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ABSTRACT. 

Gantos has shown that, if 𝑆 is a semilattice of right cancellative monoids with the (LC) condition and certain further 
conditions, then we can associate it with a semilattice of bisimple inverse semigroups. We show that one of Gantos’s 
conditions is equivalent to 𝑆 itself having the (LC) condition. We use this equivalence to define a simple form for the 
multiplication which is easier to deal with than the form which Gantos used. We provide a simple proof completely 
independent of Gantos’s result. 
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1. INTRODUCTION 
 
An interesting concept of semigroups of left I-quotients, based on the notion of semigroups of left quotients, was 
developed by the author, Gould, Cegarra and Petrich, in series of papers (see [3], [7] and [8]).  
 
Recall that a subsemigroup 𝑆 of a group 𝐺 is a left order in 𝐺 or 𝐺 is a group of left quotients of 𝑆 if any element in 𝐺 
can be written as 𝑎−1𝑏 where 𝑎, 𝑏 ∈ 𝑆. Ore and Dubreil [1] showed that a semigroup  𝑆 has a group of left quotients if 
and only if 𝑆 is right reversible and cancellative. By saying that a semigroup 𝑆 is right reversible we mean for 
any𝑎, 𝑏 ∈ 𝑆,𝑆𝑎 ∩ 𝑆𝑏 ≠ ∅. A different definition proposed by Fountain and Petrich in 1985 [5] was restricted to 
completely 0-simple semigroups of left quotients  and then shortly after to that of semigroup of left quotients by  Gould 
[10]; this idea has been extensively developed by number of authors. A subsemigroup  𝑆 of a semigroup  𝑄 is a left 
order  in 𝑄 if every element in  𝑄 can be written as  𝑎♮𝑏 where  𝑎, 𝑏 ∈ 𝑆 and 𝑎♮ is an inverse of 𝑎  in a subgroup of 𝑄. 
In this case we say that  𝑄 is a semigroup of left quotients of  𝑆. Right orders and semigroup of right quotients are 
defined dually. If  𝑆 is both a left and right order in 𝑄, then  𝑆 is an order in 𝑄 and 𝑄 is a semigroup of quotients of 𝑆. 
 
The author and Gould in [7] have introduced the following definition of left I-orders in inverse semigroups: A 
subsemigroup 𝑆 of an inverse semigroup 𝑄 is a left I-order in 𝑄 and  𝑄 is a semigroup of left I-quotients of  𝑆 if every 
element in 𝑄 can be written as 𝑎−1𝑏 where   𝑎, 𝑏 ∈ 𝑆 and  𝑎−1 is the inverse of  𝑎  in the sense of an inverse semigroup 
theory. Right I-orders and semigroups of right I-quotients are defined dually. If 𝑆 is a left and right I-order in an inverse 
semigroup 𝑄, we say that  𝑆 is an I-order in 𝑄 and 𝑄 is a semigroup of I-quotients of 𝑆. Let 𝑆 be a left I-order in 𝑄. 
Then 𝑆 is straight in 𝑄 if every 𝑞 ∈ 𝑄 can be written as 𝑎−1𝑏 where 𝑎, 𝑏 ∈ 𝑆 and 𝑎 ℛ 𝑏 in 𝑄. 
 
Clifford [1] showed that any right cancellative monoid 𝑆 with the (LC) condition is the ℛ-class of the identity of its 
inverse hull ∑(𝑆). Moreover, (in our terminology) S is a left I-order in ∑(𝑆). By saying that a semigroup S has the (LC) 
condition we mean for any 𝑎, 𝑏 ∈ 𝑆 there is an element 𝑐 ∈ 𝑆 such that 𝑆𝑎 ∩ 𝑆𝑏 = 𝑆𝑐. Clifford established that 
precisely bisimple inverse monoids can be regarded as inverse hulls of right cancellative monoids S satisfying the (LC) 
condition. The author and Gould in [7] have extended Clifford’s work to a left ample semigroup with (LC). It is worth 
pointing out that the inverse hull of the left ample semigroup need not be bisimple.  
 
Gantos [11] has developed a structure for semigroups 𝑄 which are semilattices 𝑌 of bisimple inverse monoids 𝑄𝛼 , such 
that the set of identities elements forms a subsemigroup. His structure is determined by semigroups 𝑆 which are strong 
semilattices 𝑌 of right cancellative monoids 𝑆𝛼 ,𝛼 ∈ 𝑌 with (LC) condition and certain morphisms satisfying two 
conditions.  
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In this paper, we give another proof of this result. We show that one of Gantos’s conditions is equivalent to 𝑆 itself 
having the (LC) condition. We link this with Clifford’s result and our definition of left I-order to introduce a new 
aspect for such semigroups which we can read  as follows: If 𝑆 is a semilattice of right cancellative monoids with (LC) 
and 𝑆 has (LC), then 𝑆 is a left I-order in a semilattice of inverse hull semigroups. Moreover, we proved that such 𝑆 is a 
left I-order in a strong semilattice of inverse hull semigroups. 
 
In Section 2 we give some preliminaries. Section 3 contains our new proof of Gantos’s theorem. 
 
2. PRELIMINARIES AND NOTATIONS 
 
We begin by recalling some of the basic facts about the relations ℛ∗ and ℒ∗. Let S be a semigroup and 𝑎, 𝑏 ∈ 𝑆. We call 
elements 𝑎 and 𝑏 to be related by ℛ∗ if and only if 𝑎 and 𝑏 are related by ℛ in some oversemigroup of 𝑆. Dually, we 
can define the relation ℒ∗. An alternative description of ℛ∗ is provided by the following lemma. 
 
Lemma 2.1 [4]: Let S be a semigroup and 𝑎, 𝑏 ∈ 𝑆. Then the following are equivalent  

(i)  𝑎 ℛ∗𝑏; 
(ii) for all  𝑥,𝑦 ∈ 𝑆1 𝑥𝑎 = 𝑦𝑎 if and only if 𝑥𝑏 = 𝑦𝑏.  

As an easy consequence of Lemma 1.1 we have: 
 
Lemma 2.2[4]: Let 𝑆 be a semigroup, 𝑎 ∈ 𝑆 and 𝑒 be an idempotent of 𝑆. Then the following conditions are 
equivalent: 

(i)  𝑎 ℛ∗ 𝑒 
(ii)  𝑎 = 𝑒𝑎 and for all 𝑥,𝑦 ∈ 𝑆1, 𝑥𝑎 = 𝑦𝑎 implies that 𝑥𝑒 = 𝑦𝑒. 

It is well-known that Green star relations ℛ∗ and ℒ∗ on a semigroup 𝑆 are generalizations of the usual Green’s relations 
ℛ and ℒ on 𝑆, respectively.  
 
A semigroup 𝑆 is left adequate if every ℛ∗-class of 𝑆 contains an idempotent and the idempotents 𝐸(𝑆) of 𝑆 form a 
semilattice. In this case every ℛ∗-class of 𝑆 contains a unique idempotent. We denote the idempotent in the ℛ∗-class of 
𝑎 by 𝑎+. A left adequate monoid 𝑆 is left ample  if (𝑎𝑒)+𝑎 = 𝑎𝑒 for each 𝑎 ∈ 𝑆 and 𝑒 ∈ 𝐸(𝑆). 
 
We can note easily that, any right cancellative monoid is left ample. By a right cancellative semigroup we mean, a 
semigroup 𝑆 such that for all 𝑥,𝑦 ∈ 𝑆  

𝑥𝑧 = 𝑦𝑧 implies 𝑥 = 𝑦. 
 
Following [9], for any left ample semigroup 𝑆 we can construct an embedding of  𝑆 into the symmetric inverse 
semigroup IS as follows. For each 𝑎 ∈ 𝑆 we let 𝜌𝑎 ∈IS be given by  

dom 𝜌𝑎 = 𝑆𝑎+ 𝑎𝑛𝑑 im 𝜌𝑎 = 𝑆𝑎   
and for any 𝑥 ∈ dom 𝜌𝑎. 

𝑥𝜌𝑎 = 𝑥𝑎. 
Then the map 𝜃𝑆:𝑆 → IS  is a (2,1)-embedding.   
 
The inverse hull of a left ample semigroup 𝑆 is the inverse subsemigroup ∑(𝑆) of IS generated by im 𝜃𝑆. If  𝑆 is a right 
cancellative monoid, then for any 𝑎 ∈ 𝑆 we have 𝑎+ = 1. Then  𝜌𝑎:𝑆 → 𝑆𝑎 is defined by  

𝑥𝜌𝑎 = 𝑥𝑎  for each 𝑥 in 𝑆. 
 
Hence dom 𝜌𝑎 = 𝑆 =  dom 𝐼𝑆, giving that im 𝜃𝑆 ⊆ 𝑅1 where 𝑅1 is the ℛ -class of 𝐼𝑆  in IS.  
 
As in [7] we say that a (2,1)-morphism 𝜙:𝑆 → 𝑇, where 𝑆 and 𝑇 are left ample semigroups with Condition (LC), is 
(LC)-preserving if, for any 𝑏, 𝑐 ∈ 𝑆 with 𝑆𝑏 ∩ 𝑆𝑐 = 𝑆𝑤, we have that 

𝑇(𝑏𝜙) ∩ 𝑆(𝑐𝜙) = 𝑆(𝑤𝜙). 
 
Let 𝑆 be a left I-order in an inverse semigroup 𝑄. The Generalisation of Green’s relations ℛ∗  and ℒ∗  are on 𝑆. To 
emphasis that ℛ and L are relations 𝑄, we may write  ℛ𝑄 and  ℒ𝑄 or ℛ in 𝑄 and ℒ in 𝑄. 
 
We will make heavy use of the following result   [7, Corollary 3.10]. 
 
Lemma 2.3: [2,7] The following conditions are equivalent for a right cancellative monoid 𝑆: 

(i)  ∑(𝑆) is bisimple; 
(ii) 𝑆 has Condition (LC); 
(iii) 𝑆 is a left I-order in ∑(𝑆). 

If the above conditions hold, then 𝑆 is the ℛ-class of the identity of ∑(𝑆). Further, ∑(𝑆) is proper if and only if 𝑆 is 
cancellative. 
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Conversely, the ℛ-class of the identity of any bisimple inverse monoid is right cancellative with Condition (LC). 
 
To prove our main result, we will also need the following lemma. 
 
Lemma 2.4: (cf. [6]) Let 𝑆 be a semilattice 𝑌 of right cancellative monoids 𝑆𝛼 , 𝛼 ∈ 𝑌. Let 𝑒𝛼 denote the identity of  
𝑆𝛼 , 𝛼 ∈ 𝑌. Then  

(1)  𝑒𝛽𝑎𝛼 = 𝑎𝛼𝑒𝛽 if 𝛼 ≥ 𝛽;  
(2)  𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝛽 where 𝑒𝛼, 𝑒𝛼𝛽 are the identities of 𝑆𝛼 and  𝑆𝛼𝛽 respectively; 
(3) 𝐸(𝑆) is a semilattice; 
(4)  the idempotents are central;  
(5) for any 𝑎, 𝑏 ∈ 𝑆, 𝑎 ℛ∗ 𝑏 in 𝑆 if and only if 𝑎, 𝑏 ∈ 𝑆𝛼  for some 𝛼 in 𝑌; 
(6)  𝑆 is a left ample semigroup.   
 

Proof: (1) Let 𝑒𝛽 ∈ 𝑆𝛽 and 𝑎𝛼 ∈ 𝑆𝛼 for some 𝛼,𝛽 ∈ 𝑌, where 𝛼 ≥ 𝛽. Then  𝑒𝛽𝑎𝛼  and 𝑎𝛼𝑒𝛽 are in 𝑆𝛼𝛽 = 𝑆𝛽. Hence  
𝑒𝛽𝑎𝛼 = (𝑒𝛽𝑎𝛼)𝑒𝛽 = 𝑒𝛽(𝑎𝛼𝑒𝛽) = 𝑎𝛼𝑒𝛽 . 

(2) Let 𝑒𝛼 ∈ 𝑆𝛼  and 𝑒𝛽 ∈ 𝑆𝛽  be the identities of 𝑆𝛼 and 𝑆𝛽 respectively. From (1) it follows that  
𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝑒𝛼𝛽𝑒𝛼𝛽 . 

 
Hence (𝑒𝛼𝑒𝛼𝛽)𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝑒𝛼𝛽, that is, 𝑒𝛼𝑒𝛼𝛽 is an idempotent in 𝑆𝛼𝛽 . But there is only one idempotent in 𝑆𝛼𝛽 , so that 
𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝛽 = 𝑒𝛼𝛽𝑒𝛼 . 
(3) Let 𝑒𝛼 ∈ 𝑆𝛼  and 𝑒𝛽 ∈ 𝑆𝛽  for some 𝛼,𝛽 ∈ 𝑌. Then  𝑒𝛼𝑒𝛽 ∈ 𝑆𝛼𝛽  and from (2) we have that 

𝑒𝛼𝑒𝛽 = 𝑒𝛼𝑒𝛽𝑒𝛼𝛽 = 𝑒𝛼𝑒𝛼𝛽 = 𝑒𝛼𝛽 . 
(4)  Let 𝑒𝛼 ∈ 𝑆𝛼  and  𝑒𝛽 ∈ 𝑆𝛽 for some 𝛼,𝛽 ∈ 𝑌. Then  𝑒𝛼𝑎𝛽 ∈ 𝑆𝛼𝛽 and from (1) and (2) we get  

𝑒𝛼𝑎𝛽𝑒𝛼𝛽 = 𝑒𝛼𝑒𝛼𝛽𝑎𝛽 = 𝑒𝛼𝛽𝑎𝛽 = 𝑎𝛽𝑒𝛼𝛽 = 𝑎𝛽𝑒𝛼𝑒𝛼𝛽 . 
 
Since 𝑒𝛼𝛽 is the identity of 𝑆𝛼𝛽 , we have that 𝑒𝛼𝑎𝛽 = 𝑎𝛽𝑒𝛼.  
 
(5) Suppose that 𝑎 ℛ∗ 𝑏 in 𝑆 where 𝑎 ∈ 𝑆𝛼 and 𝑏 ∈ 𝑆𝛽. Then 𝑒𝛽𝑎 = 𝑒𝛽𝑒𝛼𝑎  and so 𝑒𝛽𝑏 = 𝑒𝛽𝑒𝛼𝑏 which implies that  
𝛽 ≤ 𝛼. Dually,  𝛼 ≤ 𝛽 and hence  𝛼 = 𝛽.  
 
Conversely, suppose that 𝑏 ∈ 𝑆𝛼 and 𝑥𝑏 = 𝑦𝑏 for some  𝑥,𝑦 ∈ 𝑆 where  𝑥 ∈ 𝑆𝛽 and 𝑦 ∈ 𝑆𝛾. Then 𝛽𝛼 = 𝛼𝛾 as    
𝑥𝑏,𝑦𝑏 ∈ 𝑆𝛼𝛽 = 𝑆𝛼𝛾. Thus 𝑥𝑏𝑒𝛼𝛽 = 𝑦𝑏𝑒𝛼𝛽 so that from (1) we get 𝑥𝑒𝛼𝛽𝑏 = 𝑦𝑒𝛼𝛽𝑏, and so 𝑥𝑒𝛼𝛽(𝑏𝑒𝛼𝛽) = 𝑦𝑒𝛼𝛽(𝑏𝑒𝛼𝛽). 
Now  𝑥𝑒𝛼𝛽 ,𝑦𝑒𝛼𝛽 , 𝑏𝑒𝛼𝛽 all lie in 𝑆𝛼𝛽 which is right cancellative, so that 𝑥𝑒𝛼𝛽 = 𝑦𝑒𝛼𝛽. As in the proof of (3) we have 
that 𝑒𝛼𝑒𝛽 = 𝑒𝛽𝑒𝛼 = 𝑒𝛼𝛽. Hence 𝑥𝑒𝛽𝑒𝛼 = 𝑦𝑒𝛽𝑒𝛼 = 𝑦𝑒𝛾𝑒𝛼 and then 𝑥𝑒𝛼 = 𝑦𝑒𝛼. Also, if 𝑥𝑏 = 𝑏, that is, 𝑥𝑏 = 𝑒𝛼𝑏, then  
𝑥𝑒𝛼 = 𝑒𝛼𝑒𝛼 = 𝑒𝛼. Thus 𝑏 ℛ∗𝑒𝛼 in 𝑆. Hence for any 𝑎 ∈ 𝑆𝛼 we have that 𝑎 ℛ∗𝑏 in 𝑆 as required. 
 
(6) From (3) we have that 𝐸(𝑆) is a semilattice. By (5) we deduce that each  ℛ∗-class contains an idempotent which 
must be unique as  𝐸(𝑆) is a semilattice. Notice that if  𝑎 ∈ 𝑆𝛼, then  𝑎+ = 𝑒𝛼. To see that 𝑆 is  left ample, let 𝑎 ∈ 𝑆𝛼 
and  𝑒𝛽 ∈ 𝑆𝛽.  We have to show that 𝑎𝑒𝛽 = (𝑎𝑒𝛽)+𝑎. Using (1) and the fact that 𝑒𝛼𝑒𝛽 = 𝑒𝛽𝑒𝛼 = 𝑒𝛼𝛽 as in the proof of 
(3) we get 

(𝑎𝑒𝛽)+𝑎 = 𝑒𝛼𝛽𝑎 = 𝑎𝑒𝛼𝛽 = 𝑎𝑒𝛼𝑒𝛽 = 𝑎𝑒𝛽 
as required. 
 
3. PROOF OF THE THEOREM 
 
Gantos’s main theorem states: Let 𝑆 be a strong semilattice 𝑌 of right cancellative monoids  𝑆𝛼 , 𝛼 ∈ 𝑌 with (LC) 
condition and connecting morphisms 𝜑𝛼,𝛽 ,𝛼 ≥ 𝛽. Suppose in addition that (C2) holds, where (C2):                                 
if 𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼  for all 𝑎𝛼 , 𝑏𝛼 , 𝑐𝛼 ∈ 𝑆𝛼 ,  then  

𝑆𝛽(𝑎𝛼𝜑𝛼,𝛽) ∩ 𝑆𝛽(𝑏𝛼𝜑𝛼,𝛽) = 𝑆𝛽(𝑐𝛼𝜑𝛼,𝛽) 
for all 𝛼,𝛽 ∈ 𝑌 with 𝛼 ≥ 𝛽. In the terminology of Section 2 (C2) says that the connecting morphisms are (LC)-
preserving. He obtained a semigroup 𝑄 which is a semilattice 𝑌 of bisimple inverse semigroup 𝑄𝛼 , with identity 
𝑒𝛼 ,𝛼 ∈ 𝑌 such that {𝑒𝛼: 𝛼 ∈ 𝑌} is a subsemigroup of 𝑄. In fact, 𝑄𝛼  is the inverse hull of 𝑆𝛼 for each 𝛼 ∈ 𝑌. We show 
that (C2) is equivalent to 𝑆 having the (LC) condition. We then reprove Gantos’s result. In Theorems 3.13 and 3.15, we 
provide a simple proof completely independent of [11].  
 
Let ∑(𝑆) be the inverse hull of left I-quotents of a right cancellative monoid 𝑆 with (LC). In the rest of this section we 
identify 𝑆 with 𝑆𝜃𝑆, where 𝜃𝑆  is the embedding of 𝑆 into IS. We write 𝑎−1𝑏 short for the element 𝜌𝑎−1𝜌𝑏of  ∑(𝑆) 
where 𝑎, 𝑏 ∈ 𝑆. 
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Theorem 3.1: Let 𝑄 = [𝑌; 𝑆𝛼] be a semilattice of right cancellative monoids 𝑆𝛼 with identity 𝑒𝛼, 𝛼 ∈ 𝑌. Suppose that 
𝑆, and each 𝑆𝛼 , has (LC). Then 𝑄 = [𝑌;∑𝛼] is a semilattice of bisimple inverse monoids (where ∑𝛼 is the inverse hull 
of  𝑆𝛼)  and the multiplication in 𝑄 is defined by: for 𝑎−1𝑏 ∈ ∑𝛼, 𝑐−1𝑑 ∈ ∑𝛽, 

𝑎−1𝑏𝑐−1𝑑 = (𝑡𝑎)−1(𝑟𝑑) 
where 𝑆𝛼𝛽𝑏 ∩ 𝑆𝛼𝛽𝑐 = 𝑆𝛼𝛽𝑤 and  𝑡𝑏 = 𝑟𝑐 = 𝑤 for some  𝑡, 𝑟 ∈ 𝑆𝛼𝛽 .  
 
Proof: By Lemma 2.3, each 𝑆𝛼  is a left I-order in ∑𝛼 where 𝑆𝛼 is the ℛ -class of the identity of ∑𝛼. We prove the 
theorem by means of a sequence of lemmas. We begin by the following lemma due to Clifford. 
 
Lemma 3.2: (cf. [2, Lemma 4.1]) Let 𝑇 be a right cancellative monoid. Then for 𝑎, 𝑏 ∈ 𝑇 we have 

 𝑎 ℒ 𝑏 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑢𝑏, 
for some unit 𝑢 of 𝑇. 
 
Lemma 3.3: Let 𝑄 be an inverse monoid. Let 𝑎, 𝑏, 𝑐,𝑑 ∈ 𝑅1. Then  

𝑎−1𝑏 = 𝑐−1𝑑 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎 = 𝑢𝑐 𝑎𝑛𝑑 𝑏 = 𝑢𝑑, 
for some unit  𝑢.  
 
Proof: Suppose that 𝑎−1𝑏 = 𝑐−1𝑑  where  𝑎, 𝑏, 𝑐,𝑑 ∈ 𝑅1. Since 𝑎, 𝑏, 𝑐,𝑑 ∈ 𝑅1we have that   

𝑎−1 ℛ 𝑎−1𝑏 = 𝑐−1𝑑 ℛ 𝑐−1 𝑖𝑛 𝑄. 
Then 𝑎 ℒ 𝑐 in 𝑄. Since 𝑎 ℛ 𝑏, it follows that 𝑏 = 𝑎𝑎−1𝑏 = 𝑎𝑐−1𝑑. We claim that  𝑎𝑐−1is a unit. As 𝑎 ℒ 𝑐, it follows 
that 𝑎𝑐−1ℒ 𝑐𝑐−1 = 1. Since 𝑐−1 ℛ 𝑐−1 we have that 1 = 𝑎𝑐−1 ℛ  𝑎𝑐−1 and hence 𝑢 = 𝑎𝑐−1 is a unit, and we obtain 
𝑏 = 𝑢𝑑. Since 𝑢 = 𝑎𝑐−1 and 𝑎 ℒ 𝑐 we have that  𝑢𝑐 = 𝑎𝑐−1𝑐 = 𝑎. The converse is clear.  
 
Lemma 3.4: The multiplication is well-defined. 
 
Proof: Suppose that we have elements 𝑎1, 𝑏1, 𝑎2, 𝑏2 of 𝑆𝛼, 𝑐1,𝑑1, 𝑐2,𝑑2 of 𝑆𝛽  such that 

𝑎1−1𝑏1 = 𝑎2−1𝑏2 in ∑𝛼  and 𝑐1−1𝑑1 = 𝑐2−1𝑑2 in ∑𝛽 . 
By Lemma 3.3,  

𝑎1 = 𝑢1𝑎2,  𝑏1 = 𝑢1𝑏2 
for some unit  𝑢1 ∈ 𝑆𝛼   and  

𝑐1 = 𝑣1𝑐2,  𝑑1 = 𝑣1𝑑2 
for some unit 𝑣1 ∈ 𝑆𝛽. By definition, 

𝑎1−1𝑏1𝑐1−1𝑑1 = (𝑡1𝑎1)−1(𝑟1𝑑1) 
Where 

𝑆𝛼𝛽𝑏1 ∩ 𝑆𝛼𝛽𝑐1 = 𝑆𝛼𝛽𝑤1 and 𝑡1𝑏1 = 𝑟1𝑐1  = 𝑤1  
for some 𝑡1, 𝑟1,𝑤1 ∈ 𝑆𝛼𝛽 . Also, 

𝑎2−1𝑏2𝑐2−1𝑑2 = (𝑡2𝑎2)−1(𝑟2𝑑2) 
Where 

𝑆𝛼𝛽𝑏2 ∩ 𝑆𝛼𝛽𝑐2 = 𝑆𝛼𝛽𝑤2 and 𝑡2𝑏2 = 𝑟2𝑐2  = 𝑤2 
for some 𝑡2, 𝑟2,𝑤2 ∈ 𝑆𝛼𝛽 . 
 
We have to show that  𝑎1−1𝑏1𝑐1−1𝑑1 = 𝑎2−1𝑏2𝑐2−1𝑑2, that is,  

(𝑡1𝑎1)−1(𝑟1𝑑1) = (𝑡2𝑎2)−1(𝑟2𝑑2) 
and to do this we need to prove that 

𝑡1𝑎1 = 𝑢𝑡2𝑎2 and  𝑟1𝑑1 = 𝑢𝑟2𝑑2 
for some unit 𝑢 in 𝑆𝛼𝛽 , using Lemma 3.3. We aim to prove that 𝑆𝛼𝛽𝑤1 = 𝑆𝛼𝛽𝑤2. We get this if we prove that      
𝑆𝛼𝛽𝑏1 = 𝑆𝛼𝛽𝑏2 and 𝑆𝛼𝛽𝑐1 = 𝑆𝛼𝛽𝑐2. 
 
Since  𝑏1 = 𝑢1𝑏2, using Lemma 2.4, we have that  

𝑒𝛼𝛽𝑏1 = 𝑒𝛼𝛽𝑢1𝑏2 = (𝑢1𝑒𝛼𝛽)𝑏2 = (𝑢1𝑒𝛼𝛽)(𝑒𝛼𝛽𝑏2) 
and as 𝑏2 = 𝑢1−1𝑏1,  we have 

𝑆𝛼𝛽𝑏1 = 𝑆𝛼𝛽𝑒𝛼𝛽𝑏1 = 𝑆𝛼𝛽𝑒𝛼𝛽𝑏2 = 𝑆𝛼𝛽𝑏2. 
 
Similarly, 𝑆𝛼𝛽𝑒𝛼𝛽𝑐1 = 𝑆𝛼𝛽𝑒𝛼𝛽𝑐2. Hence 𝑆𝛼𝛽𝑤1 = 𝑆𝛼𝛽𝑤2 so that 𝑤1 ℒ 𝑤2 in 𝑆𝛼𝛽 . By Lemma 3.2,  𝑤1 = 𝑙𝑤2 for some 
unit 𝑙 in  𝑆𝛼𝛽 . Then 

𝑤1 = 𝑡1𝑏1 = 𝑙𝑤2 = 𝑙(𝑡2𝑏2) = 𝑙𝑡2(𝑢1
−1𝑏1). 

But, by Lemma 2.4 𝑎1 ℛ∗𝑏1  in 𝑆, it follows that  𝑡1𝑎1 = 𝑙𝑡2𝑢1−1𝑎1 = 𝑙𝑡2𝑎2. Since  
𝑤1 = 𝑟1𝑐1 = 𝑙𝑤2 = 𝑙𝑟2𝑐2 = 𝑙𝑟2𝑣1−1𝑐1 

and 𝑐1 ℛ∗𝑑1 in 𝑆, again using Lemma 2.4 we have 
𝑟1𝑑1 = 𝑙𝑟2𝑣1−1𝑑1 = 𝑙𝑟2𝑣1−1𝑣1𝑑2 = 𝑙𝑟2𝑑2 

as required. 
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In order to prove the associative law we need to introduce subsidiary lemmas. The proof of the next lemma is depends 
only on the fact that 𝑆𝛼 is right cancellative and the proof can be found in [11].  
 
Lemma 3.5: (𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼)𝑐𝛼 = 𝑆𝛼𝑎𝛼𝑐𝛼 ∩ 𝑆𝛼𝑏𝛼𝑐𝛼  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝛼 ,𝑏𝛼 , 𝑐𝛼 ∈ 𝑆𝛼 . 
 
In the following lemma we prove the equivalence between  𝑆 having the (LC) condition and (C2) mentioned in the 
introduction.  
 
Lemma 3.6: Let 𝑆 = [𝑌; 𝑆𝛼] be a semilattice 𝑌 of right cancellative monoids 𝑆𝛼 with the (LC) condition. Then 𝑆 has 
(LC) if and only if whenever 𝛽 ≤ 𝛼, if 𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼  (𝑎𝛼 , 𝑏𝛼 , 𝑐𝛼 ∈ 𝑆𝛼), then  if  

𝑆𝛽(𝑎𝛼𝑒𝛽) ∩ 𝑆𝛽(𝑏𝛼𝑒𝛽) = 𝑆𝛽(𝑐𝛼𝑒𝛽). 
  
Proof: Suppose that  𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼  implies  𝑆𝛽𝑎𝛼 ∩ 𝑆𝛽𝑏𝛼 = 𝑆𝛽𝑐𝛼   for all 𝛽 ≤ 𝛼. Let  𝑎 ∈ 𝑆𝛼 and 𝑏 ∈ 𝑆𝛽  for 
some 𝛼,𝛽 ∈ 𝑌.  Then  𝑎𝑒𝛼𝛽 , 𝑒𝛼𝛽𝑏 ∈ 𝑆𝛼𝛽  so that as  𝑆𝛼𝛽   has (LC) we know that  

𝑆𝛼𝛽(𝑒𝛼𝛽𝑎) ∩ 𝑆𝛼𝛽(𝑒𝛼𝛽𝑏) = 𝑆𝛼𝛽𝑐 
for some 𝑐 ∈ 𝑆𝛼𝛽 . Now, let  𝑑 ∈ 𝑆𝑎 ∩ 𝑆𝑏,  say 𝑑 ∈ 𝑆𝛾 so that 𝛾 ≤ 𝛼𝛽  and  𝑑 = 𝑢𝑎 = 𝑣𝑏 for some 𝑢, 𝑣 ∈ 𝑆.  By 
assumption,   

𝑆𝛾(𝑒𝛼𝛽𝑎)𝑒𝛾 ∩ 𝑆𝛾�𝑒𝛼𝛽𝑏�𝑒𝛾 = 𝑆𝛾𝑐𝑒𝛾 . 
Then  𝑆𝛾𝑎𝑒𝛾 ∩ 𝑆𝛾𝑏𝑒𝛾 = 𝑆𝛾𝑐𝑒𝛾. Now, 

𝑑 = 𝑢𝑎 = 𝑣𝑏 = �𝑒𝛾𝑢�𝑎 = �𝑒𝛾𝑣�𝑏 ∈ 𝑆𝛾𝑎 ∩ 𝑆𝛾𝑏 = 𝑆𝛾𝑐 
 
as 𝑒𝛾𝑢, 𝑒𝛾𝑣 ∈ 𝑆𝛾. Then 𝑑 ∈ 𝑆𝛾𝑐 and so 𝑆𝑑 ⊆ 𝑆𝑐. Thus 𝑆𝑎 ∩ 𝑆𝑏 ⊆ 𝑆𝑐. Also, 𝑐 ∈ 𝑆𝛼𝛽𝑎 ⊆ 𝑆𝑎  and 𝑐 ∈ 𝑆𝛼𝛽𝑏 ⊆ 𝑆𝑏.   
 
Thus 𝑐 ∈ 𝑆𝑎 ∩ 𝑆𝑏. Hence 𝑆𝑐 ⊆ 𝑆𝑎 ∩ 𝑆𝑏  and we get 𝑆𝑐 = 𝑆𝑎 ∩ 𝑆𝑏.  
 
On the other hand, suppose that 𝑆 has (LC) and let 𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼 , so that 𝑐𝛼 = 𝑢𝛼𝑏𝛼 = 𝑣𝛼𝑏𝛼 for some     
𝑢𝛼 , 𝑣𝛼 ∈ 𝑆𝛼. We claim that 

𝑆𝑎𝛼 ∩ 𝑆𝑏𝛼 = 𝑆𝑐𝛼 . 
As 𝑆 has the (LC) condition there exists  𝑑 ∈ 𝑆𝜉 such that  𝑆𝑎𝛼 ∩ 𝑆𝑏𝛼 = 𝑆𝑑. Then 𝑑 = 𝑘𝑎𝛼 = ℎ𝑏𝛼  for some 𝑘, ℎ ∈ 𝑆 
and so 𝜉 ≤ 𝛼. Since 𝑐𝛼 ∈ 𝑆𝑎𝛼 ∩ 𝑆𝑏𝛼 we have that 𝑐𝛼 = 𝑟𝑑 for some 𝑟 ∈ 𝑆 so that  𝛼 ≤ 𝜉. Hence  𝛼 = 𝜉,  that is,  
𝑑 ∈ 𝑆𝛼  and we can write  𝑑 = 𝑑𝛼.  
 
From 𝑐𝛼 = 𝑟𝑑 we have that 𝑐𝛼 = (𝑒𝛼𝑟)𝑑𝛼 ∈ 𝑆𝛼𝑑𝛼  so that 𝑆𝛼𝑐𝛼 ⊆ 𝑆𝛼𝑑𝛼.  
 
Since 𝑑𝛼 = 𝑘𝑎𝛼 = ℎ𝑏𝛼 = (𝑒𝛼𝑘)𝑎𝛼 = (𝑒𝛼ℎ)𝑏𝛼 , we have that 𝑑𝛼 ∈ 𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼 , and so 𝑆𝛼𝑑𝛼 ⊆ 𝑆𝛼𝑐𝛼.  Thus 
𝑆𝛼𝑑𝛼 = 𝑆𝛼𝑐𝛼. Hence  𝑑𝛼  ℒ 𝑐𝛼  in 𝑆𝛼, so that 𝑑𝛼 ℒ 𝑐𝛼 in  𝑆. We have  

𝑆𝑎𝛼 ∩ 𝑆𝑏𝛼 = 𝑆𝑐𝛼 . 
Hence our claim is established. 
 
Now let  𝛽 ≤ 𝛼. Since 𝑆𝛽 has the (LC) condition and 𝑒𝛽𝑎𝛼 , 𝑒𝛽𝑏𝛼 ∈ 𝑆𝛽 we have that  

𝑆𝛽(𝑒𝛽𝑎𝛼) ∩ 𝑆𝛽(𝑒𝛽𝑏𝛼) = 𝑆𝛽𝑤𝛽 
for some 𝑤𝛽 ∈ 𝑆𝛽. We aim to show that 𝑆𝛽(𝑒𝛽𝑐𝛼) = 𝑆𝛽𝑤𝛽 . 
 
Since 𝑤𝛽 ∈ 𝑆𝛽𝑎𝛼 ∩ 𝑆𝛽𝑏𝛼 ⊆ 𝑆𝑎𝛼 ∩ 𝑆𝑏𝛼 we have that  𝑤𝛽 ∈ 𝑆𝑐𝛼 and so 𝑤𝛽 = 𝑙𝑐𝛼  for some 𝑙 ∈ 𝑆, say 𝑙 ∈ 𝑆𝜂 so that 
𝜂 ≥ 𝛽. Since 𝑤𝛽 = 𝑒𝛽𝑤𝛽 = 𝑒𝛽𝑙𝑐𝛼  and 𝜂 ≥ 𝛽, it follows that 𝑤𝛽 = 𝑒𝛽𝑤𝛽 = 𝑙𝑒𝛽𝑐𝛼 , by Lemma 2.4. Then                   
𝑤𝛽 = (𝑙𝑒𝛽)(𝑒𝛽𝑐𝛼) ∈ 𝑆𝛽𝑐𝛼  so that  𝑆𝛽𝑤𝛽 ⊆   𝑆(𝑒𝛽𝑐𝛼).  
 
Conversely, since 𝑐𝛼 = 𝑢𝛼𝑐𝛼 = 𝑣𝛼𝑏𝛼 and 𝛽 ≤ 𝛼, it follows that  𝑒𝛽𝑐𝛼 = 𝑒𝛽𝑢𝛼𝑒𝛽𝑎𝛼 = 𝑒𝛽𝑣𝛼𝑒𝛽𝑏𝛼, by Lemma 2.4. It 
follows that 𝑒𝛽𝑐𝛼 ∈ 𝑆𝛽𝑎𝛼 ∩ 𝑆𝛽𝑏𝛼 = 𝑆𝛽𝑤𝛽. Hence  𝑆𝛽(𝑒𝛽𝑐𝛼) ⊆ 𝑆𝛽𝑤𝛽 . Thus 𝑆𝛽(𝑒𝛽𝑐𝛼) = 𝑆𝛽𝑤𝛽  as required.  
 
Lemma 3.7:  Let  𝑎−1𝑏, 𝑎−1𝑒𝛼 ∈ ∑𝛼 and  𝑐−1𝑑, 𝑒𝛽𝑑 ∈ ∑𝛽 where  𝑎, 𝑏 ∈ 𝑆𝛼, 𝑐,𝑑 ∈  𝑆𝛽  and 𝑒𝛼, 𝑒𝛽  are the identities 
elements in  𝑆𝛼 and  𝑆𝛽  respectively. Then  

 (i)  𝑎−1𝑏𝑒𝛽𝑑 = �𝑎𝑒𝛽�
−1(𝑏𝑑),    

 (ii)  (𝑎−1𝑒𝛼)(𝑐−1𝑑) = (𝑐𝑎)−1�𝑑𝑒𝛼𝛽�.     
 
Proof: (i) We have that 𝑆𝛼𝛽𝑒𝛽 ∩ 𝑆𝛼𝛽𝑏 = 𝑆𝛼𝛽 ∩ 𝑆𝛼𝛽𝑏 = 𝑆𝛼𝛽𝑏 and 

𝑒𝛼𝛽𝑏 = �𝑏𝑒𝛼𝛽�𝑒𝛽 = �𝑒𝛼𝛽𝑏�𝑒𝛽 = 𝑏 𝑒𝛼𝛽 , 
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Using Lemma 2.4. We have   

(𝑎−1𝑏)�𝑒𝛽𝑑� = (𝑎−1𝑏)(𝑒𝛽
−1𝑑) 

= �𝑒𝛼𝛽𝑎�
−1�𝑒𝛼𝛽𝑏𝑑� 

= �𝑒𝛼𝛽𝑎�
−1(𝑏𝑑).  

 
(ii)  We have that 𝑆𝛼𝛽𝑐 ∩ 𝑆𝛼𝛽𝑒𝛼 = 𝑆𝛼𝛽𝑐 ∩ 𝑆𝛼𝛽 = 𝑆𝛼𝛽𝑐 and   

𝑒𝛼𝛽𝑐 = �𝑐𝑒𝛼𝛽�𝑒𝛼 = �𝑒𝛼𝛽𝑐�𝑒𝛼 = 𝑐 𝑒𝛼𝛽 , 
Using Lemma 2.4. We have     

(𝑎−1𝑒𝛼)(𝑐−1𝑑) = (𝑐𝑎)−1�𝑑𝑒𝛼𝛽� 
as required. 
 
Lemma 3.8: Let  𝑎−1𝑏 ∈  ∑𝛼  , 𝑒𝛽𝑑,𝑑−1𝑒𝛽 ∈  ∑𝛽 and 𝑥−1𝑦 ∈  ∑𝛾 where  𝑒𝛽 is the identity element in  𝑆𝛽  where  
𝑎, 𝑏 ∈  𝑆𝛼 , 𝑒𝛽 ,𝑑 ∈  𝑆𝛽 and  𝑥,𝑦 ∈  𝑆𝛾 . Then  

  (i)  (𝑎−1𝑏𝑒𝛽𝑑)𝑥−1𝑦 = 𝑎−1𝑏(𝑒𝛽𝑑𝑥−1𝑦); 
  (ii)  (𝑎−1𝑏𝑑𝑒𝛽)𝑥−1𝑦 = 𝑎−1𝑏(𝑑−1𝑒𝛽𝑥−1𝑦).  

 
Proof: (i) Let  𝑎−1𝑏, 𝑒𝛽𝑑, 𝑥−1𝑦 be as in the hypothesis. Then  

�𝑎−1𝑏𝑒𝛽𝑑�𝑥−1𝑦 = �𝑎𝑒𝛼𝛽�
−1(𝑏𝑑)𝑥−1𝑦 by Lemma 3.7 (𝑖), 

= (𝑡1𝑎)−1(𝑟1𝑦) 
where  𝑡1𝑏𝑑 = 𝑟1𝑥 = 𝑤1and 

𝑆𝛼𝛽𝛾(𝑏𝑑𝑒𝛼𝛽𝛾) ∩ 𝑆𝛼𝛽𝛾(𝑥𝑒𝛼𝛽𝛾) = 𝑆𝛼𝛽𝛾𝑤1 
for some 𝑡1, 𝑟1,𝑤1 ∈ 𝑆𝛼𝛽𝛾.  
 
On the other hand, by definition of multiplication, 

𝑎−1𝑏�𝑒𝛽𝑑𝑥−1𝑦� = 𝑎−1𝑏�(𝑡2𝑒𝛽�
−1𝑟2𝑦) 

  = (𝑡3𝑎)−1(𝑟3𝑟2𝑦) 
where 𝑡2𝑑 = 𝑟2𝑥 = 𝑤2 with   
 𝑆𝛽𝛾(𝑑𝑒𝛽𝛾) ∩ 𝑆𝛽𝛾(𝑥𝑒𝛽𝛾) = 𝑆𝛽𝛾𝑤2       (1) 
for some 𝑡2, 𝑟2,𝑤2 ∈ 𝑆𝛽𝛾  and 𝑡3𝑏 = 𝑟3𝑡2𝑒𝛼𝛽𝛾 = 𝑤3 with 
 𝑆𝛼𝛽𝛾𝑏𝑒𝛼𝛽𝛾 ∩ 𝑆𝛼𝛽𝛾𝑡2𝑒𝛼𝛽𝛾 = 𝑆𝛼𝛽𝛾𝑤3       (2) 
for some 𝑡3, 𝑟3,𝑤3 ∈ 𝑆𝛼𝛽𝛾 . Using (1) and Lemma 3.6 gives     
 𝑆𝛼𝛽𝛾𝑑 ∩ 𝑆𝛼𝛽𝛾𝑥 = 𝑆𝛼𝛽𝛾𝑤2       (3) 
We must show that (𝑡1𝑎)−1(𝑟1𝑦) = (𝑡3𝑎)−1(𝑟3𝑟2𝑦). By using Lemma 3.3, we have to show that 𝑡1𝑎 = 𝑢𝑡3𝑎 and 
𝑟1𝑦 = 𝑢𝑟3𝑟2𝑦 for some unit 𝑢 in 𝑆𝛼𝛽𝛾.  
 
Once we know  𝑤1 ℒ 𝑤3 𝑑  in 𝑆𝛼𝛽𝛾, we have that 𝑤1 = ℎ𝑤3𝑑  for some unit ℎ in 𝑆𝛼𝛽𝛾  by Lemma 3.2. Hence       
𝑡1𝑏𝑑 = ℎ𝑡3𝑏𝑑 so that 𝑡1𝑒𝛼𝛽𝛾𝑏𝑑 = ℎ𝑡3𝑒𝛼𝛽𝛾𝑏𝑑. Since 𝑡1, ℎ𝑡3 and 𝑒𝛼𝛽𝛾𝑏𝑑 are in 𝑆𝛼𝛽𝛾, which is right cancellative we 
obtain 𝑡1 = ℎ𝑡3 so that 𝑡1𝑎 = ℎ𝑡3𝑎.  
 
Now,  

𝑤1 = 𝑟1𝑥 = 𝑡1𝑏𝑑 = ℎ𝑡3𝑏𝑑 = ℎ𝑟3𝑡2𝑑 = ℎ𝑟3𝑟2𝑥. 
 
As 𝑟1, ℎ𝑟3𝑟2 and 𝑒𝛼𝛽𝛾𝑥 are in 𝑆𝛼𝛽𝛾 again by right cancellativity in 𝑆𝛼𝛽𝛾 we have that 𝑟1 = ℎ𝑟3𝑟2  and so  𝑟1𝑦 = ℎ𝑟3𝑟2𝑦.  
 
Now, as 𝑆 has (LC)  

𝑆𝛼𝛽𝛾𝑤1 = 𝑆𝛼𝛽𝛾𝑏𝑑 ∩ 𝑆𝛼𝛽𝛾𝑥 
  = 𝑆𝛼𝛽𝛾𝑏𝑑 ∩ 𝑆𝛼𝛽𝛾𝑑 ∩ 𝑆𝛼𝛽𝛾𝑥 
  = 𝑆𝛼𝛽𝛾𝑏𝑑 ∩ 𝑆𝛼𝛽𝛾𝑤2                     by (3)             
  = 𝑆𝛼𝛽𝛾𝑏𝑑 ∩ 𝑆𝛼𝛽𝛾𝑡2𝑑 
  = 𝑆𝛼𝛽𝛾𝑏𝑑𝑒𝛼𝛽𝛾 ∩ 𝑆𝛼𝛽𝛾𝑡2𝑑𝑒𝛼𝛽𝛾 
  = (𝑆𝛼𝛽𝛾𝑏 ∩ 𝑆𝛼𝛽𝛾𝑡2)𝑑𝑒𝛼𝛽𝛾          by Lemma 3.5 
   = 𝑆𝛼𝛽𝛾𝑤3𝑑                                     by (2). 

(ii) Let 𝑎−1𝑏,𝑑−1𝑒𝛽 , 𝑥−1𝑦 be as in the hypothesis. Then,  
�𝑎−1𝑏𝑑−1𝑒𝛽�𝑥−1𝑦 = (𝑡1𝑎)−1(𝑟1𝑒𝛽)𝑥−1𝑦 

  = (𝑡2𝑡1𝑎)−1(𝑟2𝑦) 
where 𝑡1𝑏 = 𝑟1𝑑 = 𝑤1with 
 𝑆𝛼𝛽(𝑏𝑒𝛼𝛽) ∩ 𝑆𝛼𝛽(𝑑𝑒𝛼𝛽) = 𝑆𝛼𝛽𝑤1 (4) 



N. Ghroda* / A New Proof for Gantos’s Theorem On Semilattice of Bisimple Inverse Semigroups / IJMA- 8(6), June-2017. 

© 2017, IJMA. All Rights Reserved                                                                                                                                                                      145  

 
for some 𝑡1, 𝑟1,𝑤1 ∈ 𝑆𝛼𝛽  and  𝑡2𝑟1 = 𝑟2𝑥 = 𝑤2 with   
 𝑆𝛼𝛽𝛾𝑟1 ∩ 𝑆𝛼𝛽𝛾𝑥 = 𝑆𝛼𝛽𝛾𝑤2 (5) 
for some 𝑡2, 𝑟2,𝑤2 ∈ 𝑆𝛼𝛽𝛾 . By (4) and Lemma 3.6 we have  
 𝑆𝛼𝛽𝛾𝑏 ∩ 𝑆𝛼𝛽𝛾𝑑 = 𝑆𝛼𝛽𝛾𝑤1. (6) 
 
On the other hand, by Lemma 3.7 (ii), 

𝑎−1𝑏�𝑑−1𝑒𝛽𝑥−1𝑦� = 𝑎−1𝑏(𝑥𝑑)−1(𝑦𝑒𝛽𝛾) 
  = (𝑡3𝑎)−1(𝑟3𝑦𝑒𝛽𝛾) 

where 
𝑡3𝑏 = 𝑟3𝑥𝑑 = 𝑤3, 𝑆𝛼𝛽𝛾(𝑥𝑑) ∩ 𝑆𝛼𝛽𝛾(𝑏𝑒𝛼𝛽𝛾) = 𝑆𝛼𝛽𝛾𝑤3 

for some 𝑡3, 𝑟3,𝑤3 ∈ 𝑆𝛼𝛽𝛾 . 
 
We have to show that  (𝑡2𝑡1𝑎)−1(𝑟2𝑦) = (𝑡3𝑎)−1�𝑟3𝑦𝑒𝛽𝛾�.  By using Lemma 3.3,  we have to show that 𝑡3𝑎 = 𝑣𝑡2𝑡1𝑎 
and 𝑟3𝑦 = 𝑣𝑟2𝑦  for some unit 𝑣 in 𝑆𝛼𝛽𝛾.  
 
Once we know  𝑤3 ℒ 𝑤2 𝑑  in 𝑆𝛼𝛽𝛾, we have  𝑤3 = 𝑘𝑤2𝑑 for some unit 𝑘 in 𝑆𝛼𝛽𝛾, by Lemma 3.2. Hence                   
𝑟3𝑥𝑑 = 𝑘𝑟2𝑥𝑑 so that  𝑟3𝑒𝛼𝛽𝛾𝑥𝑑 = 𝑘𝑟2𝑒𝛼𝛽𝛾𝑥𝑑. Since 𝑟3, 𝑒𝛼𝛽𝛾𝑥𝑑 and 𝑘𝑟2 are in 𝑆𝛼𝛽𝛾 which is right cancellative we 
obtain 𝑟3 = 𝑘𝑟2 so that 𝑟3𝑦 = 𝑘𝑟2𝑦. Now,  

𝑤3 = 𝑡3𝑏 = 𝑟3𝑥𝑑 = 𝑘𝑟2𝑥𝑑 = 𝑘𝑡2𝑟1𝑑 = 𝑘𝑡2𝑡1𝑏. 
 
Hence 𝑡3𝑒𝛼𝛽𝛾𝑏 = 𝑘𝑡2𝑡1𝑒𝛼𝛽𝛾𝑏 where 𝑡3, 𝑒𝛼𝛽𝛾𝑏 and  𝑘𝑡2𝑡1 are in 𝑆𝛼𝛽𝛾 again by right cancellativity in 𝑆𝛼𝛽𝛾 . we have that 
𝑡3 = 𝑘𝑡2𝑡1 and so 𝑡3𝑎 = 𝑘𝑡2𝑡1𝑎.  
 
Now, 

𝑆𝛼𝛽𝛾𝑤3 = 𝑆𝛼𝛽𝛾𝑏 ∩ 𝑆𝛼𝛽𝛾𝑥𝑑 
  = 𝑆𝛼𝛽𝛾𝑏 ∩ 𝑆𝛼𝛽𝛾𝑥𝑑 ∩ 𝑆𝛼𝛽𝛾𝑑 
  = 𝑆𝛼𝛽𝛾𝑥𝑑 ∩ 𝑆𝛼𝛽𝛾𝑤1                      by (6) 
  = 𝑆𝛼𝛽𝛾𝑥𝑑 ∩ 𝑆𝛼𝛽𝛾𝑟1𝑑 
  = 𝑆𝛼𝛽𝛾𝑥𝑑𝑒𝛼𝛽𝛾 ∩ 𝑆𝛼𝛽𝛾𝑟1𝑑𝑒𝛼𝛽𝛾 
  = (𝑆𝛼𝛽𝛾𝑥 ∩ 𝑆𝛼𝛽𝛾𝑟1)𝑑𝑒𝛼𝛽𝛾           by Lemma 3.5  
  = 𝑆𝛼𝛽𝛾𝑤2𝑑                                      by (5) 

 as required.  
 
Lemma 3.9:  The associative law holds in 𝑄.  
 
Proof:  Suppose that 𝑎−1𝑏 ∈ ∑𝛼,  𝑐−1𝑑 ∈ ∑𝛽  and 𝑠−1𝑡 ∈ ∑𝛾 where  𝑎, 𝑏 ∈ 𝑆𝛼,  𝑐,𝑑 ∈ 𝑆𝛽 and 𝑠, 𝑡 ∈ 𝑆𝛾. From Lemma 
3.8, we have that 

𝑎−1𝑏(𝑐−1𝑑𝑠−1𝑡) = 𝑎−1𝑏�𝑐−1𝑒𝛽𝑒𝛽𝑑. 𝑠−1𝑡� 
  = 𝑎−1𝑏�𝑐−1𝑒𝛽 . 𝑒𝛽𝑑𝑠−1𝑡� 
  = (𝑎−1𝑏𝑐−1𝑒𝛽)�𝑒𝛽𝑑. 𝑠−1𝑡� 
  = (𝑎−1𝑏𝑐−1𝑒𝛽 . 𝑒𝛽𝑑)𝑠−1𝑡 
  = (𝑎−1𝑏(𝑐−1𝑒𝛽 . 𝑒𝛽𝑑))𝑠−1𝑡 
  = (𝑎−1𝑏𝑐−1𝑑)𝑠−1𝑡. 

  
From Lemmas 3.9 and 3.4 we get the proof of Theorem 3.1.  
 
Let  𝑎 ∈ 𝑆𝛼   and  𝑏 ∈ 𝑆𝛽 for some α , β ∈ Y. By Lemmas 3.7 and 2.4, 

𝑒𝛼𝑎𝑒𝛽𝑏 = 𝑒𝛼−1𝑎𝑒𝛽−1𝑏 = (𝑒𝛼𝑒𝛼𝛽)−1(𝑎𝑏) = 𝑒𝛼𝛽(𝑎𝑏) = 𝑎𝑏 
and we get the following lemma;   
 
Lemma 3.10:  The multiplication on 𝑄 extends the multiplication on 𝑆.  
 
The next corollary now is clear. 
 
Corollary 3.11: The semigroup 𝑆 defined as above is a left I-order in  𝑄 = ⋃𝛼∈𝑌∑𝛼 .  
  
The following lemma  shows that the `strong' in Gantos’s result is automatic.  
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Lemma 3.12: [7] Let 𝑃 = [𝑌; 𝑆𝛼] where each 𝑆𝛼 is a monoid with identity 𝑒𝛼, such that 𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} is a 
subsemigroup of 𝑃. Then 𝐸 is a semilattice isomorphic to 𝑌 and 𝐸 is central in 𝑃. 
If we define 𝜙𝛼,𝛽: 𝑆𝛼 → 𝑆𝛽 by 𝑎𝛼𝜙𝛼,𝛽 = 𝑎𝛼𝑒𝛽 where 𝛼 ≥ 𝛽, then each 𝜙𝛼,𝛽 is a monoid morphism, and                      
𝑃 = [𝑌; 𝑆𝛼;𝜙𝛼,𝛽]. 
 
Let 𝑆 = [𝑌;𝑆𝛼]  be a semilattice 𝑌 of  of right cancellative monoids 𝑆𝛼 with identity 𝑒𝛼 , 𝛼 ∈ 𝑌 such that each               
𝑆𝛼 , 𝛼 ∈ 𝑌 has the (LC) condition. By Lemma 2.4, 𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} is a subsemigroup of 𝑆. Hence 𝑆 is a strong 
semilattice 𝑌 with connecting morphisms 𝜑𝛼,𝛽: 𝑆𝛼 → 𝑆𝛽 givening by 𝑎𝛼𝜑𝛼,𝛽 = 𝑎𝛼𝑒𝛽 where 𝛼 ≥ 𝛽 for any 𝑎𝛼 ∈ 𝑆𝛼, by 
Lemma 3.12. In fact, every semilattice of right cancellative monoids is a strong semilattice of cancellative monoids  
(see [13, Exercises III.7.12]). If 𝑆 has the (LC) condition, then by Corollary 3.11, 𝑆 has a semigroup of left I-quotients 
𝑄 = ⋃𝛼∈𝑌 ∑𝛼 where ∑𝛼 is the inverse hull of  𝑆𝛼 , 𝛼 ∈ 𝑌. It is easy to see that 𝑒𝛼 is the identity of ∑𝛼. From Lemma 
3.6 and Theorem 3.11 of  [7], the 𝜑𝛼,𝛽 's lift to morphisms 𝜙𝛼,𝛽: ∑𝛼 → ∑𝛽 and 𝜙𝛼,𝛽𝜙𝛽,𝛾 = 𝜙𝛼,𝛾 for all  𝛼 ≥ 𝛽 ≥ 𝛾, and 
𝜙𝛼,𝛼 is the identity on  ∑𝛼. Hence 𝑄 is a strong semilattice of bisimple inverse monoids ∑𝛼 's, 𝛼 ∈ 𝑌,  by Lemma 3.12. 
The following theorem is now clear. 
 
Theorem 3.13: Let 𝑆 = [𝑌; 𝑆𝛼;𝜑𝛼,𝛽] and for each 𝛼, let 𝑆𝛼 be a right cancellative monoid with Condition (LC) and ∑𝛼 
as its inverse hull of left I-quotients. Suppose that 𝑆 has the (LC) condition. Then 𝑆 is a left I-order in a strong 
semilattice of monoids 𝑄 = [𝑌;∑𝛼;𝜙𝛼,𝛽] where 𝜑𝛼,𝛽’s lift to 𝜙𝛼,𝛽’s, 𝛼 ≥ 𝛽.  
 
We aim now to prove the converse of Theorem 3.1. Let 𝑄 be a semilattice 𝑌 of bisimple inverse monoids 𝑄𝛼 , (with 
identity 𝑒𝛼) such that 𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} is a subsemigroup of 𝑄. By Lemma 3.12, 𝐸 is central in 𝑄. Further if we define 
𝜙𝛼,𝛽: 𝑄𝛼 → 𝑄𝛽 by 𝑞𝛼𝜙𝛼,𝛽 = 𝑞𝛼𝑒𝛽 (𝛼 ≥ 𝛽), then each 𝜙𝛼,𝛽 is a monoid morphism and 𝑄 = [𝑌;𝑄𝛼;𝜙𝛼,𝛽]. Let 𝑆𝛼 be the 
ℛ-class of the identity 𝑒𝛼 in 𝑄𝛼 . Clearly, 𝜙𝛼,𝛽|𝑆𝛼: 𝑆𝛼 → 𝑆𝛽 and 𝑆 = [𝑌; 𝑆𝛼;𝜙𝛼,𝛽|𝑆𝛼] is a strong semilattice 𝑌 of right 
cancellative monoids 𝑆𝛼. We wish to show that 𝑆 has the (LC) condition. By Lemma 3.6, to show that 𝑆 has (LC) 
condition we have to show that 𝜙𝛼,𝛽|𝑆𝛼is (LC)-preserving (𝛼 ≥ 𝛽). We need the following technical lemma from [12] 
(see, Lemma 3.2 of  [2]). 
 
Lemma 3.14: (cf. [12, Lemma X.1.5]) Let 𝑄 be a bisimple inverse monoid and let 𝑅 be the ℛ-class of the identity. For 
any 𝑎, 𝑏, 𝑐 ∈ 𝑅, 

𝑅𝑎 ∩  𝑅𝑏 = 𝑅𝑐 if and only if 𝑎−1𝑎𝑏−1𝑏 = 𝑐−1𝑐 . 
Returning to our argument before Lemma 3.14. Let 𝑆𝛼𝑎 ∩ 𝑆𝛼𝑏 = 𝑆𝛼𝑐  where 𝑎, 𝑏, 𝑐 ∈ 𝑆𝛼 . Then, we have that 
𝑎−1𝑎𝑏−1𝑏 = 𝑐−1𝑐. We claim that 

�𝑒𝛽𝑎�
−1�𝑒𝛽𝑎��𝑒𝛽𝑏�

−1(𝑒𝛽𝑏) = �𝑒𝛽𝑐�
−1(𝑒𝛽𝑐) 

where 𝛼 ≥ 𝛽. 
 
Since 𝐸 is central in 𝑄 we have 

�𝑒𝛽𝑎�
−1�𝑒𝛽𝑎��𝑒𝛽𝑏�

−1�𝑒𝛽𝑏� = 𝑎−1𝑒𝛽𝑒𝛽𝑎𝑏−1𝑒𝛽𝑏 
= 𝑎−1𝑒𝛽𝑎𝑏−1𝑒𝛽𝑏 
= 𝑎−1𝑎𝑒𝛽𝑏−1𝑏 
= 𝑒𝛽𝑎−1𝑎𝑏−1𝑏 
= 𝑒𝛽𝑐−1𝑐 
= 𝑒𝛽𝑐−1𝑒𝛽𝑐 
= �𝑒𝛽𝑐�

−1�𝑒𝛽𝑐�. 
 
Hence our claim is established. By the above lemma 𝑆𝛽𝑒𝛽𝑎 ∩ 𝑆𝛽𝑒𝛽𝑏 = 𝑆𝛽𝑒𝛽𝑐  where 𝛼 ≥ 𝛽. Thus by Lemma 3.6, 𝑆 
has the (LC) condition and the following theorem is clear. 
 
Theorem 3.15: Let 𝑄 be a semilattice 𝑌 of bisimple inverse monoids 𝑄𝛼 , (with identity 𝑒𝛼) such that 𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} 
is a subsemigroup of 𝑄. Then there is a subsemigroup 𝑆 of 𝑄 with the (LC) condition which is a strong semilattice of 
right cancellative monoids 𝑆𝛼 where 𝑆𝛼 is the ℛ𝑄𝛼-class of 𝑒𝛼. Moreover, 𝑆 is a left I-order in 𝑄. 
 
Combining Theorem 3.1 and Theorem 3.15, we get the following corollary. 
 
Corollary 3.16: (cf. [11, Main Theorem]) Let 𝑆 = [𝑌; 𝑆𝛼] be a semilattice 𝑌 of right cancellative monoids 𝑆𝛼  with 
identity 𝑒𝛼, such that each 𝑆𝛼 has (LC). Suppose in addition that for any 𝛼 ≥ 𝛽, if 𝑆𝛼𝑎𝛼 ∩ 𝑆𝛼𝑏𝛼 = 𝑆𝛼𝑐𝛼, then       
𝑆𝛽𝑎𝛼 ∩ 𝑆𝛽𝑏𝛼 = 𝑆𝛽𝑐𝛼 . For each 𝛼 ∈ 𝑌, let 𝑄𝛼  be the inverse hull of 𝑆𝛼, so that 𝑄𝛼  is a bisimple inverse monoid, and 𝑆𝛼 
is the ℛ𝑄𝛼-class of 𝑒𝛼. Then 𝑄 = [𝑌;𝑄𝛼] is a semigroup of left I-quotients of 𝑆, such that 𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} is a 
subsemigroup. 
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Conversely, let 𝑄 = [𝑌;𝑄𝛼] be a semilattice 𝑌 of bisimple inverse monoids 𝑄𝛼 , with identity 𝑒𝛼, such that                  
𝐸 = {𝑒𝛼:𝛼 ∈ 𝑌} is a subsemigroup. Then 𝑆 = �𝑌;𝑅𝑒𝛼� is a semilattice of right cancellative monoids 𝑅𝑒𝛼 , such that each 
𝑅𝑒𝛼  has (LC) and for any 𝛼 ≥ 𝛽, if 𝑅𝑒𝛼𝑎𝛼 ∩ 𝑆𝑒𝛼𝑅𝛼 = 𝑅𝑒𝛼𝑐𝛼, then 𝑅𝑒𝛽𝑎𝛼 ∩ 𝑆𝑒𝛽𝑅𝛼 = 𝑅𝑒𝛽𝑐𝛼 . 
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