^{2}$ M.phil scholar, ${ }^{182}$ Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, India.

Received On: 24-04-17; Revised \& Accepted On: 30-05-17)

Abstract

In this paper we introduce and investigate the generalized difference sequence spaces of modal interval numbers $g I c\left(V, \lambda, f, \Delta^{r}, p\right), g I c_{0}\left(V, \lambda, f, \Delta^{r}, p\right)$ and $g I l_{\infty}\left(V, \lambda, f, \Delta^{r}, p\right)$ defined by a sequence of modulus functions and $p=\left(p_{k}\right)$ be any bounded sequence of positive real numbers. We also obtain some relations between these spaces as well as prove some inclusion results.

Key words: Difference sequence space, Modulus functions, paranorm, Modal interval numbers.
Mathematics Subject Classification 2010: 40A05, 40C05, 46A45.

1. INTRODUCTION

Many mathematical structures have been constructed with real or complex numbers. In recent years, these mathematical structures were replaced by fuzzy numbers or interval numbers and these mathematical structures have been very popular since 1965. Interval arithmetic is a tool in numerical computing where the rules for the arithmetic of intervals are explicitly stated. Interval arithmetic was first suggested by P.S.Dwyer [4] in 1951. Development of interval arithmetic as a formal system and evidence of its value as a computational device was provided by R.E.Moore [13], [14] in 1959 and 2009. Probably the most important paper for the development of interval arithmetic has been published by the Japanese scientist Sunaga [18].

2. PRELIMINARIES

Definition 2.1: A set consisting of a closed interval of real numbers x such that $a \leq x \leq b$ is called an interval number. A real interval can also be considered as a set. We denote the set of all real valued closed intervals by $I \mathfrak{R}$. An element of $I \mathfrak{R}$ is called closed interval and denoted by \bar{x}. That is $\bar{x}=\left[x_{l}, x_{r}\right]=\left\{x \in \mathfrak{R}: x_{l} \leq x \leq x_{r}\right\}$. An interval number \bar{X} is a closed subset of real numbers. Let x_{l} and x_{r} be respectively referred to as the infimum (lower bound) and supremum (upper bound) of the interval number \bar{x}. If $\bar{x}=[0,0]$, then \bar{x} is said to be a zero interval. It is denoted by $\overline{0}$ Kuo-Ping, Chiao [8] introduced sequence of interval numbers and defined usual convergence of sequences of interval number. When $\underline{X}>\bar{X}, \hat{X}$ is not an interval number. But in modal analysis, $[\bar{x}, \underline{x}]$ is a valid interval. A modal $\tilde{x}=\{[\underline{x}, \bar{x}]: \underline{x}, \bar{x} \in \mathfrak{R}\}$ is defined by a pair of real numbers \bar{x}, \underline{x}. Let us denote the set of all modals by $g I$. If $\tilde{x}=[0,0]$, then \tilde{x} is said to be a zero interval. It is denoted by $\tilde{0}$.

Definition 2.2: Let $g I$ denote set of all modal interval numbers. Let $\tilde{x} \in g I . \operatorname{Then}|\tilde{x}|=\max \{|\underline{x}|,|\bar{x}|\}$.

[^0]Definition 2.3: For $\tilde{x}_{1}, \tilde{x}_{2} \in g I$,
$\tilde{X}_{1}=[a, a]$ (Degenerate modal interval number)
$\tilde{x}_{1}=\tilde{x}_{2}$ if and only if $\underline{x}_{1}=\underline{x}_{2}$ and $\bar{x}_{1}=\bar{x}_{2}$.
$\tilde{x}_{1}+\tilde{x}_{2}=\left\{x \in \mathfrak{R}: \underline{x}_{1}+\underline{x}_{2} \leq x \leq \bar{x}_{1}+\bar{x}_{2}\right\}$.
$\tilde{x}_{1} \times \tilde{x}_{2}=\left\{x \in \mathfrak{R}: \min \left(\underline{x}_{1} \underline{x}_{2}, \underline{x}_{1} \bar{x}_{2}, \bar{x}_{1} \underline{X}_{2}, \bar{x}_{1} \bar{x}_{2}\right) \leq x \leq \max \left(\underline{x}_{1} \underline{x}_{2}, \underline{x}_{1} \bar{x}_{2}, \bar{x}_{1} \underline{x}_{2}, \bar{x}_{1} \bar{x}_{2}\right)\right\}$
$\tilde{x}_{1} / \tilde{x}_{2}=\tilde{x}_{1} \times\left[\frac{1}{\bar{x}_{2}}, \frac{1}{\underline{x}_{2}}\right]$
Definition 2.3: The distance between the two modal interval numbers $\widetilde{X}_{1}, \widetilde{x}_{2}$ is defined by

$$
d\left(\tilde{x}_{1}, \tilde{x}_{2}\right)=\max \left\{\left|\underline{x}_{1}-\underline{x}_{2}\right|,\left|\bar{x}_{1}-\bar{x}_{2}\right|\right\} \text {. Clearly } d \text { is a metric on } g I
$$

Definition 2.4: Let us define transformation $f: N \rightarrow g I, k \rightarrow f(k)=\tilde{x}_{k}$, then $\tilde{x}=\left(\tilde{x}_{k}\right)$ is called sequence of modal interval numbers. \tilde{x}_{k} is called the $k^{\text {th }}$ term of sequence $\tilde{x}=\left(\tilde{x}_{k}\right), \omega(g I)$ denote the set of all sequence of modal interval number with real terms.

Definition 2.5: Let $\tilde{x}=\left(\tilde{x}_{k}\right)=\left(\left[\underline{x}_{k}, \bar{x}_{k}\right]\right) \in \omega(g I)$. If $\underline{x}_{k}=\bar{x}_{k}$, for all $k \in N$, then the sequence $\tilde{x}=\left(\tilde{x}_{k}\right)$ is called degenerate sequence of modal interval numbers.

Definition 2.6: A sequence $\tilde{x}=\left(\tilde{x}_{k}\right)$ of modal interval numbers is said to be convergent to a modal \tilde{x}_{0} if for each $\varepsilon>0$ there exists a positive integer k_{0} such that $d\left(\tilde{x}_{k}, \tilde{x}_{0}\right)<\varepsilon$ for all $k \geq k_{0}$ and we denote it by $\lim _{k} \tilde{x}_{k}=\tilde{x}_{0}$. Equivalently $\lim _{k} \tilde{x}_{k}=\tilde{x}_{0}$ if and only if $\lim _{k} \underline{x}_{k}=\underline{x}_{0}$ and $\lim _{k} \bar{x}_{k}=\bar{x}_{0}$.

Definition 2.7: A sequence of modal interval numbers $\tilde{x}=\left(\tilde{x}_{k}\right)$ is said to be bounded if there exist a positive number A such that $d\left(\tilde{x}_{k}, \tilde{0}\right) \leq A$ for all $k \in N$.

Definition 2.8: A sequence of modal interval numbers $\tilde{X}=\left(\tilde{x}_{k}\right)$ is said to be Cauchy sequence of modal interval numbers if for every $\varepsilon>0$ there exists a $k_{0} \in N$ such that $d\left(\tilde{x}_{n}, \tilde{x}_{m}\right)<\varepsilon$ whenever $n, m \geq k_{0}$.

Definition 2.9: Let $X(g I)$ is the subset of $\omega(g I)$. A norm on $X(g I)$ is a non negative function $\|\cdot\|_{X(g I)}: X(g I) \rightarrow R^{+} \cup\{0\}$ that satisfies the following properties: For all $\tilde{x}, \tilde{y} \in X(g I)$ and $\alpha \in R$, for all $\tilde{x} \in X(g I)-\{0\}$,
i. $\|\tilde{X}\|_{X(g I)}>0$
ii. $\|\tilde{X}\|_{X(g I)}=0 \Leftrightarrow \tilde{x}=\tilde{0}$
iii. $\|\tilde{x}+\tilde{y}\|_{X(g I)} \leq\|\tilde{x}\|_{X(g I)}+\|\tilde{y}\|_{X(g I)}$
iv. $\|\alpha \tilde{x}\|_{X(g I)}=\mid \alpha\|\tilde{x}\|_{X(g I)}$.

Definition 2.10: A function f: $[0, \infty) \rightarrow[0, \infty)$ is called a modulus if
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

Remark 2.11:. If f_{1} and f_{2} are modulus functions, then $f_{1}+f_{2}$ is a modulus function and that the function f^{i} (I is a positive integer), the composition of a modulus function f with itself i times is also a modulus function.

Definition 2.12: Let $\mathrm{p}=\left(\mathrm{p}_{\mathrm{k}}\right)$ be a positive sequence of real numbers. If $0 \leq \mathrm{p}_{\mathrm{k}} \leq \operatorname{supp}_{\mathrm{k}}=\mathrm{H}, \mathrm{D}=\max \left(1,2^{\mathrm{H}-1}\right)$, then $\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\}$ for all k and $a_{k}, b_{k} \in \mathbb{R}$.

Definition 2.13: Let $=\left(\lambda_{n}\right)$. be a non-decreasing sequence of positive reals tending to infinity and $\lambda_{1}=1$ and $\lambda_{n+1} \leq \lambda_{n}+1$. The generalized de la Vallee-Poussin means is defined by

$$
t_{n}(\tilde{x})=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \tilde{x}_{k}
$$

Where $I_{n}=\left[n-\lambda_{n}+1, n\right]$. A sequence $\tilde{x}=\left(\tilde{x}_{k}\right)$ is said to be (V, λ) - summable to a number \tilde{L} if $t_{n}(\tilde{x}) \rightarrow \tilde{L}$ as $n \rightarrow \infty$.

3. MAIN RESULTS

Definition 3.1: Let f be a modulus function and $\mathrm{p}=\left(\mathrm{p}_{\mathrm{k}}\right)$ be any sequence of strictly positive real numbers. We define the following sequence of modal interval numbers.

$$
\begin{aligned}
& g I c\left(V, \lambda, f, \Delta^{r}, p\right)=\left\{\tilde{x} \in w(g I): \lim _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}-\tilde{L}\right\|\right)\right]^{p_{k}}=0, \text { for some } \tilde{L} \in g I\right\} \\
& g I c_{0}\left(V, \lambda, f, \Delta^{r}, p\right)=\left\{\tilde{x} \in w(g I): \lim _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}}=0\right\} \\
& g I l_{\infty}\left(V, \lambda, f, \Delta^{r}, p\right)=\left\{\tilde{x} \in w(g I): \sup _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}}<\infty\right\}
\end{aligned}
$$

where $\Delta^{0}(x)=\left(\tilde{x}_{k}\right), \Delta^{r} x=\left(\Delta^{r} \tilde{x}_{k}\right)=\left(\Delta^{r-1} \tilde{x}_{k}-\Delta^{r-1} \tilde{x}_{k+1}\right) \quad$ for all $k \in N$ and the binomial representation, $\Delta^{r} \tilde{x}_{k}=\sum_{v=0}^{r}(-1)^{v}\binom{r}{v} \tilde{x}_{k+v}$ for all $k \in N$.

Throughout the paper Z will denote any one of the notation $g I c, g I c_{0}$ and $g I l_{\infty}$.
In the case $f(x)=x, p_{k}=1$ for all $k \in N$ and $p_{k}=1$ for all $k \in N$, we shall write $\mathrm{Z}\left(V, \lambda, \Delta^{\mathrm{r}}\right)$ and $\mathrm{Z}\left(V, \lambda, f, \Delta^{\mathrm{r}}\right)$ instead of $\mathrm{Z}\left(V, \lambda, f, \Delta^{\mathrm{r}}, \mathrm{p}\right)$ respectively.

Theorem 3.2: Let the sequence $\left(p_{k}\right)$ be bounded. Then the sequence spaces of modal interval numbers $Z\left(V, \lambda, f, \Delta^{r}, p\right)$ are linear spaces of modal interval numbers.

Theorem 3.3: Let f be a modulus function. Then

$$
g I c_{0}\left(V, \lambda, f, \Delta^{r}, p\right) \subset g I c\left(V, \lambda, f, \Delta^{r}, p\right) \subset g I l_{\infty}\left(V, \lambda, f, \Delta^{r}, p\right)
$$

Proof: The first inclusion is obvious. We establish the second inclusion.
Let $\tilde{x} \in \operatorname{gIc}\left(V, \lambda, \mathrm{f}, \Delta^{\mathrm{r}}, \mathrm{p}\right)$. Then, by definition of f we have

$$
\begin{aligned}
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}} & \leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}-\tilde{L}\right\|\right)+f(\|\tilde{L}\|)\right]^{p_{k}} \\
& \leq D \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}-\tilde{L}\right\|\right)\right]^{p_{k}}+D \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}[f(\|\tilde{L}\|)]^{p_{k}}
\end{aligned}
$$

There exists a positive integer K_{L} such that $\|\tilde{\mathrm{L}}\| \leq K_{L}$. Hence, we have

$$
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}} \leq \frac{D}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}-\tilde{L}\right\|\right)\right]^{p_{k}}+\frac{D}{\lambda_{n}}\left[K_{L} f(1)\right]^{p_{k}} \lambda_{n}
$$

Since $\tilde{x} \in g I c\left(V, \lambda, f, \Delta^{r}, p\right)$, we have $\tilde{x} \in g I l_{\infty}\left(V, \lambda, f, \Delta^{r}, p\right)$ and this completes the proof.
Theorem 3.4: $g I c_{0}\left(V, \lambda, f, \Delta^{r}, p\right)$ is a paranormed (need not total paranorm) space of modal interval numbers with

$$
g_{\Delta}(\tilde{x})=\sup _{n}\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{M}}
$$

Where $M=\max \left(1, \sup p_{k}\right)$.

${ }^{1}$ S. Zion Chella Ruth*, ${ }^{2}$ K. Vembarasi /

Theorem 3.5: If $r \geq 1$, then the inclusion $Z\left(V, \lambda, f, \Delta^{r-1}, p\right) \subset Z\left(V, \lambda, f, \Delta^{r}, p\right)$ is strict. In general $Z\left(V, \lambda, f, \Delta^{i}\right) \subset Z\left(V, \lambda, f, \Delta^{r}\right)$ for all $i=1,2, \ldots, r-1$ and the inclusion is strict.

Proof: We give the proof for $\mathrm{Z}=\mathrm{gI} l_{\infty}$ only. It can be proved in a similar way for $\mathrm{Z}=\mathrm{gIc}_{0}$ and $\mathrm{Z}=$ gIc.
Let $\tilde{x} \in g I l_{\infty}\left(V, \lambda, f, \Delta^{r-1}\right)$. Then, we have

$$
\begin{equation*}
\sup _{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]<\infty \tag{3}
\end{equation*}
$$

By definition, we have

$$
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right] \leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r-1} \tilde{x}_{k}\right\|\right)\right]+\frac{1}{\lambda_{n}} \sum_{k \in I_{n}}\left[f\left(\left\|\Delta^{r-1} \tilde{x}_{k+1}\right\|\right)\right]<\infty
$$

Thus, $g I l_{\infty}\left(V, \lambda, f, \Delta^{r-1}\right) \subset g I l_{\infty}\left(V, \lambda, f, \Delta^{r}\right)$. Proceeding in this way one will have $g I l_{\infty}\left(V, \lambda, f, \Delta^{i}\right) \subset g I l_{\infty}\left(V, \lambda, f, \Delta^{r}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{r}-1$. Let $\lambda_{\mathrm{n}}=\mathrm{n}$ for each $\mathrm{n} \in \mathrm{N}$.

Let $\tilde{x}=\left(\left[k^{r}, k^{r}\right]\right)$ and $\mathrm{f}(\mathrm{x})=\mathrm{x}$. Then \tilde{x} belongs to $\mathrm{gl} l_{\infty}\left(V, \lambda, \mathrm{f}, \Delta^{\mathrm{r}}\right)$ but \tilde{x} does not belongs to $g I l_{\infty}\left(V, \lambda, f, \Delta^{r-1}\right)$. Hence the inclusion is strict.

Proposition 3.6: $g I c\left(V, \lambda, f, \Delta^{r-1}, p\right) \subset g I c_{0}\left(V, \lambda, f, \Delta^{r}, p\right)$.
Theorem 3.7: Let f, f_{1}, f_{2} be modulus functions. Then we have
(i). $Z\left(V, \lambda, f_{1}, \Delta^{r}, p\right) \subset Z\left(V, \lambda, f o f_{1}, \Delta^{r}, p\right)$.
(ii). $Z\left(V, \lambda, f_{1}, \Delta^{r}, p\right) \cap Z\left(V, \lambda, f_{2}, \Delta^{r}, p\right) \subset Z\left(V, \lambda, f_{1}+f_{2}, \Delta^{r}, p\right)$.

Proof: (i).Let $\left(\tilde{x}_{k}\right) \in \operatorname{gIc}_{0}\left(V, \lambda, \mathrm{f}_{1}, \Delta^{\mathrm{r}}, \mathrm{p}\right)$.
Let $\epsilon>0$ and choose δ with $0<\delta<1$ such that $\mathrm{f}(\mathrm{t})<\epsilon$ for $0 \leq t \leq \delta$.
Take $y_{k}=\mathrm{f}_{1}\left(\left\|\Delta^{\mathrm{r}} \tilde{x}_{\mathrm{k}}\right\|\right)$ and consider

$$
\begin{equation*}
\sum_{k \in I_{n}}\left[f\left(y_{k}\right)\right]^{p_{k}}=\sum_{1}\left[f\left(y_{k}\right)\right]^{p_{k}}+\sum_{2}\left[f\left(y_{k}\right)\right]^{p_{k}} \tag{4}
\end{equation*}
$$

Where the first summation is over $y_{k} \leq \delta$ and s second summation is over $y_{k}>\delta$.
Since f is continuous, we have

$$
\begin{equation*}
\sum_{1}\left[f\left(y_{k}\right)\right]^{p_{k}}<\lambda_{n} \epsilon^{H} \tag{5}
\end{equation*}
$$

For $y_{k}>\delta$, we get $y_{k}<\frac{y_{k}}{\delta} \leq 1+\frac{y_{k}}{\delta}$.
By definition of modulus function we have $y_{k}>\delta$,

$$
f\left(y_{k}\right) \leq 2 f(1) \frac{y_{k}}{\delta}
$$

Hence,

$$
\begin{equation*}
\frac{1}{\lambda_{n}} \sum_{2}\left[f\left(y_{k}\right)\right]^{p_{k}} \leq \max \left(1,\left(2 f(1) \delta^{-1}\right)^{H}\right) \frac{1}{\lambda_{n}} y_{k} \tag{6}
\end{equation*}
$$

From (5) and (6), we get $g I c_{0}\left(V, \lambda, f_{1}, \Delta^{r}, p\right) \subset g I c_{0}\left(V, \lambda, f o f_{1}, \Delta^{r}, p\right)$.
The proof of (ii) follows from the following inequality.

$$
\left[\left(f_{1}+f_{2}\right)\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}} \leq D\left[f_{1}\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}}+D\left[f_{2}\left(\left\|\Delta^{r} \tilde{x}_{k}\right\|\right)\right]^{p_{k}}
$$

Proposition 3.8: Let f be a modulus function. Then $Z\left(V, \lambda, \Delta^{r}, p\right) \subset Z\left(V, \lambda, f, \Delta^{r}, p\right)$.

REFERENCES

1. Dimitrova N.S., Markov S.M, Popova E.D., Extended interval arithmetics:new results and applications, Computer Arithmetic and Enclosure Methods, Atanassova, L., Herzberger, J.(Eds) Elsevier Sci. Publishers B.V., (1992), 225-232.
2. Dwyer P.S., Linear Computation, New York, Wiley, (1951).
3. Et, M. and Colak, R., On some generalized difference sequence spaces, Soochow J.Math., 21, pp. 377-386, (1965).
4. Fischer P.S., Automatic Propagated and Round-off Error Analysis, paper presented at the 13th national meeting of the Association for computing Machinary, June 1958.
5. Kamthan P.K and Gupta M., Sequence spaces and series, Lecture Notes in pure and applied Mathematics Marcel Dekkor, InC.New York, 65 (1981).
6. Kreyzing.E, Introduction Functional Analysis with Applications, John Wiley and Sons, Inc., Canada, 1978.
7. Kuldip Raj and Sunil K.Sharma., Difference sequence spaces defined by a sequence of modulus functions, Proyecciones Journal of Mathematics Vol. 30, N0.2, pp.189-199, Augest 2011. Universidad Catolica del Norte Antofagasta-Chile.
8. Kuo-Ping, Chiao., Fundamental properties of interval vector max-norm, Tamsui Oxford Journal of Mathematics, 18(2) (2002), 219-233.
9. Leindler.L, Uber die la Vallee-Pousinche Summierbarkeit Allgemeiner Ortogonalreihen, Acta Math. Acad. Sci. Hungar 16 (1965), 375-387
10. Maddox.I.J, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166.
11. Mikala Johnson, Interval Analysis, NARC, (2010).
12. Mikail Et, Yavuz Altin and Hifsi Altinok., On some Generalized Difference Sequence Spaces defined by a Modulus function, FILOMAT 170(2003), 23-33.
13. Moore R.E., Automatic Error Analysis in Digital Computation, LSMD-48421, Lockheed Missiles and space Company,(1959).
14. Moore R.E., Baker Kearfott R. and Michael J. Cloud, Introduction to Interval Analysis, Siam, 2009.
15. Nicolas Goze, Elisabeth Remm, An algebraic approach to the set of intervals, arXiv Math NA 0809.5150, v3(2009).
16. Nicolas Goze, Linear Algebra in the vector space of intervals, arXiv Math NA 1006. 5311, vo1. (2010).
17. Sengonul M. and Eryilmaz A., On the Sequence Spaces of Interval Numbers, Thai Journal of Mathematics, 8 (3) (2010), 503-510.
18. Sunaga T., Theory of an interval algebra and its application to numeric analysis, RAAG Memories II, Gankutsu Bunken Fukeyu-kai, Tokyo, (1958), 29-46.
19. Wilansky A, Summability through functional analysis, North Holland Mathematical studies, North Holland publishing Amsterdam, 85(1984).
[^1]
[^0]: Corresponding Author: ${ }^{1}$ S. Zion Chella Ruth*,
 ${ }^{1}$ Assistant professor, Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, India.

[^1]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2017. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

